中小学教育资源及组卷应用平台
第7单元百分数的应用常考易错检测卷-2025-2026学年数学六年级上册北师大版
一、选择题
1.一件商品,先提价10%,再降价10%,现在的价格与原价相比( )。
A.现价低 B.原价低 C.现价原价相等 D.无法确定
2.有一杯含糖25%的糖水,如果在这杯糖水中加入10克糖和30克水,这杯糖水的含糖率将( )。
A.提高 B.降低 C.不变 D.无法确定变化情况
3.同学们去植树,第二天植了120棵,比第一天多植了10%,这两天共植树多少棵,正确的列式为( )。
A. B.
C. D.
4.李叔叔把50000元存入银行,存期为3年,年利率为2.75%,到期支取时,李叔叔可得到本金和利息共( )元。
A.55500 B.52750 C.54125 D.51375
5.美思商城与扬帆商城以同样的标价卖同种洗发水,为了促销,两家商城分别打出以下优惠:美思商城,买三送一,扬帆商城降价25%销售。下面几种说法中一定正确的是( )。
A.美思商城便宜 B.扬帆商城便宜
C.折扣相同,在哪家买都可以 D.美思商城买三瓶才优惠,如果只买1瓶,在扬帆商城买更便宜
6.某超市干果区的核桃搞打折促销活动,按标价的九折出售,仍可获利20%,该核桃进价为每斤21元,则核桃的标价为每斤( )元。
A.29.17 B.26 C.28 D.25.2
二、填空题
7.某方便面食品的广告语这样说:“增量25%,加量不加价。”一袋这样的方便面现在重100g,增量前重( )g。
8.六(1)班男生人数是女生人数的,女生人数与全班人数的比是( ),女生人数比男生人数多( )%。
9.近年来,新都区的学生人数每年都比前一年不断地增加,以2023年为例,又增长了5%。这里的5%表示把( )看作单位“1”;还可以联想到( )相当于( )的105%。
10.某班女生比男生多20%,也就是男生比女生少( )%。(百分号前面保留整数)
11.妈妈按下面的利率在银行存了10000元,到期时得到利息420元,她存了( )年。
存期(整存整取) 年利率/%
一年 1.95
二年 2.10
三年 2.75
五年 3.05
12.李叔叔三月份工资是9500元,超过5500元的部分要按3%缴纳个人所得税,他这个月的应纳税额是( )元。
13.根据第四次全国大熊猫调查的数据显示,我国野生大熊猫数量有1870只,圈养的比野生的少80%,圈养大熊猫的数量是( )只。
三、判断题
14.2比5少60%,5比2多60%.( )
15.产量比去年增加一成,就是今年产量比去年多110%.( )
16.小青从家走到学校的时间由原来的10分钟减少到8分钟,小青现在步行的时间比原来的减少了80%. ( )
17.国债的利息和教育储蓄存款的利息,不需要缴纳利息税。( )
18.某班有一天出席47人,缺席3人,出席率是94%。( )
19.一件上衣400元,先提价10%,在提价的基础上又降价10%,这时价格和原价相等. ( )
四、计算题
20.直接写得数。
21.计算下面各题,能简算的要简算。
×36+1.25×6.5-12.5% ×+ (-+)×12
22.解方程。
五、解答题
23.一项工程实际投资390万元,比计划节省了10万元。实际投资比原计划节省百分之几?
24.桐桐的姐姐在读研究生的第一学期获得奖学金8000元,经全家一致同意把这笔钱存入银行。谁的意见最合适呢?
银行利率 一年:3.8% 二年:4.0% 三年:4.2%
25.家具商场有某品牌的红木桌一张,原价是8600元,由于红木货源紧张,现在涨价40%出售。现在的售价是多少元?
(1)画图表示红木桌涨价前后价格之间的数量关系。
(2)列式解决问题。
26.在“家电下乡以旧换新”的活动中,某品牌电视机的原价是4800元,现在降价20%。现价是多少元?
