高中物理人教版必修二 6.2太阳与行星间的引力2 (教案+学案+课件+素材)

文档属性

名称 高中物理人教版必修二 6.2太阳与行星间的引力2 (教案+学案+课件+素材)
格式 zip
文件大小 3.8MB
资源类型 教案
版本资源 人教版(新课程标准)
科目 物理
更新时间 2016-08-15 20:41:18

文档简介

第2节 太阳与行星间的引力
【学习目标】
1. 知道行星绕太阳运动的原因.。
2. 理解引力公式的含义并会推导平方反比规律。
2. 了解行星与太阳间的引力公式的建立和发展过程。
3. 能根据开普勒行星运动定律和牛顿运动定律推导出太阳与行星间的引力表达式。
【重点难点】
1.领会将不易测量的物理量转化为易测量的物理量的方法.
2.知道牛顿第三定律在推导太阳与行星间引力时的作用..
3.探索引力方向和表达式的过程.
【知识链接】
1.牛顿的思考与推论
(1)以任何方式改变 (包括其方向)都需要
(2)牛顿认为,使行星沿圆或椭圆运动,需要指向圆心或椭圆焦点的 这个 应该就是太阳对它的 。
2.太阳对行星的引力
(1)行星绕太阳做近似匀速圆周运动时,需要的向心力是由 提供的,设行星的质量为m,速度为v,行星到太阳的距离为r,则行星绕太阳做匀速圆周运动需要的向心力F= .
(2)天文观测可得到行星公转的周期T,行星运行的速度v和周期T之间的关系为 .
(3)将v=代入F=得F=,再由开普勒第三定律T 2=消去T得 .因而可以说F与成正比.即太阳对不同行星的引力与行星的 成正比,与行星和太阳间距离的 成反比.
3.行星对太阳的引力
根据牛顿第三定律,可知太阳吸引行星的同时,行星也吸引太阳,由此可得行星对太阳的引力F′应该与太阳质量M成 ,与行星和太阳间距离的 成反比.
4.太阳与行星间的引力
综上可以得到太阳与行星间的引力表达式 ,式中G是比例系数,与 、 都没有关系.
【问题探究】
我们知道各行星绕太阳做椭圆运动,而且所有行星的轨道的半长轴的立方与它的公转周期的平方的比值均相等,均等于一个常数k。那么这个常数k与什么有关呢?我们可以做一个近似处理,把轨道近似为圆周运动,即行星绕太阳做匀速圆周运动,那么,半长轴与半短轴均等于圆周的半径,请同学们探究此k值与什么有关。
【课堂练习】
1、两个行星的质量分别为m1、m2,绕太阳的轨道半径是r1和r 2,若它们只受太阳引力作用,那么它们与太阳之间引力之比为 ,它们的公转周期之比为 .
2、请同学们针对教材第38页“说一说”,谈一下自己的看法。
【课后练习】
1.太阳与行星间的引力大小为F=G,其中G为比例系数,由此关系式可知G的单位是 ( )
A.N·m 2/kg2 B.N·kg2/m2
C.m3/kg·s2 D.kg·m/s2
2.下面关于行星对太阳的引力的说法中正确的是 ( )
A.行星对太阳的引力与太阳对行星的引力是同一性质的力
B.行星对太阳的引力与太阳的质量成正比,与行星的质量无关
C.太阳对行星的引力大于行星对太阳的引力
D.行星对太阳的引力大小与太阳的质量成正比,与行星距太阳的距离成反比
3.由F=G可知,太阳与行星之间的引力与 成正比,与 成反比,G是与 均无关的常数.
4.两个行星的质量分别是m1和m2,绕太阳运行的轨道半径分别是r1和r2,如果它们只受到太阳引力的作用,那么,这两个行星的向心加速度之比为 .
5.(测试易忽略点) 已知地球半径为R,质量为M,自转周期为T.一个质量为m的物体放在赤道处的海平面上,则物体受到的万有引力F= ,重力G= .
