首页
高中语文
高中数学
高中英语
高中物理
高中化学
高中历史
高中道德与法治(政治)
高中地理
高中生物
高中音乐
高中美术
高中体育
高中信息技术
高中通用技术
资源详情
高中数学
北师大版
必修1
第三章 指数函数和对数函数
3指数函数
本节综合
3.3 指数函数(一)学案5(含答案)
文档属性
名称
3.3 指数函数(一)学案5(含答案)
格式
zip
文件大小
229.2KB
资源类型
教案
版本资源
北师大版
科目
数学
更新时间
2016-08-15 22:04:18
点击下载
图片预览
1
2
文档简介
3.3 指数函数(一)
学案
课时目标 1.理解指数函数的概念,会判断一个函数是否为指数函数.2.掌握指数函数的图象和性质.
1.指数函数的概念
一般地,______________________叫做指数函数,其中x是自变量,函数的定义域是____.
2.指数函数y=ax(a>0,且a≠1)的图象和性质
a>1
0
图象
定义域
R
值域
(0,+∞)
性质
过定点
过点______,即x=____时,y=____
函数值的变化
当x>0时,______;当x<0时,________
当x>0时,________;当x<0时,________
单调性
是R上的________
是R上的________
一、填空题
1.下列以x为自变量的函数中,是指数函数的是______.(填序号)
①y=(-4)x;②y=πx;③y=-4x;④y=ax+2(a>0且a≠1).
2.函数f(x)=(a2-3a+3)ax是指数函数,则a的值为________.
3.函数y=a|x|(a>1)的图象是________.(填序号)
4.已知f(x)为R上的奇函数,当x<0时,f(x)=3x,那么f(2)=________.
5.如图是指数函数
①y=ax;
②y=bx;
③y=cx;
④y=dx的图象,则a、b、c、d与1的大小关系是________.
6.函数y=()x-2的图象必过第________象限.
7.函数f(x)=ax的图象经过点(2,4),则f(-3)的值为____.
8.若函数y=ax-(b-1)(a>0,a≠1)的图象不经过第二象限,则a,b需满足的条件为________.
9.函数y=8-23-x(x≥0)的值域是________.
二、解答题
10.比较下列各组数中两个值的大小:
(1)0.2-1.5和0.2-1.7;
(2)和;
(3)2-1.5和30.2.
11.2000年10月18日,美国某城市的日报以醒目标题刊登了一条消息:“市政委员会今天宣布:本市垃圾的体积达到50
000
m3”,副标题是:“垃圾的体积每三年增加一倍”.如果把3年作为垃圾体积加倍的周期,请你完成下面关于垃圾的体积V(m3)与垃圾体积的加倍的周期(3年)数n的关系的表格,并回答下列问题.
周期数n
体积V(m3)
0
50
000×20
1
50
000×2
2
50
000×22
…
…
n
50
000×2n
(1)设想城市垃圾的体积每3年继续加倍,问24年后该市垃圾的体积是多少?
(2)根据报纸所述的信息,你估计3年前垃圾的体积是多少?
(3)如果n=-2,这时的n,V表示什么信息?
(4)写出n与V的函数关系式,并画出函数图象(横轴取n轴).
(5)曲线可能与横轴相交吗?为什么?
能力提升
12.定义运算a b=,则函数f(x)=1 2x的图象是________.(填序号)
13.定义在区间(0,+∞)上的函数f(x)满足对任意的实数x,y都有f(xy)=yf(x).
(1)求f(1)的值;
(2)若f()>0,解不等式f(ax)>0.(其中字母a为常数).
1.函数y=f(x)与函数y=f(-x)的图象关于y轴对称;函数y=f(x)与函数y=-f(x)的图象关于x轴对称;函数y=f(x)与函数y=-f(-x)的图象关于原点对称.
2.函数图象的平移变换是一种基本的图象变换.一般地,函数y=f(x-a)的图象可由函数y=f(x)的图象向右(a>0)或向左(a<0)平移|a|个单位得到.
