【新教材新课标】人教版数学八年级上册16.3.2《完全平方公式(第1课时 完全平方公式) 课件(共31张PPT)+教学设计

文档属性

名称 【新教材新课标】人教版数学八年级上册16.3.2《完全平方公式(第1课时 完全平方公式) 课件(共31张PPT)+教学设计
格式 zip
文件大小 13.0MB
资源类型 试卷
版本资源 人教版
科目 数学
更新时间 2025-08-26 10:45:28

文档简介

(共31张PPT)
16.3.2 完全平方公式
第1课时 完全平方公式
第十六章 整式的乘法
人教版(新教材)数学八年级上册
目录
CONTENT
情景引入
1
合作探究
2
典例分析
3
巩固练习
4
归纳总结
5
感受中考
6
小结梳理
7
布置作业
8
学习目标
理解完全平方公式,了解完全平方公式的几何背景,能利用完全平方公式进行简单的计算和推理.

经历探索完全平方公式的过程,感受从特殊到一般和数形结合的思想,发展符号意识和几何直观观念.

答 符号语言 (a+b)(a b)=a2 b2.
文字语言 两个数(式子)的和与这两个数(式子)的差的积,等于这
两个数(式子)的平方差.
复习引入
问题1 上一节课,我们学习了多项式乘法的特殊形式:(a+b)(a b),得到了平方差公式,你能说一说平方差公式的内容吗?
复习引入
问题2 应用平方差公式计算时,应注意以下几个问题:
1.左边是两个二项式相乘,并且这两个二项式中有一项 ,另一项 ;
2.右边是 的平方减去 的平方;
3.公式中的a和b可以是 ,也可以是 或 .
相同
相反
相同项
相反项
数字
单项式
多项式
复习引入
多项式乘法的特殊化——以(a+b)(p+q)为例:
(a+b)(p+q)
(a+b)(a+q)
一项相同
一项相反
(a+b)(p b)
一项相同
一项相反
(a+b)(a b)
两项相同
(a+b)(a+b)
(a+b)( a b)
两项相反
平方差公式(a+b)(a b)=a2 b2.
合作探究
探究 计算下列多项式的积,你能发现什么规律?
(1) (p+1)2 = (p+1)(p+1) = .
(2) (m+2)2 = (m+2)(m+2)= .
(3) (p 1)2 = (p 1)(p 1) = .
(4) (m 2)2 = (m 2)(m 2)= .
答 都是形如(a±b)2的多项式相乘.
p2+2p+1
m2+4m+4
p2-2p+1
追问1 四个等式的左侧有什么共同特征?
追问2 四个等式的右侧有什么共同特征?
答 都是两项的平方和(a2+b2)加上(或减去)两项乘积的二倍(2ab).
你能用符号语言描述这个规律吗?
(a±b)2=a2±2ab+b2.
m2-4m+4
合作探究
证明 (a+b)2=(a+b)(a+b)
=a2+ab+ab+b2
=a2+2ab+b2 .
问题3 你能证明(a±b)2=a2±2ab+b2吗?
文字语言 两个数(式子)的和 (或差)的平方,等于它们的平方和,加上
(或减去)它们的积的2倍.
证明 (a b)2=(a b)(a b)
=a2 ab ab+b2
=a2 2ab+b2 .
你能用文字语言描述这个规律吗?
合作探究
(乘法的)完 全 平 方 公 式
文字语言 两个数(式子)的和 (或差)的平方,等于它
们的平方和,加上(或减去)它们的积的2倍.
(a+b)2=a2+2ab+b2.
(a b)2=a2 2ab+b2.
合作探究
思考 你能根据图中图形的面积说明完全平方公式吗?
(a+b)2
a2+2ab+b2
=
合作探究
思考 你能根据图中图形的面积说明完全平方公式吗?
(a b)2
a2 2ab+b2
=
典例分析
例3 运用完全平方公式计算:
(1) (4m+n)2 ; (2)(y )2.
( 4m + n )2=( )2+( )+( )2.
( a + b )2= a 2 + 2ab + b 2 .
8mn
n
4m
典例分析
例3 运用完全平方公式计算:
(1) (4m+n)2 ; (2)(y )2.
( y )2=( )2 ( )+( )2.
( a b )2= a 2 2ab + b 2 .
y
y
典例分析
解 (1)原式=(4m)2+2·(4m)·n+n2
=16m2+8mn+n2;
(2)原式=(y)2 2·(y)·+()2
=y2 y+ .
例3 运用完全平方公式计算:
(1) (4m+n)2 ; (2)(y )2.
典例分析
解 (1)原式=(100+2)2
=(100)2+2×100×2+22
=10 000+400+4
=10 404 ;
例4 运用完全平方公式计算:
(1) 1022; (2) 992.
两数之和的平方
典例分析
解 (2)原式=(100 1)2
=(100)2 2×100×1+12
=10 000 200+1
=9 801 .
例4 运用完全平方公式计算:
(1) 1022; (2) 992.
两数之差的平方
典例分析
方法总结
应用完全平方公式计算时,应注意以下几个问题:
(1)积为二次三项式;
(2)积中两项为两数(式子)的平方和;
(3)另一项是两数(式子)积的2倍,且与乘式中间的符号相同;
(4)公式中的a和b可以是数字,也可以是单项式或多项式.
典例分析
思考 (a+b)2与( a b)2相等吗
(a b)2与(b a)2相等吗
(a b)2与 a2 b2相等吗
答 相等,因为( a b)2=( a)2+2·( a)·( b)+( b)2=a2+2ab+b2=(a+b)2.
答 相等,因为(b a)2=b2 2ba+a2=a2 2ab+b2=(a b)2.
答 不相等,因为(a b)2=a2 2ab+b2≠a2 b2.
巩固练习
1. 下面的计算是否正确 如果不正确,应当怎样改正
(1) (a+b)2=a2+b2; (2) (a b)2=a2 ab+b2;
(3) ( x +y)2 =x2+2xy +y2; (4) (2x+y)2 =4x2 +2xy +y2.
不正确
不正确
原式=a2+2ab+b2
原式=a2 2ab+b2
不正确
不正确
原式=x2 2xy +y2
原式=4x2 +4xy +y2
2. 下列计算结果为2ab a2 b2的是( )
A.(a b)2 B.( a b)2
C. (a+b)2 D. (a b)2
巩固练习
D
3. 运用完全平方公式计算:
(1) (x+6)2 ; (2) (y 5)2 ; (3) ( 2x+5)2 ; (4) (x y)2 .
巩固练习
解 (1)原式=x2+2×6x+62=x2+12x+36.
(2)原式=y2 2×5y+52=y2 10y+25.
(3)原式=( 2x)2+2×5·( 2x)+52=4x2 20x+25.
(4)原式=(x)2 2·(x)·(y)+(y)2= x2 xy+ y2.
解 (1)原式=(100 2)2
=(100)2 2×100×2+22
=10 000 400+4
=9 604 ;
4. 运用完全平方公式计算:
(1) 982 ; (2) 70.52 .
巩固练习
(2)原式=(70+0.5)2
=(70)2+2×70×0.5+0.52
=4 900+70+0.25
=4 970.25 .
归纳总结
整式的乘法公式——完全平方公式 符号语言 (a±b)2= .
文字语言 两个数(式子)的和 (或差)的 ,等于它们的 ,加上(或减去)它们的 .
注意事项 公式中的a和b可以是 ,也可以是 或 .
a2±2ab+b2
平方
平方和
积的2倍
数字
单项式
多项式
感受中考
1.(2025·山西)下列运算正确的是( )
A.2a+3b=5ab B.m2·m4=m6
C.(a b)2=a2 b2 D.(2m2)3=6m6
B
感受中考
2.(2025·广东深圳)下列计算正确的是( )
A. a2+a4=a6 B. a3·a3=a6
C.(a2)3=a5 D.(a+b)2=a2+b2
B
感受中考
3.(2023·内蒙古赤峰)已知 2a2 a 3=0,则(2a+3)(2a 3)+(2a 1)2的值是( )
A.6 B. 5
C. 3 D. 4
D
感受中考
4.(2024·陕西)先化简,再求值:(x+y)2+x(x 2y),其中x=1,y= 2.
解 原式=x2+2xy+y2+x2 2xy
=2x2+y2 ;
当x=1,y= 2时,
原式=2×12+( 2)2=2+4=6.
小结梳理
单项式÷单项式
幂的运算性质
am · an =am+n
(am)n =amn
(ab)n =anbn
整式的乘法
整式的除法
am ÷ an =am-n
互逆运算
多项式÷单项式