6.把太阳系各行星的运动近似看作匀速圆周运动,则离太阳越远的行星 ( )
A.周期越小 B.线速度越小
C.角速度越小 D.加速度越小
7.一行星沿椭圆轨道绕太阳运动,在由近日点运动到远日点的过程中,以下说法中正确的是 ( )
A.行星的加速度逐渐减小
B.行星的动能逐渐减小
C.行星与太阳间的引力势能逐渐减小
D.行星与太阳间的引力势能跟动能的和保持不变
《太阳与行星间的引力》导学案答案
【知识链接】
1. 速度 , 力 ,力 ,力,引力。
2.太阳对行星的引力 m v= F=4π2k· 质量 二次方
3.正比 二次方
4.F=G 太阳 行星
【问题探究】

【课堂练习】
1、
2、解答: 要验证太阳与行星之间引力的规律是否适用于行星与它的卫星,我们需要观测这些卫星与行星间的中心距离、运行周期;这些数据可求出向心加速度,应遵守a1∶a2=r22∶r12.
【课后练习】
1.AC 2.A
3.太阳的质量、行星的质量 两者距离的二次方 太阳、行星
4.r22/r12
5. -
6.BCD 7.ABD

第2节 太阳与行星间的引力
新课教学
教师活动
学生活动
点评
讲授新课
呈现、提问、对话:历史上关于行星运动原因的猜想(文本)。历史上的这些猜想所针对的问题是什么? 如果我们根据自己已有知识和经验,会作出怎样的猜想呢?能解释自己的猜想吗?
讲解、质疑、提问:这些问题的实质是什么呢?就是我们在学习牛顿运动定律的时候运用牛顿运动定律解决问题的两类基本问题中的一类。是哪一类问题?如何解决这类问题?同学们能解决这些问题吗?
启发、引导、对话:行星的实际运动是椭圆运动,但我们还不知道求出椭圆运动加速度的运动学公式,我们现在怎么办?把它简化为什么运动呢?
引导、指导、对话:既然把行星绕太阳的运动简化为圆周运动。那么行星绕太阳的运动可进一步简化为匀速圆周运动吗?为什么?
引导、指导、对话:行星绕太阳做匀速圆周运动需要力吗?为什么?需要的向心力由什么力提供呢?
引导、指导、对话:如何求太阳对行星的引力?如何求需要的向心力?选择什么公式?请同学们在草稿本上列式解答。
讲解、呈现(板书):(1)太阳对行星的引力
①行星绕太阳的椭圆运动简化为圆周运动,根据开普勒第一、第二定律,行星以太阳为圆心做匀速圆周运动,行星绕太阳做匀速圆周运动需要的向心力由太阳对行星的引力提供,则
引导、指导、对话:一般的,天文观测能直接得到行星运动的线速度吗?选择什么公式实现数学代换?请同学们在草稿本上列式解答。
讲解、呈现(板书):②一般的,天文观测得到行星公转的周期,则

引导、指导、对话:就供需关系来说,引力跟太阳与行星间的距离关系中是否应该出现行星的公转周期?选择什么公式实现数学代换?请同学们在草稿本上列式解答。
讲解、呈现(板书):③不同行星的公转周期是不同的,引力跟太阳与行星间的距离关系的表达式中不应出现周期,根据开普勒第三定律,得
引导、指导、对话:上式有何物理意义呢?如何对上式做物理简化?
讲解、呈现(板书):④在上式中,等号右边除了、以外,其余都是常量,对任何行星来说都是相同的。则
物理意义:太阳对不同行星的引力,与行星的质量成正比,与行星和太阳间距离的二次方成反比。
引导、指导、对话:太阳对行星的引力的施力物体和受力物体各是什么?根据牛顿第三定律,类比上式,如何写出行星对太阳的引力的表达式?要反映什么样的物理意义?
讲解、呈现(板书):(2)行星对太阳的引力
就太阳对行星的引力来说,行星是受力物体,因而可以说,上式引力与受力星体的质量成正比。根据牛顿第三定律,就行星对太阳的引力来说,太阳是受力星体,则
物理意义:不同行星对太阳的引力,与太阳的质量成正比,与行星和太阳间距离的二次方成反比。
引导、指导、对话:根据牛顿第三定律,作用力与反作用力有哪些关系?对两个式子如何做出物理的综合概括?要反映哪些物理意义?能改写成等式吗?
