首页
高中语文
高中数学
高中英语
高中物理
高中化学
高中历史
高中道德与法治(政治)
高中地理
高中生物
高中音乐
高中美术
高中体育
高中信息技术
高中通用技术
资源详情
高中数学
北师大版
必修1
第三章 指数函数和对数函数
5对数函数
本节综合
3.5 对数函数 教案2
文档属性
名称
3.5 对数函数 教案2
格式
zip
文件大小
64.5KB
资源类型
教案
版本资源
北师大版
科目
数学
更新时间
2016-08-14 22:35:55
点击下载
图片预览
1
2
文档简介
3.5
对数函数
教案
【教学目标】
1、使学生理解对数函数的定义,进一步掌握对数函数的图像和性质。
2、:通过定义的复习,图像特征的观察、巩固过程使学生懂得理论与实践
的辩证关系,适时渗透分类讨论的数学思想,培养学生的探索发现能力和分析问题、解决问题的能力。
3、通过学生的参与过程,培养他们手脑并用、多思勤练的良好学习习惯和勇于探索、锲而不舍的治学精神。
【教学重难点】
教学重点:对数函数的图像和性质
教学难点:底数 a 的变化对函数性质的影响
【教学过程】
(一)预习检查、总结疑惑
检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性.
(二)情景导入、展示目标
1.对数函数的图象
由于对数函数与指数函数互为反函数,所以的图象与的图象关于直线对称因此,我们只要画出和的图象关于对称的曲线,就可以得到的图象,然后根据图象特征得出对数函数的性质
2.对数函数的性质
由对数函数的图象,观察得出对数函数的性质见P87
表
a>1
0
图象
性质
定义域:(
0,
+∞)
值域:R
过点(1,0),即当x=1时,y=0
时
时
时
时
在(0,+∞)上是增函数
在(0,+∞)上是减函数
(三)合作探究、精讲点拨
例1求下列函数的定义域:
(1);
(2);
(3)
分析:此题主要利用对数函数的定义域(0,+∞)求解
解:(1)由>0得,∴函数的定义域是;
(2)由得,∴函数的定义域是
(3)由9-得-3,
∴函数的定义域是
点评:要牢记对数函数的定义域(0,+∞)。
例2比较大小
1.
,,
2.
例3求下列函数的反函数
①
②
解:①
∴
②
∴
例4
画出函数y=x及y=的图象,并且说明这两个函数的相同性质和不同性质.
解:相同性质:两图象都位于y轴右方,都经过点(1,0),这说明两函数的定义域都是(0,+∞),且当x=1,y=0.
不同性质:y=x的图象是上升的曲线,y=的图象是下降的曲线,这说明前者在(0,+∞)上是增函数,后者在(0,+∞)上是减函数.
(四)反思总结、当堂检测
1.求下列函数的定义域:
(1)y=(1-x)
(2)y=
(3)
y=
解:(1)由1-x>0得x<1
∴所求函数定义域为{x|x<1
(2)由x≠0,得x≠1,又x>0
∴所求函数定义域为{x|x>0且x≠1}
(3)由
∴所求函数定义域为{x|x<
(4)由
∴x≥1
∴所求函数定义域为{x|x≥1}
2.函数恒过的定点坐标是
(
)
A.
B.
C.
D.
3.若求实数的取值范围
【板书设计】
一、对数函数性质
1.
图像
2.
性质
二、例题
例1
变式1
例2
变式2
【作业布置】导学案课后练习与提高
点击下载
同课章节目录
第一章集合
1集合的含义与表示
2集合的基本关系
3集合的基本运算
第二章函数
1生活中的变量关系
2对函数的进一步认识
3函数的单调性
4二次函数性质的再研究
5简单的幂函数
第三章 指数函数和对数函数
1正整数指数函数
2指数的扩充及其运算性质
3指数函数
4对数
5对数函数
6指数函数、幂函数、对数函数增长的比较
第四章函数应用
1函数与方程
2实际问题的函数建模
点击下载
VIP下载