中小学教育资源及组卷应用平台
中考数学一轮复习 一次函数
一.选择题(共10小题)
1.(2025 枣庄)如图,直线yx+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,当PC+PD最小时,点P的坐标为( )
A.(﹣3,0) B.(﹣6,0) C.(,0) D.(,0)
2.(2025 碑林区校级模拟)在一次函数yax﹣a中,y随x的增大而减小,则其图象可能是( )
A. B.
C. D.
3.(2024秋 沈阳校级期末)一次函数y=mx+n与y=mnx(mn≠0),在同一平面直角坐标系的图象是( )
A. B.
C. D.
4.(2024春 阳谷县期末)如图,已知:函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x+b>ax﹣3的解集是( )
A.x>﹣5 B.x>﹣2 C.x>﹣3 D.x<﹣2
5.(2025 唐山二模)如图,平面直角坐标系中,△ABC的顶点坐标分别是A(1,1),B(3,1),C(2,2),当直线与△ABC有交点时,b的取值范围是( )
A.﹣1≤b≤1 B.b≤1 C.b D.﹣1≤b
6.(2025 潍坊)若式子(k﹣1)0有意义,则一次函数y=(k﹣1)x+1﹣k的图象可能是( )
A. B.
C. D.
7.(2024秋 郑州期中)已知点(﹣4,y1),(2,y2)都在直线yx+2上,则y1,y2大小关系是( )
A.y1>y2 B.y1=y2 C.y1<y2 D.不能比较
8.(2024春 巨野县期末)如图,已知一次函数y=kx+b的图象与x轴,y轴分别交于点(2,0),点(0,3).有下列结论:
①关于x的方程kx+b=0的解为x=2;
②关于x的方程kx+b=3的解为x=0;
③当x>2时,y<0;
④当x<0时,y<3.其中正确的是( )
A.①②③ B.①③④ C.②③④ D.①②④
9.(2025 江西校级模拟)设0<k<2,关于x的一次函数y=kx+2(1﹣x),当1≤x≤2时的最大值是( )
A.2k﹣2 B.k﹣1 C.k D.k+1
10.(2025 防城港)关于直线l:y=kx+k(k≠0),下列说法不正确的是( )
A.点(0,k)在l上
B.l经过定点(﹣1,0)
C.当k>0时,y随x的增大而增大
D.l经过第一、二、三象限
二.填空题(共5小题)
11.(2025 茂名)如图,三个正比例函数的图象分别对应表达式:①y=ax,②y=bx,③y=cx,将a,b,c从小到大排列并用“<”连接为 .
12.(2024秋 无锡期末)已知函数y=(m﹣1)x+m2﹣1是正比例函数,则m= .
13.(2025 自贡)如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为 .
14.(2025 盐城)如图,在平面直角坐标系中,一次函数y=2x﹣1的图象分别交x、y轴于点A、B,将直线AB绕点B按顺时针方向旋转45°,交x轴于点C,则直线BC的函数表达式是 .
15.(2025 洪山区校级模拟)已知m是整数,且一次函数y=(m+4)x+m+2的图象不过第二象限,则m= .
三.解答题(共5小题)
16.(2025 肃州区校级期末)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M沿路线O→A→C运动.
(1)求直线AB的解析式.
(2)求△OAC的面积.
(3)当△OMC的面积是△OAC的面积的时,求出这时点M的坐标.
17.(2025 齐齐哈尔)甲、乙两车分别从相距480km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途经C地,甲车到达C地停留1小时,因有事按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图,结合图象信息解答下列问题:
(1)乙车的速度是 千米/时,t= 小时;
(2)求甲车距它出发地的路程y与它出发的时间x的函数关系式,并写出自变量的取值范围;
(3)直接写出乙车出发多长时间两车相距120千米.
18.(2025 河南)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.
(1)求每台A型电脑和B型电脑的销售利润;
(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.
①求y关于x的函数关系式;
②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?
(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.
19.(2025 岳池县模拟)如图,已知一次函数y=kx+b的图象经过A(﹣2,﹣1),B(1,3)两点,并且交x轴于点C,交y轴于点D.