讲解、呈现(板书):(3)太阳与行星间的引力
根据牛顿第三定律,和性质相同、大小相等,可以概括为
物理意义:太阳与行星间引力的大小,与太阳的质量、行星的质量成正比,与两者距离的二次方成反比。
写成等式为
式中是比例系数,与太阳、行星都没有关系。
太阳与行星间引力的方向沿着二者的连线。
太阳对行星的引力与行星对太阳的引力大小相等(动画)。
小结、对话:上面,我们用自己的手和脑,得到了太阳与行星间的引力公式。我们回顾一下我们解决的问题和预期目标,以及达成预期目标过程中的每一步的研究对象、物理模型、物理规律和数学工具。首先,我们把行星绕太阳的椭圆运动简化为匀速圆周运动……;其次,我们一致认为行星绕太阳做匀速圆周运动需要向心力,这个向心力是由太阳对行星的引力提供的……;其三,我们预期太阳对行星的引力与太阳到行星的距离有关,希望通过行星绕太阳做匀速圆周运动需要的向心力求出这个引力,通过两次数学代换得到了太阳对行星的引力与太阳到行星的距离相关的数学表达式……;其四,通过类比得到了行星对太阳的引力与太阳到行星的距离相关的数学表达式……;其五,综合概括得到了太阳与行星间引力的数学表达式……。
呈现、讲解、比较:在历史上,牛顿说他是站在巨人的肩膀上发现了这个公式。下面我们来看一看牛顿发现这个公式的几个重要的历史片段。我们的工作与牛顿的工作有什么相同和不同?牛顿在乡间的苹果树下沉思1(图片、文本)。前人和牛顿关于太阳与行星间引力问题的思考及贡献(文本)。在1665年,具有高明的数学才能的牛顿,根据自己独特的思路推导得出了含糊不清的行星绕太阳做圆周运动时,太阳对行星的引力与距离平方成反比的数学关系式,但没有弄清圆周运动一定需要这种力,也没有推导得出了行星绕太阳做椭圆运动时,太阳对行星的引力也存在距离平方成反比的数学关系式,更没有认识到引力的普遍性。在1679年,牛顿在与胡克等人的交流中,逐渐清楚圆周运动一定需要太阳对行星的与距离平方成反比的引力,并在自己创立的微积分的基础上,推导得出了行星绕太阳做椭圆运动时,太阳对行星的引力也存在距离平方成反比的数学关系式,但还没有认识到引力的普遍性。在1687年,在哈雷的鼓励和资助下,发表了传世之作——《自然哲学的数学原理》,终于领悟了万有引力的真谛,把地面上的力学和天上的力学统一在一起,形成了以牛顿三大运动定律为基础的经典力学体系。……
阅读、对话、交流:行星在椭圆轨道上运动是否需要力?如果需要力,这个力是什么力提供的?这个力是多大?需要,太阳对行星的引力,椭圆运动是曲线运动,是变速运动,根据牛顿第一定律,要受到外力。大小跟太阳与行星间的距离有关。
听讲、议论、回答:已知运动情况求解受力问题。根据运动学公式求出加速度,根据牛顿第二定律求出力。
听讲、议论:简化问题,先解决简单问题。圆周运动。
讨论、回答、交流:可以,根据开普勒行星运动第一定律和第二定律并做解释。
讨论、回答:需要,匀速圆周运动是速度方向时刻在变化的变速运动,需要有向心力。需要的向心力由太阳对行星的引力提供。
思考、对话、解答:根据牛顿第二定律,太阳对行星的引力提供行星绕太阳做匀速圆周运动需要的向心力

记笔记。
思考、对话、解答:不是,一般的,天文观测直接得到的是行星运动的周期。

记笔记。
思考、对话、解答:不应该,需要的向心力与行星公转的周期有关,提供的向心力应该与天体本身的因素有关。
记笔记。
思考、对话、解答:等号右边除了、以外,其余都是常量,对任何行星来说都是相同的。物理意义:太阳对不同行星的引力,与行星的质量成正比,与行星和太阳间距离的二次方成反比。
记笔记。
思考、对话、解答:太阳和行星。
物理意义:不同行星对太阳的引力,与太阳的质量成正比,与行星和太阳间距离的二次方成反比。
记笔记。
思考、对话、解答:性质、大小、方向、作用线等。
物理意义:太阳与行星间引力的大小,与太阳的质量、行星的质量成正比,与两者距离的二次方成反比。
