绝密 ★ 本科目考试启用前 试卷类型:A
江西省 2026 届高三年级入学摸底考试
数 学 试 题 2025.8.20
本试卷共 4 页,19 小题,满分 150 分,考试用时 120 分钟
注意事项:
①答题前,考生务必将自己的姓名、准考证号填写在答题卡上。
②回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,
用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,必须使用黑色字迹签字笔将答案写在答题卡上。
写在本试卷上无效。
③考试结束后,将本试卷和答题卡一并交回
一、单项选择题:本题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,只有一项是符
合题目要求的.
1 2 x 2.已知集合 A {x | x 2 },B {x | ln( x 8x 14) 0},则 A B
A.{x | 4 x 5} B.{x | 3 x 4} C.{x | 3 x 4} D.{x | 2 x 4}
2.记 为等差数列{ }的前 n项和.若 3 = 30, 7 = 112,则 5 =
A.59 B.61 C.63 D.65
3.“ a sin 3”是“函数 f (x) cos(x ) ln(
a a 2
)为偶函数”的
2 4x 2
A.必要不充分条件 B.充分不必要条件
C.充要条件 D.既不充分也不必要条件
4.若随机变量 X ~ (2, 2 ),且 P(X a) P(X b 1),则 a 2 b2的最小值为
9
A. B 3 2. C.8 D.
2 2 22
5.已知圆台的上底面积,下底面积分别为 、4 ,体积为7 ,则该圆台的外接球表面积为
A.16 B. 20 C. 24 D. 28
x 2 y 26.已知椭圆 E : 1.E的上顶点为 A,左、右焦点分别为 F1 ,F2 .直线 AF 与2 2 1 E的另a b
一个交点为 B,直线 2与 E的另一个交点为 C.若 2 ⊥ 2,且| 1| = 10,则△ 2的周长为
A.24 B.28 C.32 D.36
数学试题 第 1页(共 4页)
命题:乱打的草稿
{#{QQABSQCpwwAwkBYACB6bQ0WYCEgQkIIRJYoORUAWOARLiQFIFAA=}#}
7.已知数列 an 满足 a1 8,且函数 f (x) an 1 sin( x) an x 2 an x 5 .当 x (0,1)时,函数 f (x)
恰有一个零点,则 a4
1 63 1 63
A. B. C. D.
16 16 16 16
1
8 2.已知 A、B为曲线 y x (0 x 4)上的两点,D、C 为曲线 y 2 x (0 x 4)上的两点.其中 A
4
点在 B点左侧,D点在C点左侧.则矩形 ABCD 的面积最大值为
A 16 3 B 16 2 4 3. . C. D 4 2.
9 9 3 3
二、多项选择题:本题共 3 小题,每小题 6 分,共 18 分.在每小题给出的四个选项中,有多项符合题
目要求.全部选对的得 6 分,部分选对的得部分分,有选错的得 0 分.
9.若双曲线 C的焦距是虚轴长的 5 倍,则
A 5.C的离心率为 B.C的渐近线方程为2y x 0
2
4
C.C的渐近线夹角的正切值为 D.C的实轴长是虚轴长的 6 倍3
17
10.在直角△ABC中,AC AB且 sin B sinC .若△ABC的内切圆半径为 2,且与线段 BC 相切
13
于点D,则
B
A. AC 5 B. tan tan C 13 C. D.
2 2 15 AD BC 0 AD
2 949
13
11.赣南脐橙是江西省赣州市特产,中国国家地理标志产品,被誉为“中华名果”.近年赣南脐橙受黄龙
病影响,脐橙产品合格率有所降低.现有 6个脐橙,其中有 3个不合格产品,每次从中抽取 1个且不放回,
设 X 为抽到第 2件合格品时的抽取次数,则
A. X 的取值为 2,3,4,5 B. X 4时,共有 108种抽取顺序
7
C.E(X ) D.D(X )
21
4 20
三、填空题:本题共 3 小题,每小题 5 分,共 15 分.
12.已知 z (3
2
3i)5,则 z 的实部为 ▲ .
i
( , 5 13.已知 ),且 cos( )
1
sin 2 m, (m 0),则 cos(2
2
) .(用含 m
6 6 3 4 3
▲
的代数式表示)
14.在平面直角坐标系中,已知 A(0,8),B(0,16).若抛物线 y 2 2px( p 0) 上有且仅有一点 H满足
HA 5 HB ,则 p ▲ .
