课件17张PPT。古典概型 12010-10-27问题1:分别说出上述两试验的所有可能的试验结果是什么?每个结果之间都有什么关系? 模拟试验: (1)抛掷一枚质地均匀的硬币,观察哪个面朝上的试验.
(2)抛掷一枚质地均匀的骰子的试验,观察出现点数的试验.这样的随机事件称为基本事件。(elementary event)基本事件的特点:
(1)任何两个基本事件是互斥的; (2)任何事件(除不可能事件)都可以表示成基本事件的和。例1、从字母a、b、c、d中任意取出两个不同字母的试验中,有哪些基本事件?分析:列举法(包括树状图、列表法,按某种顺序列举等)考察抛硬币的试验,为什么在试验之前你也可以想到抛一枚硬币,正面向上的概率为 ? 原因:(1)抛一枚硬币,可能出现的结果只有两种;(2)硬币是均匀的,所以出现这两种结果的可能性是均等的。对于某些随机事件,也可以不通过大量重复实验,而只通过对一次实验中可能出现的结果的分析来计算概率。归纳:上述试验,它们都具有以下的共同特点:
(1) 试验中所有可能出现的基本事件只有有限个;
(2) 每个基本事件出现的可能性相等。我们将具有这两个特点的概率模型称为古典概率模型,简称古典概型(classical probability model) 。(2)在掷骰子的试验中,事件“出现偶数点”发生的概率是多少?问题:在古典概型下,基本事件出现的概率是多少?随机事件出现的概率如何计算?(1)在抛掷一枚骰子的试验中,出现“1点”、“2点”、“3点”、“4点”、“5点”、“6点”这6个基本事件的概率?对于古典概型,任何事件A发生的概率为:例2. 单选题是标准化考试中常用的题型,一般是从A、 B、C、D四个选项中选择一个正确答案,如果考生掌握了考察的内容,它可以选择唯一正确的答案。假设考生不会做,他随机的选择一个答案,问他答对的概率是多少?在下面哪些条件下该模型可以看成古典概型?
(1)考生掌握了考查的内容,他可以选择唯一正确的答案;
(2)考生部分掌握了考查的内容,他用排除法选择了一个答案;
(3)考生不会做,他随机选择一个答案.
(1)假设有20道单选题,如果有一个考生答对了17道题,他是随机选择的可能性大,还是他掌握了一定的知识的可能性大?(2)在标准化的考试中既有单选题又有不定项选择题,不定项选择题从A、B、C、D四个选项中选出所有正确答案,同学们可能有一种感觉,如果不知道正确答案,多选题更难猜对,这是为什么??例3 . 同时掷两个骰子,计算:
(1)一共有多少种不同的结果?
(2)其中向上的点数之和是5的结果有多少种?
(3)向上的点数之和是5的概率是多少? (4)两数之和是3的倍数的概率是多少?有个同学是这样解上述问题的:解:(1) 所有结果共有21种,如下所示:
(1,1)
(2,1) (2,2)
(3,1) (3,2) (3,3)
(4,1) (4,2) (4,3) (4,4)
(5,1) (5,2) (5,3) (5,4) (5,5)
(6,1) (6,2) (6,3) (6,4) (6,5) (6,6) (1,2) (1,3) (1,4) (1,5) (1,6)
(2,3) (2,4) (2,5) (2,6)
(3,4) (3,5) (3,6)
(4,5) (4,6)
(5,6)
(2)其中向上的点数之和是5的结果有2种。
(3)向上的点数之和是5的概率是2/21例4、某种饮料每箱装6听,如果其中有2听不合格,问质检人员从中随即抽出2听,检测出不合格产品的概率有多大?探究:随着检测听数的增加,查出不合格产品的概率怎样变化?
为什么质检人员一般都采用抽查的方法而不采用逐个检查的方法?0.3330.80.93311例5、银行储蓄卡的密码由6个数字组成,每个数字可以是0,1,2,…,9十个数字中的任意一个,假设一个人完全忘记了自己的储蓄卡密码,问他到自动取款机上随机试一次密码就能取到钱的概率是多少?不重不漏本节主要研究了古典概型的概率求法,解题时要注意两点:
(1)古典概型的适用条件:试验结果的有限性和所有结果的等可能性。
(2)古典概型的解题步骤;
①求出总的基本事件数;
②求出事件A所包含的基本事件数,然后利
用公式P(A)=小 结作业1(本)P134 A组 T3,4;
(同步)P76~77基础训练(1)~(8) 探究:
是不是所有的试验都是古典概型?