(1)求该一次函数的解析式;
(2)求△AOB的面积.
20.(2024秋 河源期末)如图,在平面直角坐标系xOy中,直线yx+4与x轴、y轴分别交于点A、点B,点D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处.
(1)求AB的长;
(2)求点C和点D的坐标;
(3)y轴上是否存在一点P,使得S△PABS△OCD?若存在,直接写出点P的坐标;若不存在,请说明理由.
中考数学一轮复习 一次函数
参考答案与试题解析
一.选择题(共10小题)
1.(2025 枣庄)如图,直线yx+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,当PC+PD最小时,点P的坐标为( )
A.(﹣3,0) B.(﹣6,0) C.(,0) D.(,0)
【考点】一次函数图象上点的坐标特征;轴对称﹣最短路线问题.
【答案】C
【分析】(方法一)根据一次函数解析式求出点A、B的坐标,再由中点坐标公式求出点C、D的坐标,根据对称的性质找出点D关于x轴的对称点D′的坐标,结合点C、D′的坐标求出直线CD′的解析式,令y=0即可求出x的值,从而得出点P的坐标.
(方法二)根据一次函数解析式求出点A、B的坐标,再由中点坐标公式求出点C、D的坐标,根据对称的性质找出点D关于x轴的对称点D′的坐标,根据三角形中位线定理即可得出点P为线段CD′的中点,由此即可得出点P的坐标.
【解答】解:(方法一)作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图所示.
令yx+4中x=0,则y=4,
∴点B的坐标为(0,4);
令yx+4中y=0,则x+4=0,解得:x=﹣6,
∴点A的坐标为(﹣6,0).
∵点C、D分别为线段AB、OB的中点,
∴点C(﹣3,2),点D(0,2).
∵点D′和点D关于x轴对称,
∴点D′的坐标为(0,﹣2).
设直线CD′的解析式为y=kx+b,
∵直线CD′过点C(﹣3,2),D′(0,﹣2),
∴有,解得:,
∴直线CD′的解析式为yx﹣2.
令yx﹣2中y=0,则0x﹣2,解得:x,
∴点P的坐标为(,0).
故选C.
(方法二)连接CD,作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图所示.
令yx+4中x=0,则y=4,
∴点B的坐标为(0,4);
令yx+4中y=0,则x+4=0,解得:x=﹣6,
∴点A的坐标为(﹣6,0).
∵点C、D分别为线段AB、OB的中点,
∴点C(﹣3,2),点D(0,2),CD∥x轴,
∵点D′和点D关于x轴对称,
∴点D′的坐标为(0,﹣2),点O为线段DD′的中点.
又∵OP∥CD,
∴点P为线段CD′的中点,
∴点P的坐标为(,0).
故选:C.
【点评】本题考查了待定系数法求函数解析式、一次函数图象上点的坐标特征以及轴对称中最短路径问题,解题的关键是找出点P的位置.
2.(2025 碑林区校级模拟)在一次函数yax﹣a中,y随x的增大而减小,则其图象可能是( )
A. B.
C. D.
【考点】一次函数的图象.
【专题】几何直观;模型思想.
【答案】B
【分析】根据y=kx+b,k<0时,y随x的增大而减小,可得答案.
【解答】解:在yax﹣a中,y随x的增大而减小,得a<0,﹣a>0,
故B正确.
故选:B.
【点评】本题考查了一次函数图象,利用一次函数的性质是解题关键.
3.(2024秋 沈阳校级期末)一次函数y=mx+n与y=mnx(mn≠0),在同一平面直角坐标系的图象是( )
A. B.
C. D.
【考点】一次函数的图象.
【专题】分类讨论.
【答案】C
【分析】由于m、n的符号不确定,故应先讨论m、n的符号,再根据一次函数的性质进行选择.
