2.2.2 函数的表示方法 学案2(含答案)

文档属性

名称 2.2.2 函数的表示方法 学案2(含答案)
格式 zip
文件大小 65.6KB
资源类型 教案
版本资源 北师大版
科目 数学
更新时间 2016-08-14 15:38:11

图片预览

文档简介

2.2.2
函数的表示方法
学案
第一课时
函数的几种表示方法


预习目标
通过预习理解函数的表示

、预习内容
1.列表法:通过列出
与对应
的表来表示
的方法叫做列表法
2.图象法:以
为横坐标,对应的
为纵坐标的点
的集合,叫做函数y=f(x)的图象,这种用
“图形”表示函数的方法叫做图象法.
3.解析法(公式法):用
来表达函数y=f(x)(xA)中的f(x),这种表达函数的方法叫解析法,也称公式法。
4.分段函数:在函数的定义域内,对于自变量x的不同取值区间,有着
,这样的函数通常叫做

三、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点
疑惑内容






课内探究学案

、学习目标
1.掌握函数的三种主要表示方法
2.能选择恰当的方法表示具体问题中的函数关系
3.会画简单函数的图像
学习重难点:图像法、列表法、解析法表示函数


学习过程
表示函数的方法,常用的有解析法、列表法和图象法三种.
⑴解析法:就是把两个变量的函数关系,用一个等式表示,这个等式叫做函数的解析表达式,简称解析式.
例如,s=60,A=,S=2,y=a+bx+c(a0),y=(x2)等等都是用解析式表示函数关系的.
优点:一是简明、全面地概括了变量间的关系;二是可以通过解析式求出任意一个自变量的值所对应的函数值.中学阶段研究的函数主要是用解析法表示的函数.
⑵列表法:就是列出表格来表示两个变量的函数关系.
例如,学生的身高
单位:厘米
学号
1
2
3
4
5
6
7
8
9
身高
125
135
140
156
138
172
167
158
169
数学用表中的平方表、平方根表、三角函数表,银行里的利息表,列车时刻表等等都是用列表法来表示函数关系的.公共汽车上的票价表
优点:不需要计算就可以直接看出与自变量的值相对应的函数值.
⑶图象法:就是用函数图象表示两个变量之间的关系.
例如,气象台应用自动记录器描绘温度随时间变化的曲线,课本中我国人口出生率变化的曲线,工厂的生产图象,股市走向图等都是用图象法表示函数关系的.
优点:能直观形象地表示出自变量的变化,相应的函数值变化的趋势,这样使得我们可以通过图象来研究函数的某些性质.
三、例题讲解
例1某种笔记本每个5元,买
x{1,2,3,4}个笔记本的钱数记为y(元),试写出以x为自变量的函数y的解析式,并画出这个函数的图像
变式练习1

求f[g(x)]。
例2作出函数的图象
变式练习2
画出函数y=∣x∣与函数y=∣x-2∣的图象

、当堂检测
课本第56页练习1,2,3
课后练习与提高
1.在股票买卖过程中,经常用到两种曲线,一种是即时价格曲线y=f(x)(实线表示),另一种是平均价格曲线y=g(x)(虚线表示)〔如f(2)=3是指开始买卖后两个小时的即时价格为3元;g(2)=3表示两个小时内的平均价格为3元〕,下图给出的四个图象中,其中可能正确的是(
)
2.函数f(x+1)为偶函数,且x<1时,f(x)=x2+1,则x>1时,f(x)的解析式为(
)
A.f(x)=x2-4x+4
B.f(x)=x2-4x+5
C.f(x)=x2-4x-5
D.f(x)=x2+4x+5
3.函数的图象的大致形状是(
)
4.如图,设点A是单位圆上的一定点,动点P从点A出发在圆上按逆时针方向旋转一周,点P所旋转过的的长为l,弦AP的长为d,则函数d=f(l)的图象大致是(
)
5.用一根长为12m的铝合金条做成一个“目”字形窗户的框架(不计损耗),要使这个窗户通过的阳光最充足,则框架的长与宽应分别为_________.
6.已知定义域为R的函数f(x)满足f[f(x)-x2+x]=f(x)-x2+x.
(1)若f(2)=3,求f(1);又若f(0)=a,求f(a);
(2)设有且仅有一个实数x0,使得f(x0)=x0,求函数f(x)的解析表达式.
解答:
1
解析:解答该题要注意平均变化率是一个累积平均效应,因此可以得到正确选项为C.
答案:C
2
解析:因为f(x+1)为偶函数,
所以f(-x+1)=f(x+1),即f(x)=f(2-x).
当x>1时,2-x<1,此时,f(2-x)=(2-x)2+1,即f(x)=x2-4x+5.
答案:B
3
解析:该函数为一个分段函数,即为当x>0时函数f(x)=ax的图象单调递增;当x<0时,函数f(x)=-ax的图象单调递减.故选B.
答案:B
4
解析:函数在[0,π]上的解析式为
.
在[π,2π]上的解析式为,
故函数d=f(l)的解析式为,l∈[0,2π].
答案:C
5
解析:由题意可知,即是求窗户面积最大时的长与宽,设长为xm,则宽为()m,

解得当x=3时,.
∴长为3m,宽为1.5m.
答案:3m,1.5m
版权所有:高考资源网(www.k
s
5
u.com)