单项式×单项式
单项式×多项式
多项式×多项式
互逆运算
特殊
乘法公式
平方差公式
完全平方公式
布置作业
必做题:习题16.3 第2,4,5题.
1
探究性作业:习题16.3 第7题.
2
人教版八年级上册
谢谢观看!/ 让教学更有效 高效备课 | 数学学科
16.3.2 完全平方公式(第1课时完全平方公式)
教学设计
一、内容和内容解析
1. 内容
本节课是在学生已经学方差公式的基础上,研究第二个乘法公式,它是具有特殊形式的两个多项式相乘得到的一种特殊形式,也是后续学习因式分解、分式运算的重要基础。
2. 内容分析
本节课是在学生掌握平方差公式的基础上,聚焦于另一种特殊形式的多项式乘法——两个相同二项式的乘积,通过规律提炼形成完全平方公式。该公式不仅是简化特定整式乘法运算的重要工具,更是后续学习因式分解、分式运算等知识的关键基础,其几何背景的探究也进一步深化了学生对“数”与“形”联系的理解,在代数知识体系中起到承上启下的作用。
基于以上分析,确定本节课的教学重点为:理解完全平方公式,了解完全平方公式的几何背景。
二、目标和目标解析
1. 目标
(1)理解完全平方公式,了解完全平方公式的几何背景,能利用完全平方公式进行简单的计算和推理。
(2)经历探索完全平方公式的过程,感受从特殊到一般和数形结合的思想,发展符号意识和几何直观观念。
2. 目标解析
(1)要求学生把握公式的结构本质:左边是一个二项式的平方((a+b)2或(a b)2),右边是三项式(a2+2ab+b2或a2 2ab+b2),需明确“首平方、尾平方、积的2倍在中央”的特征;同时,通过正方形面积的分割与组合直观理解公式的几何意义;在应用层面,能识别符合公式特征的算式,准确代入计算,并进行简单的代数式变形与推理。
(2)学生需从具体实例出发,通过多项式乘法运算、观察结果规律,归纳抽象出完全平方公式的一般形式,体会从特殊算式到普遍公式的提炼过程;在验证公式时,通过几何图形的面积关系与代数表达式的对应,感知数与形的内在联系,进而增强用符号表示数量关系的意识(符号意识)和借助图形理解代数问题的能力(几何直观)。
三、教学问题诊断分析
学生可能出现的问题:一是混淆完全平方公式与平方差公式的结构;二是计算(a ± b)2时出现漏项或符号错误,误写成a2 + b2或a2 b2;三是对公式中“a”“b”代表多项式时应用困难,难以识别“首项”和“尾项”。
应对策略:教学中可通过对比(a+b)2与a2 + b2的计算结果,结合几何图形强化对“2ab”项的理解;对于多项式形式的“a”“b”,采用换元法举例,并设计分层练习从简单到复杂逐步巩固,减少结构混淆与符号错误。
基于以上分析,确定本节课的教学难点为:能利用完全平方公式进行简单的计算和推理。
四、教学过程设计
(一)复习引入
问题1 上一节课,我们学习了多项式乘法的特殊形式:(a+b)(a b),得到了平方差公式,你能说一说平方差公式的内容吗?
答 符号语言 (a+b)(a b)=a2 b2.
文字语言 两个数(式子)的和与这两个数(式子)的差的积,等于这两个数(式子)的平方差.
问题2 应用平方差公式计算时,应注意以下几个问题:
(1)左边是两个二项式相乘,并且这两个二项式中有一项相同,另一项相反;
(2)右边是相同项的平方减去相反项的平方;
(3)公式中的a和b可以是数字,也可以是单项式或多项式.
本节课,我们继续研究多项式乘法的特殊形式:(a+b)(a+b).
设计意图:通过问题1引导学生回顾平方差公式的符号与文字表述,强化旧知记忆;问题2聚焦公式应用要点,从结构特征、结果形式等方面回顾公式应用的注意事项。通过关系图直观呈现多项式乘法特殊形式的关联,以平方差公式为铺垫,自然引出本节课要研究的内容,实现知识的连贯衔接。
(二)合作探究
探究 计算下列多项式的积,你能发现什么规律?
(1)(p+1)2 = (p+1)(p+1) = p2+2p+1 .
(2)(m+2)2 = (m+2)(m+2) = m2+4m+4 .
(3)(p 1)2 = (p 1)(p 1) = p2-2p+1 .
(4)(m 2)2 = (m 2)(m 2) = m2-4m+4 .
追问1 四个等式的左侧有什么共同特征?
答 都是形如(a±b)2的多项式相乘.
追问2 四个等式的右侧有什么共同特征?
答 都是两项的平方和(a2+b2)加上(或减去)两项乘积的二倍(2ab).
追问3 你能用符号语言描述这个规律吗?
答 (a±b)2=a2±2ab+b2.
问题3 你能证明(a±b)2=a2±2ab+b2吗?
证明 (a+b)2=(a+b)(a+b)
=a2+ab+ab+b2
=a2+2ab+b2 .
证明 (a b)2=(a b)(a b)
=a2 ab ab+b2
=a2 2ab+b2 .
追问 你能用文字语言描述这个规律吗?
文字语言 两个数(式子)的和 (或差)的平方,等于它们的平方和,加上
(或减去)它们的积的2倍.
归纳 (乘法的)完全平方公式
(a+b)2=a2+2ab+b2. (a b)2=a2 2ab+b2.