【解答】解:(1)当m>0,n>0时,mn>0,
一次函数y=mx+n的图象一、二、三象限,
正比例函数y=mnx的图象过一、三象限,无符合项;
(2)当m>0,n<0时,mn<0,
一次函数y=mx+n的图象一、三、四象限,
正比例函数y=mnx的图象过二、四象限,C选项符合;
(3)当m<0,n<0时,mn>0,
一次函数y=mx+n的图象二、三、四象限,
正比例函数y=mnx的图象过一、三象限,无符合项;
(4)当m<0,n>0时,mn<0,
一次函数y=mx+n的图象一、二、四象限,
正比例函数y=mnx的图象过二、四象限,无符合项.
故选:C.
【点评】一次函数y=kx+b的图象有四种情况:
①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;
②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;
③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;
④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.
4.(2024春 阳谷县期末)如图,已知:函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x+b>ax﹣3的解集是( )
A.x>﹣5 B.x>﹣2 C.x>﹣3 D.x<﹣2
【考点】一次函数与一元一次不等式.
【专题】推理填空题.
【答案】B
【分析】根据一次函数的图象和两函数的交点坐标即可得出答案.
【解答】解:∵函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),
则根据图象可得不等式3x+b>ax﹣3的解集是x>﹣2,
故选:B.
【点评】本题考查了议程函数与一元一次不等式的应用,主要考查学生的观察能力和理解能力,题型较好,难度不大.
5.(2025 唐山二模)如图,平面直角坐标系中,△ABC的顶点坐标分别是A(1,1),B(3,1),C(2,2),当直线与△ABC有交点时,b的取值范围是( )
A.﹣1≤b≤1 B.b≤1 C.b D.﹣1≤b
【考点】一次函数图象与系数的关系;一次函数图象上点的坐标特征.
【答案】B
【分析】将A(1,1),B(3,1),C(2,2)的坐标分别代入直线中求得b的值,再根据一次函数的增减性即可得到b的取值范围.
【解答】解:直线yx+b经过点B时,将B(3,1)代入直线中,可得b=1,解得b;
直线yx+b经过点A时:将A(1,1)代入直线中,可得b=1,解得b;
直线yx+b经过点C时:将C(2,2)代入直线中,可得1+b=2,解得b=1.
故b的取值范围是b≤1.
故选:B.
【点评】考查了一次函数的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.
6.(2025 潍坊)若式子(k﹣1)0有意义,则一次函数y=(k﹣1)x+1﹣k的图象可能是( )
A. B.
C. D.
【考点】一次函数图象与系数的关系;零指数幂;二次根式有意义的条件.
【答案】A
【分析】首先根据二次根式中的被开方数是非负数,以及a0=1(a≠0),判断出k的取值范围,然后判断出k﹣1、1﹣k的正负,再根据一次函数的图象与系数的关系,判断出一次函数y=(k﹣1)x+1﹣k的图象可能是哪个即可.
【解答】解:∵式子(k﹣1)0有意义,
∴
解得k>1,
∴k﹣1>0,1﹣k<0,
∴一次函数y=(k﹣1)x+1﹣k的图象可能是:
.
故选:A.
【点评】(1)此题主要考查了一次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.
(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.
(3)此题还考查了二次根式有意义的条件,要熟练掌握,解答此题的关键是要明确:二次根式中的被开方数是非负数.
7.(2024秋 郑州期中)已知点(﹣4,y1),(2,y2)都在直线yx+2上,则y1,y2大小关系是( )
A.y1>y2 B.y1=y2 C.y1<y2 D.不能比较
【考点】一次函数图象上点的坐标特征.
【答案】A
【分析】先根据一次函数的解析式判断出函数的增减性,再根据两点横坐标的大小即可得出结论.
【解答】解:∵k0,
∴y随x的增大而减小.
∵﹣4<2,
∴y1>y2.
故选:A.
【点评】本题考查的是一次函数图象上点的坐标特点,先根据题意判断出一次函数的增减性是解答此题的关键.
8.(2024春 巨野县期末)如图,已知一次函数y=kx+b的图象与x轴,y轴分别交于点(2,0),点(0,3).有下列结论:
①关于x的方程kx+b=0的解为x=2;
②关于x的方程kx+b=3的解为x=0;
③当x>2时,y<0;
④当x<0时,y<3.其中正确的是( )
A.①②③ B.①③④ C.②③④ D.①②④
【考点】一次函数与一元一次方程.