举例说明。
1.某班准备到郊外野营,为此向商店订了帐篷。如果下雨与不下雨是等可能的,能否准时收到帐篷也是等可能的。只要帐篷如期运到,他们就不会淋雨,则下列说法中,正确的是( )
A 一定不会淋雨 B 淋雨机会为3/4
C 淋雨机会为1/2 D 淋雨机会为1/4
E 必然要淋雨D课堂练习
2.一个密码箱的密码由5位数字组成,五个数字都可任意设定为0-9中的任意一个数字,假设某人已经设定了五位密码。
(1)若此人忘了密码的所有数字,则他一次就能把锁打开的概率为____________
(2)若此人只记得密码的前4位数字,则一次就能把锁打开的概率____________ 1/1000001/10例2: 用三种不同的颜色给图中的3个矩形
随机涂色,每个矩形只能涂一种颜色,求
(1)3个矩形的颜色都相同的概率;
(2)3个矩形的颜色都不同的概率.解 : 本题的等可能基本事件共有27个(1)同一颜色的事件记为A,P(A)=3/27 =1/9;(2)不同颜色的事件记为B,P(B)=6/27 =2/9课件14张PPT。 (1)古典概型的适用条件:
①试验中所有可能出现的基本事件只有有限个;
②每个基本事件出现的可能性相等。
(2)古典概型的解题步骤;
①求出总的基本事件数;
②求出事件A所包含的基本事件数,然后利
用公式P(A)=不重不漏复习回顾:3.2古典概型2
1.某班准备到郊外野营,为此向商店订了帐篷。如果下雨与不下雨是等可能的,能否准时收到帐篷也是等可能的。只要帐篷如期运到,他们就不会淋雨,则下列说法中,正确的是( )
A 一定不会淋雨 B 淋雨机会为3/4
C 淋雨机会为1/2 D 淋雨机会为1/4
E 必然要淋雨D练一练练习: 用三种不同的颜色给图中的3个矩形
随机涂色,每个矩形只能涂一种颜色,求
(1)3个矩形的颜色都相同的概率;
(2)3个矩形的颜色都不同的概率.解 : 本题的等可能基本事件共有27个(1)同一颜色的事件记为A,P(A)=3/27 =1/9;(2)不同颜色的事件记为B,P(B)=6/27 =2/9例1、某人有4把钥匙,其中2把能打开门。现随机地取1把钥匙试着开门,不能开门的就扔掉,问第二次才能打开门的概率是多少?
如果试过的钥匙不扔掉,这个概率又是多少?有无放回问题例2、一个盒子里装有标号为1,2,…,5的5张标签,随机地选取两张标签,根据下列条件求两张标签上的数字相邻整数的概率:
(1)标签的选取是不放回的;
(2)标签的选取是有放回的。有无放回问题。例3 随意安排甲、乙、丙3人在3天节日中值班,每人值班1天,(1)这3人的值班顺序有多少种不同的安排方法?(2)甲排在乙之前的概率是多少?(3)乙不在第1天值班的概率是多少?例4 从含有两件正品a1、a2和一件次品b1的3件产品中每次任取1件,每次取出后不放回,连续取两次,求取出的两件产品中恰有一件次品的概率.在前面学习中,同学们做了大量的试验,有没有其他的方法可以代替试验呢?3.2.2(整数值)随机数的产生要产生1~25之间的随机整数,怎么做??抛掷硬币试验.称用计算机或计算器模拟试验的方法为随机模拟方法或蒙特卡罗方法.冯·诺伊曼是20世纪最杰出的数学家之一。11岁时已显示出数学天赋。12岁的诺伊曼就对集合论,泛函分析等深奥的数学领域了如指掌。第二次世界大战期间,担任制造原子弹的顾问,并参与电子计算器的研制工作。于1945年提出了“程序内存式”计算机的设计思想。这一卓越的思想为电子计算机的逻辑结构设计奠定了基础,已成为计算机设计的基本原则。由于他在计算机逻辑结构设计上的伟大贡献,他被誉为“计算机之父”。 1903.12.28─1957.02.08 例3、天气预报说,在今后的三天中,每一天下雨的概率均为40%。这三天中恰有两天下雨的概率大约是多少?分析:不是古典概率模型,用计算机或计算器做模拟试验.2.一个密码箱的密码由5位数字组成,五个数字都可任意设定为0-9中的任意一个数字,假设某人已经设定了五位密码。
(1)若此人忘了密码的所有数字,则他一次就能把锁打开的概率为____________
(2)若此人只记得密码的前4位数字,则一次就能把锁打开的概率____________ 1/1000001/10