数学试题 第 2页(共 4页) 命题:乱打的草稿
{#{QQABSQCpwwAwkBYACB6bQ0WYCEgQkIIRJYoORUAWOARLiQFIFAA=}#}
四、解答题:本题共 5 小题,共 77 分.解答应写出文字说明、证明过程或演算步骤.
15.(本小题满分 13 分)
2025年江西省城市足球联赛(即“赣超”)在江西各区市举行.为了研究观看“赣超”与经常参与足球
运动的关系,在城市社区随机调查了 1200人,得到如下的列联表:
观看“赣超” 不观看“赣超”
经常参与足球运动 679 21
不经常参与足球运动 121 379
(1) 求观看“赣超”者不经常参与足球运动的概率 p的估计值;
(2) 根据小概率值 0.001的独立性检验,分析观看“赣超”是否与经常参与足球运动有关.
2 n(ad bc)
2
. P(
2 k) 0.050 0.010 0.001
附:
(a b)(c d )(a c)(b d ) k 3.841 6.635 10.828
16.(本小题满分 15 分)
如图,三棱锥 P ABC中, AC 61,AD 3,AB 5,PD DC , AD AB 9
tan DAC 5
6 .
(1) 若 AC AB 18,证明:平面PAC 平面ABD;
(2) 若二面角 P AD B 3的正切值为 ,求三棱锥 P ABD的外接球表面积.
4
17.(本小题满分 15 分)
已知函数 f (x) x ln x x,g(x) cos x .
(1) 若曲线 y f (x)的切线 l过点M (0,m), (m 1),求 l与坐标轴围成的三角形面积的最小值;
(2) (ⅰ) 求曲线 y g(x) 5 在( ,f (5 ))处的切线方程;
6 6
(ⅱ) 设函数 h(x) f (x) sin x,判断 h(x)有几个极值点并说明理由.
(参考数据: ln 1.144, ln 2 0.693)
数学试题 第 3页(共 4页)
命题:乱打的草稿
{#{QQABSQCpwwAwkBYACB6bQ0WYCEgQkIIRJYoORUAWOARLiQFIFAA=}#}
18.(本小题满分 17 分)
n 1 2k,n a
已知数列 an 3 ,其前 n
k
项和为 Sn .设数列bn ,其中 k .
bn 1 4k ,ak n ak 1
(1) 求b27,b85;
2S n
(2) 设Tn bi ,求Tn的值;
i 1
n2 8n 1 n
(3) 设 cn ( 1),求使得 ci 2026成立的最大正整数 n的值. (其中符号 x 表示不超n 1 8Tn 1 i 1
过 x的最大整数)
19.(本小题满分 17 分)
2 2
已知 (2, 3)和 (4,0) C x y为椭圆 : 2 2 1,(a b 0)上的两点.点M (mx ,m y )和 N (n ,n )也在椭a b x y
圆 C上.点 A在射线OM 上且满足 OM MA .线段 AN与椭圆 C交于异于 A,N两点的点 B.记△MNB
和△OMN的面积分别为 S1 ,S2,且 4S1 S2 0 .
(1) 用mx ,m y ,nx ,n y 表示点 B的坐标;
(2) (ⅰ) 求 S1 S2;
(ⅱ) 若M (2, 3),求点N 的坐标.
数学试题 第 4页(共 4页)
命题:乱打的草稿
{#{QQABSQCpwwAwkBYACB6bQ0WYCEgQkIIRJYoORUAWOARLiQFIFAA=}#}
江西省 2026 届高三入学摸底考试
请在各题规定的黑色矩形区域内答题,超出该区域的答案无效! 请在各题规定的黑色矩形区域内答题,超出该区域的答案无效!
