3.4.1
对数及其运算
同步测试
一、选择题
1.若log8x=-,则x的值为( )
A.
B.4
C.2
D.
[答案] A
[解析] ∵log8x=-,∴x=8-=2-2=,故选A.
2.当a>0,a≠1时,下列结论正确的是( )
①若M=N,则logaM=logaN;
②若logaM=logaN,则M=N;
③若logaM2=logaN2,则M=N;
④若M=N,则logaM2=logaN2.
A.①②
B.②④
C.②
D.①②③④
[答案] C
[解析] ①M≤0时不对;②正确;③应为M=±N;
④M=0时不对.
3.lg20+lg50的值为( )
A.70
B.1000
C.3
D.
[答案] C
[解析] lg20+lg50=lg1000=3.故选C.
4.已知a=log32,那么log38-2log36用a表示是( )
A.a-2
B.5a-2
C.3a-(1+a)2
D.3a-a2-1
[答案] A
[解析] log38-2log36=log323-2(log32+log33)
=3log32-2(log32+1)
=3a-2(a+1)=a-2.故选A.
5.若loga=c,则a,b,c满足关系式( )
A.b7=ac
B.b=a7c
C.b=7ac
D.b=c7a
[答案] B
[解析] ∵loga=c,∴=ac,∴b=a7c.
6.()-1+log0.54的值为( )
A.6
B.
C.8
D.
[答案] C
[解析] 原式=()-1·()4=2×4=8.
二、填空题
7.求值:
(1)810.5log35=________;
(2)5log5100-3=________;
(3)27+log32=________.
[答案] (1)25 (2) (3)72
[解析] (1)810.5log35=(34)
0.5log35=32log35
=(3log35)2=52=25.
(2)5
log5100-3-3===.
(3)27+log32=(33)+log32=32+3log32
=32·(3
log32)3=9×8=72.
8.已知log32=a,则2log36+log30.5=________.
[答案] a+2
[解析] 原式=2log3(2×3)+log3
=2(log32+log33)-log32
=log32+2=a+2.
三、解答题
9.计算下列各式的值:
(1)log2+log212-log242;
(2)lg52+lg8+lg5·lg20+(lg2)2.
[解析] (1)原式=log2+log212-log2
=log2(··12)
=log2(··12)
=log2=log22-=-.
(2)原式=2lg5+2lg2+lg5·(1+lg2)+(lg2)2
=2(lg5+lg2)+lg5+lg2(lg5+lg2)
=2+lg5+lg2=2+1=3.
10.(2014·德阳高一检测)计算:log28+lg+ln+21-log23+(lg5)2+lg2lg50.
[解析] 原式=3-3++2÷2log23+(lg5)2+lg2(lg5+1)
=++lg25+(1-lg5)(1+lg5)
=+.
一、选择题
1.方程log3(x-1)=log9(x+5)的解为( )
A.x=-1
B.x=-1或x=4
C.x=4
D.x=-1且x=4
[答案] C
[解析] 一定要注意对数的真数大于零,
即,解得x=4,选C.
2.如果f(10x)=x,则f(3)等于( )
A.log310
B.lg3
C.103
D.310
[答案] B
[解析] 令10x=3,∴x=lg3.故选B.
二、填空题
3.(1)已知a=(a>0),则a=________.
(2)已知m>0,且10x=lg(10m)+lg,则x=________.
[答案] (1)3 (2)0
[解析] (1)由a=(a>0),得a=()=()3,所以a=()3=3.
(2)10x=lg(10m·)=lg10=1.所以x=0.
4.若正数m,满足10m-1<2512<10m,则m=__________.(lg2≈0.3010)
[答案] 155
[解析] ∵10m-1<2512<10m,∴m-1<512lg2∴154.112三、解答题
5.计算下列各式的值:
(1)lg5+log36+lg20-log32;
(2)log213+lg1000-log21;
(3);
(4)(lg5)2+2lg2-(lg2)2.
[解析] (1)原式=(lg5+lg20)+(log36-log32)
=lg100+log33=2+1=3.
(2)原式=(log213+log217)+lg103=1+3=4.
(3)原式==
===.
(4)原式=(lg5+lg2)(lg5-lg2)+2lg2
=lg10·lg+lg4
=lg(×4)=lg10=1.
6.已知log2(log3(log4x))=log3(log4(log2y))=0,求x+y的值.
[解析] ∵log2(log3(log4x))=log3(log4(log2y))=0,
∴log3(log4x)=1,log4(log2y)=1,
∴log4x=3,log2y=4,
∴x=43,y=24,
∴x+y=43+24=26+24=80.
7.求31+log36-24+log23+103lg3+()log34.
[解析] 原式=31·3log36-24·2log23+(10lg3)3+3-2·log34
=3×6-16×3+33+(3log34)-2
=3×6-16×3+33+4-2
=18-48+27+=-.