27.甲骨文是中华民族珍贵的文化遗产,也是人类共同的精神财富。甲骨文于2017年11月成功入选联合国教科文组织的《世界记忆名录》,此次申报的9.3万片甲骨文比至今发现的甲骨文片总数少38%,至今发现的甲骨文总数是多少万片?
《第7单元百分数的应用常考易错检测卷-2025-2026学年数学六年级上册北师大版》参考答案
题号 1 2 3 4 5 6
答案 A C C C D C
1.A
【分析】设原价是1,第一个单位“1”是原价,提价后的价格就是原价的1+10%;第二个10%的单位“1”是提价后的价格,现价是提价后价格的1-10%,求出现价再与原价比较即可。
【详解】设原价是1,则提价后的价格是:
1×(1+10%)
=1×110%
=1.1
现价是:
1.1×(1-10%)
=1.1×90%
=0.99
0.99<1,即现价低于原价。
故答案为:A
【点睛】解答此题的关键是分清两个单位“1”的区别,找清各自以谁为标准,再把数据设出,根据基本的数量关系求解。
2.C
【分析】加入的糖水的含糖率=加入的糖的质量÷加入的糖水的质量×100%。如果加入的糖水的含糖率比原来糖水的含糖率大,那么含糖率将上升;如果加入的糖水的含糖率等于原来糖水的含糖率,那么含糖率不变;如果加入的糖水的含糖率比原来糖水的含糖率小,那么含糖率将下降。
【详解】加入的糖水的含糖率:10÷(10+30)×100%
=10÷40×100%
=0.25×100%
=25%
25%=25%
所以含糖率不变。
故答案为:C
【点睛】本题主要考查百分率问题,解题时要注意糖水的质量=糖的质量+水的质量。
3.C
【分析】第二天植了120棵,比第一天多植了10%,把第一天植树的棵数看作单位“1”,第二天植的棵数是(1+10%),求单位“1”,用第二天植树的棵数÷(1+10%),求出第一天植树的棵数,再把两天植树的棵数相加,即可解答。
【详解】120+120÷(1+10%)
=120+120÷1.1
≈120+109
=229(棵)
故答案为:C
【点睛】利用已知比一个数多或少百分之几的数是多少,求这个数,用除法的知识进行解答。
4.C
【分析】根据本息和=本金+本金×利率×时间,代入数据解答即可。
【详解】50000+50000×3×2.75%
=50000+4125
=54125(元)
故答案为:C
【点睛】本题考查了存款利息相关问题,公式:本息和=本金+本金×利率×时间。
5.D
【分析】美思商城,买三送一,在买4瓶时,按标价少付1瓶的钱,据此算出在美思商城的优惠幅度,再与扬帆商城的优惠幅度比较。
【详解】因为1÷(3+1)=1÷4=25%,所以:在买4瓶时,两个商城的优惠幅度是相同的,则A、B两个选项错误;在美思商城享受优惠是有条件的,买的瓶数是4的倍数时,在哪家买都可以享受相同的优惠,买的瓶数不是4的倍数时,在扬帆商城买更便宜,所以:C选项错误,D选项正确。
故答案为:D
【点睛】解答此题的关键在于理解两个商城的优惠方式,根据实际折扣或优惠幅度比较在哪个商城购买更便宜。
6.C
【分析】“获利20%”,要把核桃的进价看作单位“1”,则核桃的售价是进价的(1+20%),已知该核桃进价为每斤21元,用21乘(1+20%)即可求出核桃的售价。核桃是按标价的九折出售的,用售价除以90%即可求出标价。
【详解】21×(1+20%)
=21×1.2
=25.2(元)
25.2÷90%=28(元)
故答案为:C
【点睛】求比一个数多(或少)几分之几的数是多少,先求出未知数占单位“1”的几分之几,再用乘法计算,据此求出核桃的售价;已知一个数的百分之几是多少,求这个数,用除法计算,据此求出核桃的标价。
7.80