数 学 答 题 卡 15.(13 分) 16.(15 分)
姓 名:
条形码粘贴区
(切勿贴出虚线框)
考生号:
准 考 证 号 注 意 事 项
1.答题前,考生须认真核对条形码上的个人信息,然后
将本人姓名、考生号填写在相应位置。
0000000000
2.答选择题时,必须使用 2B铅笔将对应题目的答案标号
1111111111
2222222222 涂黑,修改时用橡皮擦干净,再选涂其他答案。
3333333333 3.答非选择题时,必须使用 0.5 毫米的黑色字迹签字笔
4444444444
书写,作图题可先用铅笔绘出,确认后再用 0.5 毫米的
5555555555
6666666666 黑色字迹签字笔描清楚。要求字体工整,笔迹清晰。严
7777777777 格按题号所指示的答题区域作答,超出答题区域书写的
8888888888
答案无效;在试题卷、草稿纸上答题无效。
9999999999
4.保持答题卡清洁、完整。严禁折叠,严禁在答题卡上
正确填涂u 错误填涂 缺考标记 做任何标记,严禁使用涂改液、胶带纸、修正带。
单项选择题(须用 2B 铅笔填涂)
1ABCD 3ABCD 5ABCD 7ABCD
2ABCD 4ABCD 6ABCD 8ABCD
多项选择题(须用 2B 铅笔填涂)
9 ABCD
10 ABCD
11 ABCD
非选择题 (须用 0.5 毫米的黑色字迹签字笔书写)
12. (5 分)
13. (5 分)
14. (5 分)
请在各题规定的黑色矩形区域内答题,超出该区域的答案无效!
请在各题规定的黑色矩形区域内答题,超出该区域的答案无效!
请在各题规定的黑色矩形区域内答题,超出该区域的答案无效! 请在各题规定的黑色矩形区域内答题,超出该区域的答案无效!
{#{QQABSQCpwwAwkBYACB6bQ0WYCEgQkIIRJYoORUAWOARLiQFIFAA=}#}
请在各题规定的黑色矩形区域内答题,超出该区域的答案无效! 请在各题规定的黑色矩形区域内答题,超出该区域的答案无效! 请在各题规定的黑色矩形区域内答题,超出该区域的答案无效!
17.(15 分) 18.(17 分) 19.(17 分)
请在各题规定的黑色矩形区域内答题,超出该区域的答案无效! 请在各题规定的黑色矩形区域内答题,超出该区域的答案无效! 请在各题规定的黑色矩形区域内答题,超出该区域的答案无效!
{#{QQABSQCpwwAwkBYACB6bQ0WYCEgQkIIRJYoORUAWOARLiQFIFAA=}#}
江西省 2026 届高三年级入学摸底考试
数学试题参考答案及多维细目表
题号 1 2 3 4 5 6 7 8 9 10 11
答案 C D D A B B B A AC BD ABD
【命题说明】单项选择题中,第 6 题改编自 2022 年新高考全国 Ⅰ卷第 16 题,第 7 题改编
自 2024 年新高考全国 Ⅱ卷第 6 题,其余试题均为原创试题.
12. 【答案】 12
2
13. 【答案】 2 1m
14. 【答案】 32
【命题说明】多项选择题中,试题均为原创试题.
15 .【命题说明】本题为原创试题
【参考答案及评分标准】
解:( 1)根据表格可知,观看“赣超”的 800 人中有 121 人不经常参与足球运
121
动,所以所求概率的估计值为 ·········································································· 3 分
800
( 2)零假设为 H 0 :观看“赣超”与经常参与足球运动无关 ···································4 分
根据题中表格得:
观看“赣超” 不观看“赣超” 合计
经常参与足球运动 679 21 700
不经常参与足球运
121 379 500
动
合计 800 400 1200
2 1200 (679 379 21 121)
2
代入公式得: 695.604 ·············································· 12 分
700 500 800 400
根据小概率值 0.001的独立性检验,可推断H 0 不成立,即观看“赣超”与经常参与
足球运动有关 ······································································································· 13 分
【评分注意事项】①未写零假设扣 1 分;
②列出正确公式但计算结果错误,一律扣 5 分 .