【专题】函数及其图象.
【答案】A
【分析】根据一次函数的性质,一次函数与一元一次方程的关系对各小题分析判断即可得解.
【解答】解:由图象得:①关于x的方程kx+b=0的解为x=2,正确;
②关于x的方程kx+b=3的解为x=0,正确;
③当x>2时,y<0,正确;
④当x<0时,y>3,错误;
故选:A.
【点评】本题主要考查了一次函数的性质,一次函数与一元一次方程、一元一次不等式的关系,利用数形结合是求解的关键.
9.(2025 江西校级模拟)设0<k<2,关于x的一次函数y=kx+2(1﹣x),当1≤x≤2时的最大值是( )
A.2k﹣2 B.k﹣1 C.k D.k+1
【考点】一次函数的性质.
【专题】压轴题.
【答案】C
【分析】首先确定一次函数的增减性,根据增减性即可求解.
【解答】解:原式可以化为:y=(k﹣2)x+2,
∵0<k<2,
∴k﹣2<0,则函数值随x的增大而减小.
∴当x=1时,函数值最大,最大值是:(k﹣2)+2=k.
故选:C.
【点评】本题主要考查了一次函数的性质,正确根性质确定当x=2时,函数取得最小值是解题的关键.
10.(2025 防城港)关于直线l:y=kx+k(k≠0),下列说法不正确的是( )
A.点(0,k)在l上
B.l经过定点(﹣1,0)
C.当k>0时,y随x的增大而增大
D.l经过第一、二、三象限
【考点】一次函数图象与系数的关系;一次函数图象上点的坐标特征.
【答案】D
【分析】直接根据一次函数的性质选择不正确选项即可.
【解答】解:A、当x=0时,y=k,即点(0,k)在l上,故此选项正确;
B、当x=﹣1时,y=﹣k+k=0,此选项正确;
C、当k>0时,y随x的增大而增大,此选项正确;
D、不能确定l经过第一、二、三象限,此选项错误;
故选:D.
【点评】本题主要考查了一次函数的性质,解题的关键是掌握一次函数的性质,一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).此题难度不大.
二.填空题(共5小题)
11.(2025 茂名)如图,三个正比例函数的图象分别对应表达式:①y=ax,②y=bx,③y=cx,将a,b,c从小到大排列并用“<”连接为 a<c<b .
【考点】正比例函数的图象.
【专题】一次函数及其应用.
【答案】见试题解答内容
【分析】根据直线所过象限可得a<0,b>0,c>0,再根据直线陡的情况可判断出b>c,进而得到答案.
【解答】解:根据三个函数图象所在象限可得a<0,b>0,c>0,
再根据直线越陡,|k|越大,则b>c.
则b>c>a,
故答案为:a<c<b.
【点评】此题主要考查了正比例函数图象,关键是掌握:当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小.同时注意直线越陡,则|k|越大
12.(2024秋 无锡期末)已知函数y=(m﹣1)x+m2﹣1是正比例函数,则m= ﹣1 .
【考点】正比例函数的定义.
【答案】见试题解答内容
【分析】由正比例函数的定义可得m2﹣1=0,且m﹣1≠0.
【解答】解:由正比例函数的定义可得:m2﹣1=0,且m﹣1≠0,
解得:m=﹣1,
故答案为:﹣1.
【点评】本题考查了正比例函数的定义.解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为1.
13.(2025 自贡)如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为 16 .
【考点】一次函数综合题.
【专题】压轴题.
【答案】见试题解答内容
【分析】根据题意,线段BC扫过的面积应为一平行四边形的面积,其高是AC的长,底是点C平移的路程.求当点C落在直线y=2x﹣6上时的横坐标即可.
【解答】解:如图所示.
∵点A、B的坐标分别为(1,0)、(4,0),
∴AB=3.
∵∠CAB=90°,BC=5,
∴AC=4.
∴A′C′=4.
∵点C′在直线y=2x﹣6上,
∴2x﹣6=4,解得 x=5.