记笔记。
听讲、议论、对话、交流。
观看、议论、交流。
提供材料、创设问题情境,阅读提取信息,明确问题。了解关于行星绕太阳运动的不同观点和引力思想形成的历程。提取相关知识,促进意义学习。如果学生回答不全面,教师要补充和小结。副板书:引力大小(F)跟太阳与行星间的距离(r)有关。
质疑激励,明确问题实质,探求解决问题的思路。
对话交流,探求解决问题的方法。
对话交流,促使学生清楚知道推理的每一步证据、结论及其逻辑关系。学生往往对证据及其与结论的逻辑关系思考与表达有困难,需要老师的引导,生生交流。
对话交流,促使学生清楚知道推理的每一步证据、结论及其逻辑关系。学生一般都能回答,但对速度方向变化需要向心力的对应关系和向心力的供需关系不够明确。
对话交流,促使学生清楚知道推理的每一步证据、结论及其逻辑关系。学生一般都能回答,但对公式的选择各不同。教师巡回指导。
给出示范。
对话交流,促使学生清楚知道推理的每一步证据、结论及其逻辑关系。学生一般都能回答。教师巡回指导。
给出示范。
对话交流,促使学生清楚知道推理的每一步证据、结论及其逻辑关系。学生一般不能回答,需要教师引导。教师巡回指导。
给出示范。
对话交流,促使学生反思数学结论的物理意义及其反思方法。学生一般不习惯,需要教师反复引导。
给出示范。
对话交流,促使学生类比写出行星对太阳的引力的表达式。学生一般不习惯,需要教师反复引导并指出这个式子不是牛顿第三定律的必然结论。领略自然界的奇妙与和谐,蕴涵其中的规律之简洁。
给出示范。
对话交流,促使学生类比写出太阳与行星间引力的表达式。学生一般能说出一些关系,但不全面,需要教师补充。
给出示范。
总结推导步骤。对话中要反思研究对象、物理模型和数学工具。
承上启下,了解牛顿得到太阳与行星间的引力与其它学科之间的联系。认识科学探究中交流和独创的意义。认识物理模型和数学工具在物理学发展过程中的作用。体验探索自然规律的艰辛与喜悦。培育与他人合作的精神,将自己的见解与他人交流的愿望,和勇于修正错误的科学精神。
本课小结
这节课,首先,我们把行星绕太阳的椭圆运动简化为匀速圆周运动;其次,我们一致认为行星绕太阳做匀速圆周运动需要向心力,这个向心力是由太阳对行星的引力提供的;其三,我们预期太阳对行星的引力与太阳到行星的距离有关,希望通过行星绕太阳做匀速圆周运动需要的向心力求出这个引力,通过两次数学代换得到了太阳对行星的引力与太阳到行星的距离相关的数学表达式;其四,通过类比得到了行星对太阳的引力与太阳到行星的距离相关的数学表达式;其五,综合概括得到了太阳与行星间引力的数学表达式。但我们的工作与牛顿相比,由于没有学习数学微积分知识(更难说能创立微积分)不能推导得出了行星绕太阳做椭圆运动时,太阳对行星的引力也存在距离平方成反比的数学关系式;我们建立的物理模型和运用的物理知识都是牛顿在1687年发表在《自然哲学的数学原理》一书中,不敢说我们能把地面上的力学和天上的力学统一在一起,形成了以牛顿三大运动定律为基础的经典力学体系。
布置作业:
课堂巩固作业,解答课本第69页问题与练习第1、2题。
课后做到作业本上的作业,按下面提示并解答问题。
首先,我们把行星绕太阳的椭圆运动简化为圆周运动,为什么可以认为是匀速圆周运动?其次,我们一致认为行星绕太阳做匀速圆周运动需要向心力,这个向心力是由太阳对行星的引力提供的,为什么?其三,我们预期太阳对行星的引力与太阳到行星的距离有关,希望通过行星绕太阳做匀速圆周运动需要的向心力求出这个引力,研究对象是什么?根据什么规律列式?列出表达式。通过两次数学代换得到了太阳对行星的引力与太阳到行星的距离相关的数学表达式,代换的原因或目的是什么?完成代换。作出物理简化。其四,通过类比得到了行星对太阳的引力与太阳到行星的距离相关的数学表达式,可类比的点是什么?写出类比表达式。其五,综合概括得到了太阳与行星间引力的数学表达式。写出数学等式。