文字语言 两个数(式子)的和 (或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.
思考 你能根据图中图形的面积说明完全平方公式吗?
(a+b)2=a2+2ab+b2.
(a b)2=a2 2ab+b2.
设计意图:先让学生计算具体的多项式乘法,通过追问引导观察式子左右特征,自主发现规律,再用代数运算证明完全平方公式,结合几何图形面积验证,让学生经历“特例探究—归纳猜想—逻辑证明—几何直观验证”的过程,深度理解完全平方公式的结构、本质,掌握公式推导方法,提升归纳推理、逻辑证明能力,借助几何图形渗透数形结合思想,强化对公式的直观认知。
(三)典例分析
例3 运用完全平方公式计算:
(4m+n)2 ; (2)(y )2.
解 (1)原式=(4m)2+2·(4m)·n+n2=16m2+8mn+n2;
(2)原式=(y)2 2·(y)·+()2=y2 y+ .
例4 运用完全平方公式计算:
(1) 1022; (2) 992.
解 (1)原式=(100+2)2
=(100)2+2×100×2+22
=10 000+400+4
=10 404 ;
(2)原式=(100 1)2
=(100)2 2×100×1+12
=10 000 200+1
=9 801 .
方法总结
应用完全平方公式计算时,应注意以下几个问题:
(1)积为二次三项式;
(2)积中两项为两数(式子)的平方和;
(3)另一项是两数(式子)积的2倍,且与乘式中间的符号相同;
(4)公式中的a和b可以是数字,也可以是单项式或多项式.
思考 (a+b)2与( a b)2相等吗
答 相等,因为( a b)2=( a)2+2·( a)·( b)+( b)2=a2+2ab+b2=(a+b)2.
(a b)2与(b a)2相等吗
答 相等,因为(b a)2=b2 2ba+a2=a2 2ab+b2=(a b)2.
(a b)2与 a2 b2相等吗
答 不相等,因为(a b)2=a2 2ab+b2≠a2 b2.
设计意图:通过例3,例4,让学生掌握完全平方公式在不同形式下的应用,精准识别公式中 “a、b” 代表的内容,使学生学会灵活调用公式,解决复杂运算问题,深化对完全平方公式的理解与应用。同时,培养学生规范书写解题过程的习惯,提升运算能力与逻辑思维。
(四)巩固练习
1. 下面的计算是否正确 如果不正确,应当怎样改正
(1) (a+b)2=a2+b2; (2) (a b)2=a2 ab+b2;
不正确,原式=a2+2ab+b2. 不正确,原式=a2 2ab+b2.
(3) ( x +y)2 =x2+2xy +y2; (4) (2x+y)2 =4x2 +2xy +y2.
不正确,原式=x2 2xy +y2. 不正确,原式=4x2 +4xy +y2.
2. 下列计算结果为2ab a2 b2的是( D )
A.(a b)2 B.( a b)2 C. (a+b)2 D. (a b)2
3. 运用完全平方公式计算:
(1) (x+6)2 ; (2) (y 5)2 ; (3) ( 2x+5)2 ; (4) (x y)2 .
解 (1)原式=x2+2×6x+62=x2+12x+36.
(2)原式=y2 2×5y+52=y2 10y+25.
(3)原式=( 2x)2+2×5·( 2x)+52=4x2 20x+25.
(4)原式=(x)2 2·(x)·(y)+(y)2= x2 xy+ y2.
4. 运用完全平方公式计算:
(1) 982 ; (2) 70.52 .
解 (1)原式=(100 2)2
=(100)2 2×100×2+22
=10 000 400+4
=9 604 ;
(2)原式=(70+0.5)2
=(70)2+2×70×0.5+0.52
=4 900+70+0.25
=4 970.25 .
设计意图:学完新知识后及时进行课堂巩固练习,不仅可以强化学生对新知的记忆,加深学生对新知的理解,还可以及时反馈学习情况,帮助学生查漏补缺,帮助教师及时调整教学策略。
归纳总结
(六)感受中考
1.(2025·山西)下列运算正确的是( B )
A. B.
C. D.
2.(2025·广东深圳)下列计算正确的是( B )
A. B. C. D.
3.(2023·内蒙古赤峰)已知,则的值是( D )
A.6 B. C. D.4
4.(2024·陕西)先化简,再求值:,其中,.
解:

当,时,
原式.
设计意图:在学习完新知识后加入中考真题练习,不仅可以帮助学生明确考试方向,熟悉考试题型,检验学习成果,提升应考能力,还可以提升学生的学习兴趣和动力。
(七)小结梳理
设计意图:用思维导图帮助学生梳理整式乘法的相关知识,构建清晰、完整的知识网络,让学生直观感知知识之间的联系。同时体现乘法公式是“多项式×多项式”的特殊形式。
(八)布置作业
1.必做题:习题16.3 第2,4,5题.
2.探究性作业:习题16.3 第7题.
五、教学反思
21世纪教育网(www.21cnjy.com)
同课章节目录