即OA′=5.
∴CC′=5﹣1=4.
∴S BCC′B′=4×4=16.
即线段BC扫过的面积为16.
故答案为16.
【点评】此题考查平移的性质及一次函数的综合应用,难度中等.
14.(2025 盐城)如图,在平面直角坐标系中,一次函数y=2x﹣1的图象分别交x、y轴于点A、B,将直线AB绕点B按顺时针方向旋转45°,交x轴于点C,则直线BC的函数表达式是 yx﹣1 .
【考点】一次函数图象与几何变换.
【专题】一次函数及其应用.
【答案】见试题解答内容
【分析】根据已知条件得到A(,0),B(0,﹣1),求得OA,OB=1,过A作AF⊥AB交BC于F,过F作FE⊥x轴于E,得到AB=AF,根据全等三角形的性质得到AE=OB=1,EF=OA,求得F(,),设直线BC的函数表达式为:y=kx+b,解方程组于是得到结论.
【解答】解:∵一次函数y=2x﹣1的图象分别交x、y轴于点A、B,
∴令x=0,得y=﹣1,令y=0,则x,
∴A(,0),B(0,﹣1),
∴OA,OB=1,
过A作AF⊥AB交BC于F,过F作FE⊥x轴于E,
∵∠ABC=45°,
∴△ABF是等腰直角三角形,
∴AB=AF,
∵∠OAB+∠ABO=∠OAB+∠EAF=90°,
∴∠ABO=∠EAF,
∴△ABO≌△FAE(AAS),
∴AE=OB=1,EF=OA,
∴F(,),
设直线BC的函数表达式为:y=kx+b,
∴,
∴,
∴直线BC的函数表达式为:yx﹣1,
故答案为:yx﹣1.
【点评】本题考查了一次函数图象与几何变换,待定系数法求函数的解析式,全等三角形的判定和性质,正确的作出辅助线是解题的关键.
15.(2025 洪山区校级模拟)已知m是整数,且一次函数y=(m+4)x+m+2的图象不过第二象限,则m= ﹣3或﹣2 .
【考点】一次函数的性质.
【答案】见试题解答内容
【分析】由于一次函数y=(m+4)x+m+2的图象不过第二象限,则得到,然后解不等式即可m的值.
【解答】解:∵一次函数y=(m+4)x+m+2的图象不过第二象限,
∴,
解得﹣4<m≤﹣2,
而m是整数,
则m=﹣3或﹣2.
故填空答案:﹣3或﹣2.
【点评】此题首先根据一次函数的性质,利用已知条件列出关于m的不等式组求解,然后取其整数即可解决问题.
三.解答题(共5小题)
16.(2025 肃州区校级期末)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M沿路线O→A→C运动.
(1)求直线AB的解析式.
(2)求△OAC的面积.
(3)当△OMC的面积是△OAC的面积的时,求出这时点M的坐标.
【考点】待定系数法求一次函数解析式;一次函数的性质;一次函数图象上点的坐标特征.
【答案】见试题解答内容
【分析】(1)利用待定系数法即可求得函数的解析式;
(2)求得C的坐标,即OC的长,利用三角形的面积公式即可求解;
(3)当△OMC的面积是△OAC的面积的时,根据面积公式即可求得M的横坐标,然后代入解析式即可求得M的坐标.
【解答】解:(1)设直线AB的解析式是y=kx+b,
根据题意得:,
解得:,
则直线的解析式是:y=﹣x+6;
(2)在y=﹣x+6中,令x=0,解得:y=6,
S△OAC6×4=12;
(3)设OA的解析式是y=mx,则4m=2,
解得:m,
则直线的解析式是:yx,
∵当△OMC的面积是△OAC的面积的时,
∴M的横坐标是4=1,
在yx中,当x=1时,y,则M的坐标是(1,);
在y=﹣x+6中,x=1则y=5,则M的坐标是(1,5).
则M的坐标是:M1(1,)或M2(1,5).