课后预习作业,阅读课本第69页第3节。
板书设计
2 太阳与行星间的引力
(1)太阳对行星的引力
物理意义:太阳对不同行星的引力,与行星的质量成正比,与行星和太阳间距离的二次方成反比。
(2)行星对太阳的引力
物理意义:不同行星对太阳的引力,与太阳的质量成正比,与行星和太阳间距离的二次方成反比。
(3)太阳与行星间的引力
物理意义:太阳与行星间引力的大小,与太阳的质量、行星的质量成正比,与两者距离的二次方成反比。
写成等式为
式中是比例系数,与太阳、行星都没有关系。
太阳与行星间引力的方向沿着二者的连线。
六、课后反思
这节课的教学时间相对充裕,教师尽可能引导学生推导出太阳与行星间的引力,巡回并指导学生思考并界定问题、预定目标,明确达成目标过程中的每一步的研究对象、物理模型、物理规律和数学工具。

课件24张PPT。开普勒三定律回顾复习开普勒第一定律——轨道定律 所有行星都分别在大小不同的椭圆轨道上围绕太阳运动,太阳在这些椭圆的一个焦点上;开普勒第二定律——面积定律 对每个行星来说,太阳和行星的连线在相等的时间扫过相等的面积;开普勒第三定律——周期定律 所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等.
行星为什么绕太阳如此和谐而又有规律地做椭圆运动? 第六章 万有引力与航天第2节、太阳与行星间的引力回顾历史:
关于行星绕太阳运动的原因
哪些科学家提出了自己的解释?行星的运动是受到了来自太阳的类似于磁力的作用 ,与距离成反比。 行星的运动是太阳吸引的缘故,并且力的大小与到太阳距离的平方成反比。 在行星的周围有旋转的物质(以太)作用在行星上,使得行星绕太阳运动。一切物体都有合并的趋势。科学足迹胡克、哈雷等:行星受到了太阳对它的引力,证明了如果行星的轨道是圆形的,其所受的引力大小跟行星到太阳的距离的平方成反比。我们再来认识一位伟大的科学家 牛顿(1643—1727)是英国著名的物理学家、数学家和天文学家,是十七世纪最伟大的科学巨匠。牛顿一生对科学事业所做的贡献,遍及物理学、数学和天文学等领域。牛顿在物理学上最主要的成就是创立了经典力学的基本体系, 对光学,牛顿致力于光的颜色和光的本性的研究,也作出了重大贡献。牛顿在数学方面,总结和发展了前人的工作,提出了“流数法”,建立了二项式定理,创立了微积分。在天文学方面,牛顿发现了万有引力定律,创制了反射望远镜,并且用它观察到了行星运动的规律。牛 顿科学足迹牛顿 (1643—1727)
英国著名的物理学家 牛顿在前人研究的基础上,并凭借其超凡的数学能力和坚定的信念,深入研究,最终发现了万有引力定律。牛顿在1676年给友人的信中写道:
如果说我看的比别人更远,那是因为我站在巨人的肩膀上。 今天,我们将共同追寻牛顿的足迹,用自己的手和大脑,重新“发现”万有引力定律!建立模型问题1:行星的实际运动是椭圆运动,但我们还不了解椭圆运动规律,那么应该怎么办?能不能把它简化成我们了解运动呢?八大行星轨道数据表建立模型问题1:行星的实际运动是椭圆运动,但我们还不了解椭圆运动规律,那应该怎么办?能不能把它简化成我们了解运动呢?建立模型问题2:既然把行星绕太阳的运动简化为圆周运动。那么行星绕太阳运动可以看成匀速圆周运动还是变速圆周运动?问题3 :行星绕太阳做匀速圆周运动也需要向心力,那么什么力来提供向心力? 这个力的方向怎么样?建立模型问题4:
太阳对行星的引力提供向心力,那么这个力大小有什么样的定量关系?科学探究行星运行速度v容易观测吗?怎么办?科学探究关系式中m是受力天体还是施力天体的质量?探究1: 太阳对行星的引力F请用中文描述这个关系式!太阳对行星的引力跟行星的质量成正比,与行星、太阳之间距离的平方成反比.
