2.1-2.2.1 生活中的变量关系与函数的概念 教案

文档属性

名称 2.1-2.2.1 生活中的变量关系与函数的概念 教案
格式 zip
文件大小 25.6KB
资源类型 教案
版本资源 北师大版
科目 数学
更新时间 2016-08-14 10:55:32

图片预览

文档简介

2.1-2.2.1生活中变量关系与函数的概念
教案
教学目标:
(1)通过丰富实例,学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;
(2)了解构成函数的三要素;
(3)会求一些简单函数的定义域与值域,并能用“区间”的符号表示。
教学重点:理解函数的模型化思想,用集合与对应的语言来刻画函数。
教学难点:理解函数的模型化思想,用集合与对应的语言来刻画函数。
教学过程:
一、探究新知:学生阅读教材内容和区间的概念及写法(表2—3),完成以下填空和问题(15分钟)
1.在初中学习过的函数实际上描述了两个变量之间的某种依赖关系:在一个变化过程中,有两个变量x和y,对于x的每一个确定的值,y都有
与之对应,此时y是x的函数,这两个变量x、y分别称为


2.通过课本中实例1、2、3我们可以看到并非所有的依赖关系都有函数关系
。只有两个变量满足什么样的依赖关系时,才具有函数关系?
3.
.一枚炮弹发射,经26秒后落地击中目标,射高为845米,且炮弹距地面高度h(米)与时间t(秒)的变化规律是.
t与h是否有函数关系?
二、抽象概括
函数的概念:
归纳:从实例1、2、3我们可以看到有函数关系的两个变量之间的关系都可以描述为:对于数集A中的每一个x,按照某种对应关系f,在数集B中都与唯一确定的y和它对应,记作:
函数的定义:
设A、B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数和它对应,那么称为从集合A到集合B的一个函数,记作:
其中,x叫自变量,x的取值范围A叫作定义域,与x的值对应的y值叫函数值,函数值的集合叫值域。显然,值域是集合B的子集。
例题讲解:
(1)一次函数y=ax+b
(a≠0)的定义域是R,值域也是R;
(2)二次函数
(a≠0)的定义域是R,值域是B;当a>0时,值域;当a﹤0时,值域。
(3)反比例函数的定义域是,值域是。
四、课堂训练:
1.已知函数,
①求的值;
②当a>0时,求的值。
2.
求函数的值域
3.
教材练习2
五、课堂小结
(1)函数的本质含义是定义域内任意一个x值,必须有且仅有唯一的y值与之对应。
(2)函数是由定义域A、值域C及对应法则共同构成的,即构成函数的三要素,由于定义域与对应法则一旦确定,则值域C也就确定,因此看两个函数是否完全相同,就是看定义域与对应法则是否完全相同。
(3)正确理解函数符号f(x);
①它表示y为x的函数,绝非
f与x的乘积;

f(a)仅表示函数在x=a时的函数值,是一个常数。
六、课外练习(见小练习)
课后记: