章末综合测评(六)
1.C [根据分层随机抽样,总体中产品数量比与抽取的样本中产品数量比相等,∴样本中D类产品的数量为110×=40.]
2.B [讲座前中位数为>70%,所以A错误;
讲座后问卷答题的正确率只有一个是80%,4个85%,剩下全部大于等于90%,所以讲座后问卷答题的正确率的平均数大于85%,所以B正确;
讲座前问卷答题的正确率更加分散,所以讲座前问卷答题的正确率的标准差大于讲座后正确率的标准差,所以C错误;
讲座后问卷答题的正确率的极差为100%-80%=20%,
讲座前问卷答题的正确率的极差为95%-60%=35%>20%,所以D错误.
故选B.]
3.C [设学生总数为n,所求人数比例为x,则0.6n+0.82n-x·n=0.96n,∴x=0.46.]
4.B [区间[5.43,5.47)对应的频率为(6.25+5.00)×0.02=0.225,所以直径落在区间[5.43,5.47)内的个数为80×0.225=18.]
5.C [①错,众数可以有多个;②错,方差可以为0.]
6.B [体重在[45,50)内的频率为0.1×5=0.5,体重在[50,55)内的频率为0.06×5=0.3,体重在[55,60]内的频率为0.02×5=0.1,
∵0.5∶0.3∶0.1=5∶3∶1,∴可估计该校初三学生适合参加跑步、跳远、投掷三项训练的集训人数之比为5∶3∶1,故选B.]
7.B [设zi=2xi-3yi+1(i=1,2,…,n),
则(z1+z2+…+zn)=(x1+x2+…+xn)-(y1+y2+…+yn)+=2-3+1.]
8.B [前两组中的频数为100×(0.05+0.11)=16.因为后五组频数和为62,所以前三组频数和为38.所以第三组频数为38-16=22.又最大频率为0.32,故第四组频数为0.32×100=32.所以a=22+32=54.故选B.]
9.ABC [在抽签法抽样、随机数法抽样和分层随机抽样中,每个个体被抽中的概率均为,所以p1=p2=p3.]
10.BCD [①总体较少,宜用抽签法;②各层间差异明显,宜用分层随机抽样.]
11.ACD [×(4+5+6+7+8)=6,×(5+5+5+6+9)=6,故甲的成绩的平均数等于乙的成绩的平均数,故A正确;
甲的成绩的中位数为6,乙的成绩的中位数为5,故甲大于乙,故B错误;
甲的成绩的方差为×(22×2+12×2)=2,乙的成绩的方差为×(12×3+32)=2.4,故C正确;
甲的成绩的极差为4,乙的成绩的极差等于4,故D正确.故选ACD.]
12.0.5 [小李这5天的平均投篮命中率=
=0.5.]
13.5 [x2-5x+4=0的两根是1,4.
当a=1时,a,3,5,7的平均数是4,
当a=4时,a,3,5,7的平均数不是1.
∴a=1,b=4.则方差s2=×[(1-4)2+(3-4)2+(5-4)2+(7-4)2]=5.]
14.946 [依题意,将2024年四个季度的GDP数据分别记为a1,a2,a3,a4,则a1=232,a4=241,四个季度GDP数据的中位数为(a2+a3),平均数为(a1+a2+a3+a4),则(a2+a3)=(a1+a2+a3+a4),∴a2+a3=a1+a4=473,故该市2024年的GDP总额为a1+a2+a3+a4=2(a1+a4)=946(亿元).]
15.解:(1)不同年龄段的人的身体状况有所差异,所以应该按年龄段用分层随机抽样的方法来调查该单位的职工的身体状况,老年、中年、青年所占的比例分别为,所以在抽取40人的样本中,老年人抽40×=4人,中年人抽40×=12人,青年人抽40×=24人.
(2) 因为不同部门的人对单位的发展及薪金要求有所差异,所以应该按部门用分层随机抽样的方法来确定参加座谈会的人员,管理、技术开发、营销、生产人数分别占的比例为,所以在抽取25人出席座谈会中,管理人员抽25×=2人,技术开发人员抽25×=4人,营销人员抽25×=6人,生产人员抽25×=13人.
16.解:(1)依题意知第三组的频率为
,
又因为第三组的频数为12,
∴本次活动的参评作品数为=60.
(2)根据频率分布直方图,可以看出第四组上交的作品数量最多,
共有60×=18(件).
