8.3.2平方差公式 教案 沪科版(2024)七年级下册

文档属性

名称 8.3.2平方差公式 教案 沪科版(2024)七年级下册
格式 doc
文件大小 69.2KB
资源类型 教案
版本资源 沪科版
科目 数学
更新时间 2025-08-19 20:19:44

图片预览

文档简介

平方差公式 教学设计
教学目标:1.经历探索平方差公式的过程,进一步发展学生的符号感和推理能力;
2.会推导平方差公式,并能运用公式进行简单的计算;
3.了解平方差公式的几何背景。
教学重点:1.弄清平方差公式的来源及其结构特点,能用自己的语言说明公式及其特点;
2.会用平方差公式进行运算。
教学难点:会用平方差公式进行运算
教学方法:探索讨论、归纳总结。
教学过程:
一、发现特征、探索规律
活动内容:我们已经学过了多项式的乘法,出示题目,看谁算得快:
(1) (x+2)(x-2) (2) (1+x)(1-x) (3) (2x+y)(2x-y)
提出问题:你们能发现什么规律?
在多项式的乘法中,对于某些特殊形式的多项式相乘,我们把它写成公式,并加以熟记,以便遇到类似形式的多项式相乘时就可以直接运用公式进行计算。以后经常遇到(a+b)(a-b)这种乘法,所以把(a+b)(a-b)=a2-b2作为公式,叫做乘法的平方差公式。
在此基础上,让学生用语言叙述公式,总结公式结构特征:(1) 公式左边两个二项式必须是相同两数的和与差相乘;且左边两括号内的第一项相等、第二项符号相反[互为相反数(式)];(2) 公式右边是这两个数的平方差;即右边是左边括号内的第一项的平方减去第二项的平方。 (3) 公式中的 a和b 可以代表数,也可以是代数式.
二、运用知识,解决问题
活动内容:(1)直接运用新知,解决第一层次问题。
例1计算:①(3x+1 ) (3x-1) ②(a-2b ) (a+2b) ③(a-b )(a+b) (a2+b2)
(2)间接运用新知,解决第二层次问题。
例2计算:①(–2x +3 ) (3+2x) ②(3b+2a) (2 a–3 b)
例3计算:(-4a-1)(-4a+1)
例4 计算:(1)(x+y-z)(x+y+z); (2)(a-b+c)(a+b+c).
三、巩固练习、体验成功
活动内容:
1、下列各式中哪些可以运用平方差公式计算
(1) (2)
(3) (4)
2、判断:
(1) ( ) (2) ( )
(3) ( ) (4)( )
(5) ( ) (6) ( )
3、计算下列各式:
(1) (2)
(3) (4)
(5) (6)
4、填空:
(1)
(2)
(3)
(4)
提高练习:
1、求的值,其中
2、计算:(1)
(2)
3、若
五、归纳总结,形成知识网络
活动内容:
小结:1. 叙述公式
2.公式中的字母可以代表什么?(数字、单项式、多项式)
只要习题符合平方差公式的结构,都可应用其计算。
课后反思:同学们对平方差公式掌握较好,,大部分同学都能认真学习,小部分不能理解,对平方差公式不能全部理解
第 3 页 共 3 页