【点评】本题主要考查了用待定系数法求函数的解析式.先根据条件列出关于字母系数的方程,解方程求解即可得到函数解析式.当已知函数解析式时,求函数中字母的值就是求关于字母系数的方程的解.
17.(2025 齐齐哈尔)甲、乙两车分别从相距480km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途经C地,甲车到达C地停留1小时,因有事按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图,结合图象信息解答下列问题:
(1)乙车的速度是 60 千米/时,t= 3 小时;
(2)求甲车距它出发地的路程y与它出发的时间x的函数关系式,并写出自变量的取值范围;
(3)直接写出乙车出发多长时间两车相距120千米.
【考点】一次函数的应用.
【专题】压轴题;推理填空题.
【答案】见试题解答内容
【分析】(1)首先根据图示,可得乙车的速度是60千米/时,然后根据路程÷速度=时间,用两地之间的距离除以乙车的速度,求出乙车到达A地用的时间是多少;最后根据路程÷时间=速度,用两地之间的距离除以甲车往返AC两地用的时间,求出甲车的速度,再用360除以甲车的速度,求出t的值是多少即可.
(2)根据题意,分3种情况:①当0≤x≤3时;②当3<x≤4时;③4<x≤7时;分类讨论,求出甲车距它出发地的路程y与它出发的时间x的函数关系式,并写出自变量的取值范围即可.
(3)根据题意,分3种情况:①甲乙两车相遇之前相距120千米;②当甲车停留在C地时;③两车都朝A地行驶时;然后根据路程÷速度=时间,分类讨论,求出乙车出发多长时间两车相距120千米即可.
【解答】解:(1)根据图示,可得
乙车的速度是60千米/时,
甲车的速度是:
(360×2)÷(480÷60﹣1﹣1)
=720÷6
=120(千米/小时)
∴t=360÷120=3(小时).
故答案为:60;3.
(2)①当0≤x≤3时,设y=k1x,
把(3,360)代入,可得
3k1=360,
解得k1=120,
∴y=120x(0≤x≤3).
②当3<x≤4时,y=360.
③4<x≤7时,设y=k2x+b,
把(4,360)和(7,0)代入,可得
解得
∴y=﹣120x+840(4<x≤7).
综上所述:甲车距它出发地的路程y与它出发的时间x的函数关系式为y
(3)①(480﹣60﹣120)÷(120+60)+1
=300÷180+1
(小时)
②当甲车停留在C地时,
(480﹣360+120)÷60
=240÷60
=4(小时)
③两车都朝A地行驶时,
设乙车出发y小时后两车相距120千米,
则60y﹣[120(y﹣1)﹣360]=120,
所以480﹣60y=120,
所以60y=360,
解得y=6.
综上,可得
乙车出发后两车相距120千米.
【点评】(1)此题主要考查了一次函数的应用问题,要熟练掌握,解答此题的关键是要明确:分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际.
(2)此题还考查了行程问题,要熟练掌握速度、时间和路程的关系:速度×时间=路程,路程÷时间=速度,路程÷速度=时间.
18.(2025 河南)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.
(1)求每台A型电脑和B型电脑的销售利润;
(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.
①求y关于x的函数关系式;
②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?
(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.
【考点】一次函数的应用;二元一次方程组的应用;一元一次不等式组的应用.
【专题】销售问题.
【答案】见试题解答内容
【分析】(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;根据题意列出方程组求解,
(2)①据题意得,y=﹣50x+15000,
②利用不等式求出x的范围,又因为y=﹣50x+15000是减函数,所以x取34,y取最大值,
(3)据题意得,y=(100+m)x+150(100﹣x),即y=(m﹣50)x+15000,分三种情况讨论,①当0<m<50时,y随x的增大而减小,②m=50时,m﹣50=0,y=15000,③当50<m<100时,m﹣50>0,y随x的增大而增大,分别进行求解.
【解答】解:(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;根据题意得
解得
答:每台A型电脑销售利润为100元,每台B型电脑的销售利润为150元.