(3)第四组的获奖率是,
第六组上交的作品数量为60×=3(件),∴第六组的获奖率为,显然第六组的获奖率高.
17.解:甲的平均成绩(60+80+70+90+70)=74.乙的平均成绩(80+60+70+80+75)=73.所以甲的平均成绩好.
甲的方差是[(-14)2+62+(-4)2+162+(-4)2]=104,乙的方差是[72+(-13)2+(-3)2+72+22)]=56.
因为,所以乙的各门功课发展较平衡.
18.解:(1)由频率表中第4组数据可知,第4组总人数为=25,
再结合频率分布直方图可知n==100,
∴a=100×0.01×10×0.5=5,
b=100×0.03×10×0.9=27,x==0.9,y==0.2.
(2)第2,3,4组回答正确的共有54人,
∴利用分层随机抽样在54人中抽取6人,每组分别抽取的人数为:第2组:×6=2(人),第3组:×6=3(人),第4组:×6=1(人).
19.解:(1)由题图知(100-95)×0.002=1%>0.5%,所以95
设X为患病者的该指标,
则p(c)=P(X≤c)=(c-95)×0.002=0.5%,
解得c=97.5.
设Y为未患病者的该指标,
则q(c)=P(Y>c)=(100-97.5)×0.01+5×0.002=0.035=3.5%.
(2)当95≤c≤100时,
p(c)=(c-95)×0.002=0.002c-0.19,
q(c)=(100-c)×0.01+5×0.002=-0.01c+1.01,
所以f(c)=p(c)+q(c)=-0.008c+0.82;
当100p(c)=5×0.002+(c-100)×0.012=0.012c-1.19,
q(c)=(105-c)×0.002=-0.002c+0.21,
所以f(c)=p(c)+q(c)=0.01c-0.98.
综上所述,f(c)=
由一次函数的单调性知,函数f(c)在[95,100]上单调递减,在(100,105]上单调递增,作出f(c)在区间[95,105]上的大致图象(略),可得f(c)在区间[95,105]的最小值f(c)min=f(100)=-0.008×100+0.82=0.02.
1 / 1章末综合测评(六) 统 计
(时间:120分钟 满分:150分)
一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.某公司从代理的A,B,C,D四种产品中,按分层随机抽样的方法抽取容量为110的样本,已知A,B,C,D四种产品的数量比是2∶3∶2∶4,则该样本中D类产品的数量为( )
A.22 B.33
C.40 D.55
2.某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如图:
则( )
A.讲座前问卷答题的正确率的中位数小于70%
B.讲座后问卷答题的正确率的平均数大于85%
C.讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差
D.讲座后问卷答题的正确率的极差大于讲座前正确率的极差
3.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是( )
A.62% B.56%
C.46% D.42%
4.从一批零件中抽取80个,测量其直径(单位:mm),将所得数据分为9组:[5.31,5.33),[5.33,5.35),…,[5.45,5.47),[5.47,5.49],并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间[5.43,5.47)内的个数为( )
A.10 B.18
C.20 D.36
5.下列说法:
①一组数据不可能有两个众数;②一组数据的方差必须是正数;③将一组数据中的每一个数据都加上或减去同一常数后,方差不变;④在频率分布直方图中,每个小矩形的面积等于相应小组的频率.其中错误的个数为( )
A.0 B.1
C.2 D.3
6.某校为了对初三学生的体重进行摸底调查,随机抽取了50名学生的体重(单位:kg),将所得数据整理后,画出了频率分布直方图,如图所示,体重在[45,50)内适合跑步训练,体重在[50,55)内适合跳远训练,体重在[55,60]内适合投掷相关方面训练,估计该校初三学生适合参加跑步、跳远、投掷三项训练的集训人数之比为( )
A.4∶3∶1 B.5∶3∶1
C.5∶3∶2 D.3∶2∶1
7.设有两组数据x1,x2,…,xn与y1,y2,…,yn,它们的平均数分别是和,则新的一组数据2x1-3y1+1,2x2-3y2+1,…,2xn-3yn+1的平均数是( )
A.2-3 B.2-3+1
C.4-9 D.4-9+1
8.为了了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图如图所示,由于不慎将部分数据丢失,但知道后5组频数和为62,设视力在4.6到4.8之间的学生数为a,最大频率为0.32,则a的值为( )
A.64 B.54
C.48 D.27
二、多项选择题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分)
9.对一个容量为N的总体抽取容量为n的样本,当选取抽签法抽样、随机数法抽样和分层随机抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,三者关系不可能是( )
A.p1=p2C.p1=p310.现要完成下列2项抽样调查:
①从10盒酸奶中抽取3盒进行食品卫生检查;
②东方中学共有160名教职工,其中一般教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本.