【分析】把一袋方便面增量前的重量看作单位“1”,增量25%后这袋方便面重100g,即这袋方便面现在的重量是增量前的(1+25%),单位“1”未知,用现在的重量除以(1+25%),即可求出这袋方便面增量前的重量。
【详解】100÷(1+25%)
=100÷1.25
=80(g)
增量前重80g。
8. 6∶11 20
【分析】已知六(1)班男生人数是女生人数的,可以把男生人数看作5份,女生人数看作6份,则全班人数是(5+6)份;
根据比的意义写出女生人数与全班人数的比即可;
求女生人数比男生人数多百分之几,先用减法求出女生比男生多的份数,再除以男生的份数。
【详解】女生人数与全班人数的比:
6∶(5+6)=6∶11
女生人数比男生人数多:
(6-5)÷5×100%
=1÷5×100%
=0.2×100%
=20%
女生人数与全班人数的比是6∶11,女生人数比男生人数多20%。
9. 2022年学生人数 2023年学生人数 2022年学生人数
【分析】从“都比前一年不断地增加”可知,都以前一年为单位“1”,2023年比2022年增长了5%,是以2022年的学生人数为单位“1”,2023年的学生人数就相当于2022年的(1+5%)。据此解答。
【详解】根据分析,解答如下:
1+5%=105%
近年来,新都区的学生人数每年都比前一年不断地增加,以2023年为例,又增长了5%。这里的5%表示把(2022年学生人数)看作单位“1”;还可以联想到( 2023年学生人数)相当于( 2022年学生人数)的105%。
10.17
【分析】女生比男生多20%,则把男生看作单位“1”,女生是男生的(1+20%),设男生是1,根据百分数乘法的意义,用1×(1+20%)即可求出女生,再根据求一个数比另一个数少百分之几,用相差数除以另一个数再乘100%,则用女生减数男生的差除以女生再乘100%,即可求出男生就比女生少百分之几。
【详解】设男生是1,
女生:1×(1+20%)
=1×1.2
=1.2
(1.2-1)÷1.2×100%
=0.2÷1.2×100%
≈17%
某班女生比男生多20%,也就是男生比女生少17%。
【点睛】本题主要考查百分数的应用,可用假设法解决问题,注意每个百分率对应的单位“1”不同。
11.二
【分析】由题可知,本金是10000元,存期不同,所对应的年利率不同,根据公式:利息=本金×利率×时间,求出不同存期所对应的利息,即可解答。
【详解】存入一年的利息:
10000×1.95%×1
=195×1
=195(元)
存入二年的利息:
10000×2.10%×2
=210×2
=420(元)
存入三年的利息:
10000×2.75%×3
=275×3
=825(元)
存入五年的利息:
10000×3.05%×5
=305×5
=1525(元)
由此可知,到期时得到利息420元,她存了二年。
12.120
【分析】先求出超过5500元的部分,将超过5500元的部分看作单位“1”,超过5500元的部分×税率=缴纳的个人所得税。
【详解】(9500-5500)×3%
=4000×0.03
=120(元)
他这个月的应纳税额是120元。
13.374
【分析】将野生大熊猫数量看作单位“1”,圈养的是野生的(1-80%),野生大熊猫数量×圈养的对应百分率=圈养的数量,据此列式计算。
【详解】1870×(1-80%)
=1870×0.2
=374(只)
圈养大熊猫的数量是374只。
14.×
【详解】略
15.×
【详解】略
16.错误
【分析】考查的是求一个数比另一个数多(或少)百分之几的题目,首先用减法求出减少的时间,再除以原来的时间.
【详解】(10-8)÷10=2÷10
=20%
所以,现在步行的时间比原来减少20%.