(2)①据题意得,y=100x+150(100﹣x),即y=﹣50x+15000,
②据题意得,100﹣x≤2x,解得x≥33,
∵y=﹣50x+15000,﹣50<0,
∴y随x的增大而减小,
∵x为正整数,
∴当x=34时,y取最大值,则100﹣x=66,
即商店购进34台A型电脑和66台B型电脑的销售利润最大.
(3)据题意得,y=(100+m)x+150(100﹣x),即y=(m﹣50)x+15000,
33x≤70
①当0<m<50时,y随x的增大而减小,
∴当x=34时,y取最大值,
即商店购进34台A型电脑和66台B型电脑的销售利润最大.
②m=50时,m﹣50=0,y=15000,
即商店购进A型电脑数量满足33x≤70的整数时,均获得最大利润;
③当50<m<100时,m﹣50>0,y随x的增大而增大,
∴当x=70时,y取得最大值.
即商店购进70台A型电脑和30台B型电脑的销售利润最大.
【点评】本题主要考查了一次函数的应用,二元一次方程组及一元一次不等式的应用,解题的关键是根据一次函数x值的增大而确定y值的增减情况.
19.(2025 岳池县模拟)如图,已知一次函数y=kx+b的图象经过A(﹣2,﹣1),B(1,3)两点,并且交x轴于点C,交y轴于点D.
(1)求该一次函数的解析式;
(2)求△AOB的面积.
【考点】待定系数法求一次函数解析式;一次函数图象上点的坐标特征.
【专题】计算题.
【答案】见试题解答内容
【分析】(1)先把A点和B点坐标代入y=kx+b得到关于k、b的方程组,解方程组得到k、b的值,从而得到一次函数的解析式;
(2)先确定D点坐标,然后根据三角形面积公式和△AOB的面积=S△AOD+S△BOD进行计算.
【解答】解:(1)把A(﹣2,﹣1),B(1,3)代入y=kx+b得,
解得.
所以一次函数解析式为yx;
(2)把x=0代入yx得y,
所以D点坐标为(0,),
所以△AOB的面积=S△AOD+S△BOD
21
.
【点评】本题考查了待定系数法求一次函数解析式:(1)先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;(2)将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;(3)解方程或方程组,求出待定系数的值,进而写出函数解析式.
20.(2024秋 河源期末)如图,在平面直角坐标系xOy中,直线yx+4与x轴、y轴分别交于点A、点B,点D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处.
(1)求AB的长;
(2)求点C和点D的坐标;
(3)y轴上是否存在一点P,使得S△PABS△OCD?若存在,直接写出点P的坐标;若不存在,请说明理由.
【考点】一次函数图象与几何变换.
【专题】一次函数及其应用.
【答案】见试题解答内容
【分析】(1)先求得点A和点B的坐标,则可得到OA、OB的长,然后依据勾股定理可求得AB的长,
(2)依据翻折的性质可得到AC的长,于是可求得OC的长,从而可得到点C的坐标;设OD=x,则CD=DB=x+4.,Rt△OCD中,依据勾股定理可求得x的值,从而可得到点D(0,﹣6).
(3)先求得S△PAB的值,然后依据三角形的面积公式可求得BP的长,从而可得到点P的坐标.
【解答】解:(1)令x=0得:y=4,
∴B(0,4).
∴OB=4
令y=0得:0x+4,解得:x=3,
∴A(3,0).
∴OA=3.
在Rt△OAB中,AB5.
(2)∵AC=AB=5,
∴OC=OA+AC=3+5=8,
∴C(8,0).
设OD=x,则CD=DB=x+4.
在Rt△OCD中,DC2=OD2+OC2,即(x+4)2=x2+82,解得:x=6,
∴D(0,﹣6).
(3)存在,理由如下:
∵S△PABS△OCD,
∴S△PAB6×8=12.
∵点P在y轴上,S△PAB=12,
∴BP OA=12,即3BP=12,解得:BP=8,
∴P点的坐标为(0,12)或(0,﹣4).
【点评】本题主要考查的是一次函数的综合应用,解答本题主要应用了翻折的性质、勾股定理、待定系数法求函数解析式、三角形的面积公式,依据勾股定理列出关于x的方程是解题的关键.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)