抽样方法不合理的是( )
A.①抽签法, ②分层随机抽样
B.①随机数法,②分层随机抽样
C.①随机数法,②抽签法
D.①抽签法, ②随机数法
11.甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则以下四种说法中正确的是( )
甲 乙
A.甲的成绩的平均数等于乙的成绩的平均数
B.甲的成绩的中位数小于乙的成绩的中位数
C.甲的成绩的方差小于乙的成绩的方差
D.甲的成绩的极差等于乙的成绩的极差
三、填空题(本题共3小题,每小题5分,共15分)
12.为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球的时间x(单位:小时)与当天投篮命中率y之间的关系:
时间x 1 2 3 4 5
命中率y 0.4 0.5 0.6 0.6 0.4
小李这5天的平均投篮命中率为________.
13.一个样本a,3,5,7的平均数是b,且a,b是方程x2-5x+4=0的两根,则这个样本的方差是___________________________________.
14.国内生产总值(GDP)是衡量一个国家或地区经济状况和发展水平的重要指标.根据统计数据显示,某市在2024年间经济高质量增长,GDP稳定增长,第一季度和第四季度的GDP分别为232亿元和241亿元,且四个季度的GDP逐季度增长,中位数与平均数相等,则该市2024年的GDP总额为________亿元.
四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤)
15.(本小题满分13分)某单位有2 000名职工,老年、中年、青年分布在管理、技术开发、营销、生产各部门中,如下表所示:
人数 管理 技术开发 营销 生产 总计
老年 40 40 40 80 200
中年 80 120 160 240 600
青年 40 160 280 720 1 200
总计 160 320 480 1 040 2 000
(1)若要抽取40人调查身体状况,则应怎样抽样?
(2)若要开一个25人的讨论单位发展与薪金调整方面的座谈会,则应怎样抽选出席人?
16.(本小题满分15分)在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为5月1日至30日,评委会把同学们上交作品的件数按5天一组分组统计,绘制了频率分布直方图(如图所示),已知从左到右各长方形的高度比为2∶3∶4∶6∶4∶1,第三组的频数为12,请解答下列问题:
(1)本次活动共有多少件作品参加评比?
(2)哪组上交的作品数量最多?有多少件?
(3)经过评比,第四组和第六组分别有10件、2件作品获奖,问这两组哪组获奖率高?
17.(本小题满分15分)对甲、乙的学习成绩进行抽样分析,各抽5门功课,得到的观测值如下:
甲 60 80 70 90 70
乙 80 60 70 80 75
问:甲、乙谁的平均成绩好?谁的各门功课发展比较平衡?
18.(本小题满分17分)某电视台为宣传本省,随机对本省内15~65岁的人群抽取了n人,回答问题“本省内著名旅游景点有哪些”.统计结果如下图表所示.
组号 分组 回答正确的人数 回答正确的人数占本组的频率
第1组 [15,25) a 0.5
第2组 [25,35) 18 x
第3组 [35,45) b 0.9
第4组 [45,55) 9 0.36
第5组 [55,65] 3 y
(1)分别求出a,b,x,y的值;
(2)从第2,3,4组回答正确的人中用分层随机抽样的方法抽取6人,求第2,3,4组每组各抽取多少人?
19.(本小题满分17分)某研究小组经过研究发现某种疾病的患病者与未患病者的某项医学指标有明显差异,经过大量调查,得到如下的患病者和未患病者该指标的频率分布直方图:
利用该指标制定一个检测标准,需要确定临界值c,将该指标大于c的人判定为阳性,小于或等于c的人判定为阴性,此检测标准的漏诊率是将患病者判定为阴性的概率,记为p(c);误诊率是将未患病者判定为阳性的概率,记为q(c).假设数据在组内均匀分布.以事件发生的频率作为相应事件发生的概率.
(1)当漏诊率p(c)=0.5%时,求临界值c和误诊率q(c);
(2)设函数f (c)=p(c)+q(c).当c∈[95,105]时,求f (c)的解析式,并求f (c)在区间[95,105]的最小值.
1 / 1