17.√
【分析】国债利息不需交利息税(其实就是不需交所得税);
教育储蓄存款是自然人储蓄的,现在自然人储蓄的利息收入都免征个人所得税,也就是所谓的利息税。
【详解】国债的利息和教育储蓄存款的利息,不需要缴纳利息税;教材中的原话。
18.√
【详解】略
19.×
【详解】略
20.;;2.1;70
;1.05;0.2;
【详解】略
21.12.5;;25
【分析】原式化为0.125×36+0.125×65-0.125×1,再根据乘法分配律进行简算;
先算乘法再算加法;
根据乘法分配律进行简算。
【详解】×36+1.25×6.5-12.5%
=0.125×36+0.125×65-0.125×1
=(36+65-1)×0.125
=100×0.125
=12.5
×+
=+
=
(-+)×12
=×12-×12+×12
=32-9+2
=25
22.;;
【分析】(1)先计算等式左边的加法,再根据等式的基本性质2:等式的左右两边同时乘(或除以)同一个不为0的数,等式仍然成立,等式两边同时除以,计算即可得解;
(2)先根据减数等于被减数减差化简方程,再根据等式的基本性质2:等式的左右两边同时乘(或除以)同一个不为0的数,等式仍然成立,等式两边同时除以60%,计算即可得解;
(3)先用比的前项除以比的后项,转化为一般方程,再根据除数等于被除数除以商,计算即可得解。
【详解】
解:
解:
解:
23.2.5%
【分析】根据题意可知,计划投资(390+10)万元,根据求一个数比另一个数少百分之几,用相差数除以另一个数再乘100%,则用10÷(390+10)×100%即可求出实际投资比原计划节省百分之几。
【详解】10÷(390+10)×100%
=10÷400×100%
=2.5%
答:实际投资比原计划节省2.5%。
24.爷爷
【分析】根据本金×利率×时间求出利息,爷爷建议存3年,则用奖学金+奖学金×3年利率×3年即可求出爷爷的建议可得到的本息;
妈妈建议先存1年,到期时再连本带息存2年,则先用奖学金+奖学金×1年利率×1年即可求出1年的本息,再用1年的本息+1年的本息×2年利率×2年即可求出妈妈的建议可得到的本息;
桐桐建议存1年定期,每次到期后再连本带息存1年定期,共存3年,则先用奖学金+奖学金×1年利率×1年即可求出第1年的本息,再用第1年的本息+第1年的本息×1年利率×1年即可求出第2年的本息,然后用第2年的本息+第2年的本息×1年利率×1年即可求出第3年的本息,也就是桐桐的建议可得到的本息。最后比较三种结果即可。
【详解】爷爷:8000+8000×4.2%×3
=8000+1008
=9008(元)
妈妈:8000+8000×3.8%×1
=8000+304
=8304(元)
8304+8304×4.0%×2
=8304+664.32
=8968.32(元)
桐桐:8000+8000×3.8%×1
=8000+304
=8304(元)
8304+8304×3.8%×1
=8304+315.552
≈8619.55(元)
8619.55+8619.55×3.8%×1
=8619.55+327.5429
≈8947.09(元)
8947.09<8968.32<9008
答:爷爷的意见最合适,因为爷爷的建议获得的利息最多。
25.(1)见详解;(2)12040元
【分析】(1)先画一条线段表示原价8600元,再用虚线延长线段的40%,画出涨价40%。在原价的下方画出一条线段,表示原价再加上原价的40%即可。
(2)将原价看作单位“1”,涨价40%后,现价是原价的(1+40%)。求一个数的百分之几是多少,用这个数乘百分率。将原价乘(1+40%),求出现价。
【详解】(1)如图:
(2)8600×(1+40%)
=8600×140%
=12040(元)
答:现在的售价是12040元。
26.3840元
【分析】某品牌电视机的原价是4800元,现在降价20%,说明现价占原价的,用原价乘现价占原价的分率,求出现价即可。
【详解】现价:
(元)
答:现价是3840元。
27.15万片
【分析】把至今发现的甲骨文总片数看作单位“1”,此次申报甲骨文片数占至今发现的甲骨文总片数的(1-38%),对应的是9.3万片,求单位“1”,用9.3÷(1-38%)解答。
【详解】9.3÷(1-38%)
=9.3÷62%
=15(万片)
答:至今发现的甲骨文总数是15万片。
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)