既然太阳对行星有引力,那么行星对太阳是否有引力?它又有什么样的定量关系呢?科学探究探究2: 行星对太阳的引力F′太阳对行星的引力跟受力星体的质量成正比,与行星、太阳距离的二次方成反比.科学探究探究3: 太阳与行星间的引力F类比法牛顿第三定律 G为比例系数,与太阳、行星无关。方向:沿着太阳与行星间的连线 。课堂小结今天我们学到了什么?古人观点牛顿思考理论演算总结规律建模理想化类比 关于行星对太阳的引力的说法中正确的是( )
A.行星对太阳的引力与太阳对行星的引力是同一性质的力
B.行星太阳间的引力与太阳的质量成正比,与行星的质量无关
C.太阳对行星的引力大于行星对太阳的引力
D.行星对太阳的引力大小与太阳的质量成正比,与行星距太阳的距离成反比随堂练习 A 我们知道牛顿运动定律解决两大基本问题:已知运动情况探究受力情况和已知受力情况探究运动情况。今天我们的探究属于哪一种情况?平抛运动有属于哪一种情况呢?
思考与讨论课后协作与研究 行星的实际运动为椭圆,那么,在近日点A,行星所受太阳的引力比它所需要的向心力大还是小?远日点B呢?AB作业问题与练习 1、2
栏目“说一说”思考与讨论
谢谢各位光临指导!
再见!恒星的生命历程
像地球上的万物一样,恒星也有一个产生、发展、灭亡的过程。
一、恒星的诞生
在恒星起源问题上,现在主要有两种观点:一种观点认为恒星是由弥漫物质凝聚形成的,称“弥漫说”;另一种观点认为,恒星是由超密物质爆发形成的.不过,越来越多的观测证据支持“弥漫说”,并逐渐得到大多数天文学家的公认.下面介绍这一观点。
设想在银河系里,远离我们几千光年的某个地方,一团巨大的星际气体和尘埃云寂静地穿越近于完全真空的空间.这团星际云的稀疏边缘向四周黑暗延伸几兆英里之遥.星际云占有如此广漠的空间,因此尽管它具有巨大的质量,但原子在星际云的庞大体积里的分布是很稀疏的。
某个特定的时候,在来自宇宙空间冲击波的作用下,相距很远的原子突然紧紧地拥挤在一起,星际云本来是透明的,但由于原子靠近在一起,微弱的星光不再能穿透通过,这时星际云变成了暗星云.冲击波的另一个作用效果是使有些地方含有比平均数稍多的原子数,有些地方含有比平均数略少的原子数,含原子数多的地方引力大,会把附近的原子吸引过来。以这种方式,星际云开始瓦解成团块或球状体。
球状体是不稳定的,在引力作用了球状体开始收缩,变得越来越小,其核心的压力越来越大,温度也随之不断上升.当温度上升到一定程度后,它内部深处的气体开始发光,这时球状体不再是暗黑的了,它已转变为一颗原恒星。原恒星继续收缩,当原恒星中心的温度达到一千万度时,氢燃烧了,4个氢原子核结合在一起生成了氦核,这就是我们常说的热核反应(氢核聚变).在这个过程中,减少的质量转换为纯粹的能量.由于氢燃烧释放出巨大的能量,原恒星最终能支撑住它的外层质量,于是收缩停止了,一颗恒星由此诞生了.