3.3 指数函数(一)答案
知识梳理
1.函数y=ax(a>0,且a≠1) R 2.(0,1) 0 1 y>1
0
1 增函数 减函数
作业设计
1.②
解析 ①中-4<0,不满足指数函数底数的要求,③中因有负号,也不是指数函数,④中的函数可化为y=a2·ax,ax的系数不是1,故也不是指数函数.
2.2
解析 由题意得
解得a=2.
3.②
解析 该函数是偶函数.可先画出x≥0时,y=ax的图象,然后沿y轴翻折过去,便得到x<0时的函数图象.
4.-
解析 当x>0时,-x<0,∴f(-x)=3-x,
即-f(x)=()x,
∴f(x)=-()x.
因此有f(2)=-()2=-.
5.b
解析 作直线x=1与四个指数函数图象交点的坐标分别为(1,a)、(1,b)、(1,c)、(1,d),由图象可知纵坐标的大小关系.
6.二、三、四
解析 函数y=()x的图象上所有的点向下平移2个单位,就得到函数y=()x-2的图象,所以观察y=()x-2的图象可知.
7.
解析 由题意a2=4,∴a=2.f(-3)=2-3=.
8.a>1,b≥2
解析 函数y=ax-(b-1)的图象可以看作由函数y=ax的图象沿y轴平移|b-1|个单位得到.若0
1时,由于y=ax的图象必过定点(0,1),当y=ax的图象沿y轴向下平移1个单位后,得到的图象不经过第二象限.由b-1≥1,得b≥2.因此,a,b必满足条件a>1,b≥2.
9.[0,8)
解析 y=8-23-x=8-23·2-x=8-8·()x
=8[1-()x].
∵x≥0,∴0<()x≤1,∴-1≤-()x<0,
从而有0≤1-()x<1,因此0≤y<8.
10.解 (1)考察函数y=0.2x.
因为0<0.2<1,
所以函数y=0.2x在实数集R上是单调减函数.
又因为-1.5>-1.7,所以0.2-1.5<0.2-1.7.
(2)考察函数y=()x.因为0<<1,
所以函数y=()x在实数集R上是单调减函数.
又因为<,所以>1.
(3)2-1.5<20,即2-1.5<1;30<30.2,
即1<30.2,所以2-1.5<30.2.
11.解 (1)由于垃圾的体积每3年增加1倍,24年后即8个周期后,该市垃圾的体积是50
000×28=12
800
000(m3).
(2)根据报纸所述的信息,估计3年前垃圾的体积是50
000×2-1=25
000(m3).
(3)如果n=-2,这时的n表示6年前,V表示6年前垃圾的体积.
(4)n与V的函数关系式是V=50
000×2n,图象如图所示.
(5)因为对任意的整数n,2n>0,所以V=50
000×2n>0,因此曲线不可能与横轴相交.
12.①
解析 由题意f(x)=1 2x=
13.解 (1)令x=1,y=2,可知f(1)=2f(1),故f(1)=0.
(2)设0
且s>t,又f()>0,
∴f(x1)-f(x2)=f[()s]-f[()t]
=sf()-tf()=(s-t)f()>0,
∴f(x1)>f(x2).
故f(x)在(0,+∞)上是减函数.
又∵f(ax)>0,x>0,f(1)=0,
∴0
当a=0时,x∈ ,
当a>0时,0
当a<0时,
综上:a≤0时,x∈ ;
a>0时,不等式解集为{x|0
点击下载
同课章节目录
第一章集合
1集合的含义与表示
2集合的基本关系
3集合的基本运算
第二章函数
1生活中的变量关系
2对函数的进一步认识
3函数的单调性
4二次函数性质的再研究
5简单的幂函数
第三章 指数函数和对数函数
1正整数指数函数
2指数的扩充及其运算性质
3指数函数
4对数
5对数函数
6指数函数、幂函数、对数函数增长的比较
第四章函数应用
1函数与方程
2实际问题的函数建模
点击下载
VIP下载