16.【命题说明】本题为原创试题
【参考答案及评分标准】
解:( 1)证明: AD AB AD AB cos BAD 3 5 cos BAD 9 ,
3
解得: cos BAD ················································································································· 1 分
5
数学试题 参考答案 第 1 页 共 8 页
{#{QQABSQCpwwAwkBYACB6bQ0WYCEgQkIIRJYoORUAWOARLiQFIFAA=}#}
在△ABD中,由余弦定理, BD2 AD2 AB2 2AD AB cos BAD
3
代入数据得: BD2 32 52 2 3 5 16,得:BD 4 ······························································2 分
5
AD2 BD2 25 AB2 ,由勾股定理逆定理得, AD BD ························································ 3 分
tan DAC 5 且 DAC (0,2 ) cos DAC 6 ··································································4 分
6 61
AD 6 AC AD AC cos DAC 3 61 18 ··································································5 分
61
又 AC AB 18
···················································· 6 分
AC AB AD AC AC (AB AD) AC DB 18 18 0
AC DB 即AC DB ············································································································7 分
又 AD AC A且AD,AC 平面PAC
BD 平面PAC ···················································································································8 分
BD 平面ABD
平面ABD 平面PAC ·········································································································· 9 分
(2)在△ADC中:由余弦定理:CD AD 2 AC 2 2AD AC cos DAC 34
ADC ADP 180
cos ADC cos ADP 0
AD2 CD2 AC 2 AD2 PD2 AP2
0 解得: AP 5 ·························································10 分
2AD CD 2AD PD
在平面ABD 内,过点A 作 AE AD
由(1)知:PA AD
平面PAD 平面BAD AD
二面角P AD B 的平面角为 PAE ···················································································· 11 分
则 tan PAE 3
4
数学试题 参考答案 第 2 页 共 8 页
{#{QQABSQCpwwAwkBYACB6bQ0WYCEgQkIIRJYoORUAWOARLiQFIFAA=}#}
AP AD,BD 平面PAD,且PA cos PAE 4 BD
可将三棱锥放如长方体内,该长方体的长宽高分别为3,3,4(如图)
所以长方体的体对角线等于外接球的直径
2R PD 34 ·································································13 分
S 4 R 2 34 ·················································································································· 15 分
球
【评分注意事项】如考生使用坐标法,答案全对且证明了垂直关系,给满分 .
17.【命题说明】本题为原创试题
【参考答案及评分标准】
解:(1)设切线 l与曲线 y f (x) 相切于点 (x0 , x0 ln x0 x0 ) , f (x) ln x
则 l 的方程为 y (x0 ln x0 x0 ) ln x0 (x x0 )
将M (0,m)代入得,m (x0 ln x0 x0 ) ln x0 (0 x0 ) 得:x0 m ···············································1 分
m
y ln( m)x m 令y 0,解得:x ············································································· 2 分
ln( m)
1 m m2
所求三角形面积S(m) m ,(m 1) ······················································· 3 分
2 ln( m) 2 ln( m)
S (m) m[2 ln( m) 1]
2[ln( m)]2
m ( , e )时,S (m) 0,则S (m)单调递减;m ( e, 1)时,S (m) 0,则S (m)单调递增 ······ 4 分
S(m) S( e) e,即所求三角形面积最小值为e. ··································································· 5 分
2 (ⅰ) g (x) sin x g (5 ) 1 g(5 3( ) , , )
6 2 6 2
5 5
则曲线y g(x)在( ,g( )) y 3 1 5 处的切线方程为 (x )
6 6 2 2 6
y 1 3 5 即 x . ·················································································································· 6 分
2 2 12
(ⅱ) h (x) ln x cos x,欲求h(x)有几个极值点,即求h (x) 有几个变号零点 令H (x) h (x)
① x (0,1] 1时, 1,sin x 1, 则H (x) 1 sin x 0, H (x)在(0,1]上单调递增
x x
数学试题 参考答案 第 3 页 共 8 页
{#{QQABSQCpwwAwkBYACB6bQ0WYCEgQkIIRJYoORUAWOARLiQFIFAA=}#}
x 0 时, H (x) . H (1) cos1 0
由零点存在定理: x1 (0,1), 使得H (x1) 0
x (0,1]时 , h(x)有一个极值点 ······························································································· 8 分
②x (1, 时, ln x 0, cos x 0, H (x) ln x cos x 0,此时H (x) 无零点 ······································ 9 分2
③x 1 3 5 ( ,e)时,下证:ln x x cos x
2 2 2 12
(x) 1 3 5
1
令 x 2 2 12
cos x ,则 (x) sin x
2
x 5 ( , )时, (x) 0 (x) x (5 ,故 单调递减; ,e)时, (x) 0 ,故 (x) 单调递增
2 6 6
(x) (5 ) 0 ················································································································· 11 分
6
令 (x) ln x 1 x
3 5 2 x
,则 (x)
2 2 12 2 x
x ,2 时, (x) 0, (x)单调递增;x 2,e 时, (x) 0, (x) 单调递减
2
(x) min (
), (e) e 3 5 1 0 ········································································· 13 分
2 2 2 12
ln x 1 3 5 x cos x
2 2 12
x ,e ,H (x) ln x cos x 0恒成立,此时H (x)无零点 ··············································· 14 分
2
④x e, )时,ln x 1,cos x 1 (两者不同时取得等号)
x e, ,H (x) ln x cos x 0恒成立,此时H (x)无零点 ················································· 15 分
综上可得,h(x)有1个极值点
【评分注意事项】①函数求导后未说明单调性直接得到极值,一处扣 1 分;
②画图像直接判断极值点个数,未进行证明的一律不给分;
③如有其他正确解法,亦可酌情给分 .
数学试题 参考答案 第 4 页 共 8 页
{#{QQABSQCpwwAwkBYACB6bQ0WYCEgQkIIRJYoORUAWOARLiQFIFAA=}#}
18.【命题说明】本题改编自 2024 年天津卷第 19 题
【参考答案及评分标准】
解:(1) 27 33 a4 ·············································································································· 1 分
b27 2 4 8 ··························································································································2 分
34 85 35 即a5 85 a6 ····································································································3 分
b85 2 5 4 5 85 81 90 ································································································ 4 分
2 S 1 3
n 3n 1
( ) n ·············································································································5 分1 3 2
3n 1
则Tn bi
i 1
当3k 1 i 3k 1(k )时,bi bi 1 4k,b k 1 2k ·····································································6 分3
可知数列 bi 是以2k为首项,以4k为公差,项数为2 3 k 1的等差数列 ··········································· 7 分
3k 1 2 3k 1 2k 2k 4k 2 3k 1 1 b i 8k 9k 1 ······································································8 分
i 3k 1 2
8k 9k 1 1 8k 1 9
k 8k 9 9k 1 ························································································9 分8
n 1 n
Tn 8k 1 9k k 1
1 8n 1 9
8k 9 9 ··································································· 11 分
k 1 8 8
【若考生使用错位相减法且最终结果正确,同样得此步的 4 分;若结果有误但作差过程无误,得 1 分】
2 2 2 2 2 n
(3 c n 1 1 n n n 1 n 3) n n n 1 n 1 ························ 12 分n 1 3 (n 1)3n n 1 (n 1)3n n 1 (n 1)3n
n2n 1 0 3
n
下证当 时,
(n 1)3n
1
n2 3n
①显然 n 0恒成立 ·······································································································13 分(n 1)3
② n2 3n (n 1)3n n n 3n
3n 2 1 n C0 1n 20 C1 1n 1 21 C2n n n 1n 2 22 ... Cn 0 nn 1 2 1 2 n n ································14 分
n2 3n (n 1)3n n n 3n 0
0 n
2 3n
1
(n 1)3n
数学试题 参考答案 第 5 页 共 8 页
{#{QQABSQCpwwAwkBYACB6bQ0WYCEgQkIIRJYoORUAWOARLiQFIFAA=}#}
故 cn n 1 ···························································································································15 分
n
ci 1 2 3 ... (n 1 1) n(n 1) ···················································································16 分
i 1 2
1
n(n 1) 2026,满足不等式的最大正整数n 64 ································································· 17 分
2
19.【命题说明】本题为原创试题
【参考答案及评分标准】
解:(1)由点A在射线OM上且满足OM MA 得,M为线段OA 的中点
S 1 1 2 S△AMN 4S1 S2 S△AMN ,即4 NB h NA h2 2
NA
4 ·································································································································1 分
NB
1 1 1 OB ON NB ON NA 3 ON OA ON OA ON ···················································2 分4 4 4 4
