8.4分式的乘除(1)
班级 姓名 学号
学习目标:
(一)知识与技能目标
使学生理解并掌握分式的乘除法则,运用法则进行运算,能解决一些与分式有关的实际问题.
(二)过程与方法目标
经历探索分式的乘除运算法则的过程,并能结合具体情境说明其合理性
(三)情感与价值目标
渗透类比转化的思想,让学生在学知识的同时学到方法,受到思维训练.
学习重点:掌握分式的乘除运算。
学习难点:分子、分母为多项式的分式乘除法运算。
教学过程
一、情境引入:
你还记得分数的乘除法法则吗?你能用类似于分数的乘除法法则计算下面两题吗?
(1)·= (2)=
二、探究学习:
(1)你能说出前面两道题的计算结果吗?
(2)你能验证分式乘.除运算法则是合理的.正确的吗?
(3)类比分数的乘除法则,你能从计算中总结出怎样进行分式的乘除法运算吗?
归纳小结:
(1)分式的乘法法则:分式乘以分式,用分子的积做积的分子,分母的积做积的分母。 即: ×=。
(2)分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。 即:÷=×=。
(3)分式的乘方法则:分式乘方是把分子、分母各自乘方。即:( )n=
三、典型例题:
例1、计算:1. . 2。()
例2、计算、1. 2.
归纳小结:分式的乘法运算,先把分子、分母分别相乘,然后再进行约分;进行分式除法运算,需转化为乘法运算;根据乘法法则,应先把分子、分母分别相乘,化成一个分式后再进行约分,但在实际演算时,这样做显得较繁琐,因此,可根据情况先约分,再相乘,这样做有时简单易行,又不易出错.
四、反馈练习:
(1) (2) .
(3) (a-4). (4)
五、探究交流: (1)在夏季你是怎么挑选西瓜的呢?
(2)你认为买大西瓜合算还是买小西瓜合算?
七、课堂小结:
1、分式的分子、分母都是几个因式的积的形式,约去分子、分母中相同因式的最低次幂,注意系数也要约分。
2、当分式的分子、分母为多项式时,先要进行因式分解,才能够依据分式的基本性质进行约分。
【课后作业】
班级 姓名 学号
填空
(1) (2)
(3) (4)
(5) = (6)
(7)若代数式有意义,则x的取值范围是__________.
2、选择
(1)下列各式计算正确的是 ( )
A.; B.
C.; D.
(2)下列各式的计算过程及结果都正确的是 ( )
A.
B.
C.
D.
(3)当,时,代数式的值为( )
A.49 B.-49 C.3954 D.-3954
(4)计算与的结果 ( )
A.相等 B.互为倒数 C.互为相反数 D.以上都不对
(5)若x等于它的倒数,则的值是 ( )
A.-3 B.-2 C.-1 D.0
3、计算
(1) (2)
(3) (4)
(5) (6)
(7) (8)
4、中考链接(选作题)
已知=,=,=,求代数式的值。
课件17张PPT。连云港市东海县实验中学 初中数学八年级下册
(苏科版)8.4 分式的乘除(1)你还记得分数的乘除法法则吗?你能用类似于分数的乘除法法则计算下面两题吗?。探究学习 (1)你能说出前面两道题的计算结果吗?
(2)你能验证分式乘、除运算法则是合理的正确的吗?
(3)类比分数的乘除法则,你能从计算中总结出怎样进行分式的乘除法运算吗?归纳小结 (1)分式的乘法法则:分式乘以分式,用分子的积做积的分子,分母的积做积的分母。
(2)分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
(3)分式的乘方法则:分式乘方,把分子、分母各自乘方。典型例题:例1、计算: 。1.2.例题讲解归纳小结:分式的乘法运算,先把分子、分母分别相乘,然后再进行约分; 典型例题例 2:例题讲解归纳小结:分式的乘法运算,先把分子、分母分别相乘,然后再进行约分;进行分式除法运算,需转化为乘法运算;根据乘法法则,应先把分子、分母分别相乘,化成一个分式后再进行约分,但在实际演算时,这样做显得较繁琐,因此,可根据情况先约分,再相乘,这样做有时简单易行,又不易出错.反馈练习在夏季大家都吃过西瓜,但你买过西瓜吗?你认为买大西瓜合算还是买小西瓜合算?你知道衡量的标准是什么?探究交流 你会挑西瓜吗? 通常购买同一品种的西瓜时,西瓜的质量越大,花费的钱越多.因此人们希望西瓜瓤占整个西瓜的比例越大越好.假如我们把西瓜都看成球形,并把西瓜瓤的密度看成是均匀的,西瓜的皮厚都是d .(1)西瓜瓤与西瓜的体积各是多少?(2)西瓜瓤与西瓜的体积的比是多少? (3)你认为买大西瓜合算还是买小西瓜合算?我认为买大西瓜合算.R越大,即西瓜越大, 即西瓜瓤占整个西瓜的体积也越大.因此,买大西瓜更合算.这节课你有哪些收获?说出来与大家分享。
这节课你还有什么疑问吗?说出来我们一起解决。
课堂小结1、分式的分子、分母都是几个因式的积的形式,约去分子、分母中相同因式的最低次幂,注意系数也要约分。
2、当分式的分子、分母为多项式时,先要进行因式分解,才能够依据分式的基本性质进行约分。再提醒