二、恒星的演化
以太阳为例来说明恒星的演化.大家都知道,太阳能够发光的原因是因为它在不断地进行热核反应释放出巨大的能量,我们看到的光就是太阳热核反应放出的能量.每一秒钟,在太阳的中心有6亿吨氢转换成氦,释放出的巨大能量一方面向外界释放,另一方面用来支撑自己外层的巨大质量.随着时间的推移,太阳中心氦的数量越来越多,而氢的供应越来越少,直到某一天氢用完了,燃烧便中断了.由于不再有能量向外流出,太阳的核心部分在引力作用下变得不稳定,无力支撑住自己的质量,所以含有丰富氦的太阳核心开始收缩,太阳中心的压力和温度迅速增加,使核心以外的各层被加热.由于太阳核心与表面之间的各壳层仍然包含充裕的氢,在经过比较短的时间以后,收缩的核心上面的温度达到400万开左右,这个温度高到可使围绕太阳核心的一个壳层内的氢燃烧,同时,核心的这种收缩把大量的引力能转换成热能,把太阳大气向外推出.
随着壳层氢燃烧的开始,太阳突然有了新的热核反应能源.太阳无活力核心的不断收缩和这种新的向外大量供应能量,造成太阳发生巨大的膨胀.由于太阳的结构要保持与这种新能源的平衡,所以太阳的外层越来越向外扩展.大气膨胀就会引起自身湿度降低,最终太阳的表面温度降低到4000开.温度为4000开的物体发出的主要是红色的光,此时的太阳就变成了一颗红巨星.变成红巨星的太阳将变得很大,它将吞没地球,地球将化为蒸汽.
在太阳外层膨胀和冷却的同时,无活力的核心压缩也在进行,太阳内部深处的温度升到新的高度.最后,太阳中心的氦原子核在1亿度的高温下,以高速相互碰撞的形式而熔合成碳和氧,于是出现氦燃烧的新的热核反应.氦燃烧所产生的新的能量输出,阻止了恒星核心的进一步收缩.当氦耗尽时,便到了类似太阳这样的恒星的生命发展的最后阶段.由于没有能力点燃任何新的热核反应,所以恒星会一直收缩,直到体积与地球大小差不多,这时,太阳就变成了一颗白矮星.
三、恒星的死亡
从现在起再过50亿年,太阳就会变成一颗白矮星而终结自己的恒星历程.白矮星的体积不会再继续缩小.印度天体物理学家钱德拉塞卡发现,是“电子简并压力”支撑住了死亡的恒星,使白矮星不再继续收缩.这种简并压力并不是无限强大的,电子简并压力所支撑的物质总量有一个上限,这个很重要的上限是1.4个太阳质量,换句话说,只有那些残骸质量小于1.4个太阳质量的恒星才能变成白矮星,白矮星的密度值一般是每立方厘米60吨.
如果恒星遗骸的质量大于1.4个太阳质量的话,由于电子简并压力无法支撑住这个质量的压力.不得不继续收缩,这时出现了“中子简并压力”.这种强大的压力随即有力地抗拒任何进一步的挤压,这时,恒星的遗骸就被压成了一颗中子星.同样,中子简并压力不可能支撑住大于3个太阳质量的燃余恒星物质,因而所有中子星包含的物质必定小于3个太阳的质量.中子星的密度值一般是每立方厘米6亿吨.
自然界里,有许多恒星有巨大的质量,有些星系甚至包含40或50个太阳质量的物质.这类恒星的遗骸很有可能大于3个太阳质量,这类恒星的遗骸是电子、中子简并压力所无法支撑的.自然界中没有任何力量能支撑住它们,因此,在严酷无情的引力作用了它们只能不停地收缩.成万亿吨的燃余恒星物质的无比巨大质量从四面八方向里挤压,使这颗星变得越来越小,这颗恒星就这样从宇宙中消失了,遗留下来的东西被称为黑洞.它由一个奇点(单一的点)和视界组成.
黑洞以贪婪的、永无满足的方式吞噬东西,物体一旦掉进黑洞就永远从我们的宇宙中移去了.因为这种物体不再是我们宇宙的一部分,所以它的许多特性便再也检测不到.加到黑洞上去的不管是l公斤白金,1公斤氢,或者1公斤有生命的组织,我们只把它看作是加上去三公斤质量,并不考虑在此之前它是什么东西.