又 OA 2OM 2 mx,m y 2mx,2m y , ON nx,n y
B 2mx 3nx
2m
y
3ny
, ········································································································ 3 分
4 4
22 ( 3)2
2 2 1 a 4
(2)由题意知 : a b 解得: ································································ 4 分2 2
4 0 1 b 2 3
a2 b2
x2 y2 2m 3n 2m 3n
椭圆 C 的方程: 1 ,将B x x y y , 代入得16 12 4 4
2
2mx 3n
2
x 2my 3ny
4
4
1
16 12
m 2 m 2y n 2 n
2
y m n myny
整理得, 4 x 9
x x x
12 16 1 ·······························5 分
16 12 16 12 16 12
m 2x m
2
y 1
又 点M 16 12,N均在C上,即 ,代入2 1 式得,
n 2x n
y 1
16 12
mxnx myny 1 2 ·································································································· 6 分
16 12 4
数学试题 参考答案 第 6 页 共 8 页
{#{QQABSQCpwwAwkBYACB6bQ0WYCEgQkIIRJYoORUAWOARLiQFIFAA=}#}
m 2 m 2y
x 1
M N 16 12点 , 均在C上,即 ,两式相乘得,
n 2x n
2
y 1 16 12
m 2 m 2 n 2 n 2
2
m n m n
2
m n n m
x y x y 1 x x y y x y x y 整理得, 1 ······································7 分
16 12 16 12 16 12 16 12
将 2 式代入得,mxny nxmy 6 5 ····························································································8 分
2
S 1 OM ON sin MON 1
OM ON
2 m
2 m 2 n 2 n 2 1 ······································· 9 分
2 2 x y x y 2 2OM ON
m 2 m 2 n 2 n 2 21 2 2 2 2 x y x y mxnx myny mx my nx ny ·········································· 10 分2 m 2 m 2 n 2 2x y x ny
1
mxny nxmy 3 5 ···········································································································11 分2
S S 1 5 5 15 51 2 S2 S2 S2 3 5 ·············································································· 12 分4 4 4 4
m n myny 1
(3)由(2)知 x x ,将m 2,m 3代入得,
16 12 4 x y
2nx 3 n y 1 16 12 4
则 ··············································································································· 13 分
n 2 2 x ny
1 16 12
1 3 5 1 3 5
nx1
2
nx2 2
解得 或 ···················································································· 17 分 3 5 1
n n
3 5 3
y2
y1 4 4
N 1 3 5
3 5 1 综上可得, 1 , 和 N 1 3 5 3 5 3 2 4 2 , 2 4
【以上均为笔者解法,如有其他解法亦可酌情给分】
数学试题 参考答案 第 7 页 共 8 页
{#{QQABSQCpwwAwkBYACB6bQ0WYCEgQkIIRJYoORUAWOARLiQFIFAA=}#}
多 维 细 目 表
学科素养 预估难度
题题分
必备知识 数逻数直数数
型号值 学辑学观学据易 中 难
抽推建想运分
象理模象算析
选择题 1 5 集合的运算 √ √ √
选择题 2 5 等差数列求和 √ √ √
选择题 3 5 偶函数的性质 √ √ √
选择题 4 5 正态分布 √ √ √
选择题 5 5 圆台,外接球 √ √ √ √
选择题 6 5 椭圆,解三角形 √ √ √ √
选择题 7 5 数列通项 √ √
选择题 8 5 导数的应用 √ √ √
选择题 9 6 双曲线的性质 √ √
选择题 10 6 解三角形 √ √ √
选择题 11 6 离散型随机变量的均值与方差 √ √ √ √
填空题 12 5 复数与二项式定理 √ √ √
填空题 13 5 三角恒等变换 √ √ √
填空题 14 5 抛物线的性质 √ √ √ √
解答题 15 13 独立性检验 √ √ √ √
解答题 16 15 面与面的关系,球的表面积 √ √ √ √
解答题 17 15 导数,零点个数 √ √ √ √
解答题 18 17 数列求和,不等式 √ √ √ √
解答题 19 17 椭圆,面积计算 √ √ √
拟定:乱打的草稿
数学试题 参考答案 第 8 页 共 8 页
{#{QQABSQCpwwAwkBYACB6bQ0WYCEgQkIIRJYoORUAWOARLiQFIFAA=}#}