1.2.2
分层抽样与系统抽样
同步练习
一、选择题
1.用系统抽样法(按等距离的规则)要从160名学生中抽取容量为20的样本,将160名学生从1~160编号.按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组应抽出的号码为125,则第一组中按此抽签方法确定的号码是( )
A.7 B.5
C.4
D.3
解析:由系统抽样知第一组确定的号码是5.
答案:B
2.某校有老师200人,男学生1
200人,女学生1
000人,现用分层抽样的方法从所有师生中抽取一个容量为n的样本,已知从女学生中抽取的人数为80人,则n为( )
A.16
B.96
C.192
D.112
解析:抽样比=,所以n=192.
答案:
C
3.(2012年潮州模拟)某企业共有职工150人,其中高级职称15人,中级职称45人,初级职称90人.现采用分层抽样抽取容量为30的样本,则抽取的各职称的人数分别为( )
A.5,10,15
B.3,9,18
C.3,10,17
D.5,9,16
解析:高级、中级、初级职称的人数所占的比例分别为
=10%,=30%,=60%,
则所抽取的高级、中级、初级职称的人数分别为
10%×30=3(人),30%×30=9(人),60%×30=18(人).
答案:B
4.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270,使用系统抽样时,将学生统一随机编号为1,2,…,270,并将整个编号依次分为10段,如果抽得号码有下列四种情况:
①7,34,61,88,115,142,169,196,223,250
②5,9,100,107,111,121,180,195,200,265
③11,38,65,92,119,146,173,200,227,254
④30,57,84,111,138,165,192,219,246,270
关于上述样本的下列结论中,正确的是( )
A.②、③都不能为系统抽样
B.②、④都不能为分层抽样
C.①、④都可能为系统抽样
D.①、③都可能为分层抽样
解析:因为③为系统抽样,所以选项A不对;因为②为分层抽样,所以选项B不对;因为④不为系统抽样,所以选项C不对,故选D.
答案:D
5.某校共有学生2
000名,各年级男、女生人数如下表.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为( )
一年级
二年级
三年级
女生
373
x
y
男生
377
370
z
A.24
B.48
C.16
D.12
解析:依题意知二年级的女生有380名,那么三年级学生的人数应该是2
000-373-377-380-370=500,即总体中各个年级的人数比例为3∶3∶2,故在分层抽样中应在三年级抽取的学生人数为64×=16.
答案:C
二、填空题
6.(2012年湛江模拟)在120个零件中,一级品24个,二级品36个,三级品60个,用系统抽样方法从中抽取容量为20的样本,则三级品a被抽到的可能性为________.
解析:每一个个体被抽到的概率都是样本容量除以总体,即=.
答案:
7.最近网络上流行一种“QQ农场游戏”,这种游戏通过虚拟软件模拟种植与收获的过程.为了了解本班学生对此游戏的态度,高三(6)班计划在全班60人中展开调查,根据调查结果,班主任计划采用系统抽样的方法抽取若干名学生进行座谈,为此先对60名学生进行编号为:01,02,03,…60,已知抽取的学生中最小的两个编号为03,09,则抽取的学生中最大的编号为________.
解析:由最小的两个编号为03,09可知,抽取人数的比例为,即抽取10名同学,其编号构成首项为3,公差为6的等差数列,故最大编号为3+9×6=57.
答案:57
8.某学校共有教师490人,其中不到40岁的有350人,40岁及以上的有140人,为了检查普通话在该校教师中的推广普及情况,用分层抽样的方法,从全体教师中抽取一个容量为70的样本进行普通话水平测试,其中在不到40岁的教师中应抽取的人数是________人.
解析:由题意得×350=50(人).
答案:50
9.(2012年石家庄检测)某单位200名职工的年龄分布情况如图,现要从中抽取40名职工作样本.用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,…,196~200号).若第5组抽出的号码为22,则第8组抽出的号码应是______.若用分层抽样方法,则40岁以下年龄段应抽取________人.
解析:由系统抽样知识可知,将总体分成均等的若干部分指的是将总体分段,且分段的间隔相等.在第1段内采用简单随机抽样的方法确定一个起始编号,在此编号的基础上加上分段间隔的整数倍即为抽样编号.由题意,第5组抽出的号码为22,因为2+(5-1)×5=22,则第1组抽出的号码应该为2,第8组抽出的号码应该为2+(8-1)×5=37.由分层抽样知识可知,40岁以下年龄段的职工占50%,按比例应抽取40×50%=20(人).
答案:37 20
三、解答题
10.一个地区共有5个乡镇,人口3万人,其中人口比例为3∶2∶5∶2∶3,从3万人中抽取一个300人的样本,分析某种疾病的发病率,已知这种疾病与不同的地理位置及水土有关,问应采取什么样的方法?并写出具体过程.
解析:应采用分层抽样方法,具体过程如下:
(1)将3万人分为五层,其中一个乡镇为一层.
(2)按照样本容量的比例随机抽取各乡镇应抽取的样本.
300×=60
(人);300×=40(人);
300×=100(人);300×=40(人);
300×=60(人),
因此各乡镇应抽取人数分别为60人,40人,
100人,40人,60人.
每个乡镇人口数仍很大,可采取系统抽样分别抽取.
(3)将300人组到一起即得到一个样本.
11.某单位有工程师6人,技术员12人,技工18人,要从这些人中抽取一个容量为n的样本.如果采用系统抽样法和分层抽样法抽取,不用剔除个体;如果样本容量增加一个,则在采用系统抽样时,需要在总体中先剔除1个个体,求样本容量n.
解析:总体容量为6+12+18=36.当样本容量是n时,由题意知,系统抽样的间隔为,分层抽样的比例是,抽取工程师×6=(人),抽取技术人员×12=(人),抽取技工×18=(人).
所以n应是6的倍数,36的约数即n=6,12,18,36.
当样本容量为(n+1)时,在总体中剔除1人后还剩35人,系统抽样的间隔为,因为必须是整数,所以n只能取6,即样本容量为6.
12.(2012年聊城联考)某单位有2
000名职工,老年、中年、青年分布在管理、技术开发、营销、生产各部门中,如下表所示:
人数
管理
技术开发
营销
生产
共计
老年
40
40
40
80
200
中年
80
120
160
240
600
青年
40
160
280
720
1
200
共计
160
320
480
1
040
2
000
(1)若要抽取40人调查身体状况,则应怎样抽样?
(2)若要开一个25人的讨论单位发展与薪金调整方面的座谈会,则应怎样抽选出席人?
(3)若要抽20人调查对某运动会筹备情况的了解,则应怎样抽样?
解析:(1)用分层抽样,并按老年4人,中年12人,青年24人抽取.
(2)用分层抽样,并按管理2人,技术开发4人,营销6人,生产13人抽取.
(3)用系统抽样,对2
000人随机编号,号码从0001~2
000,每100号分为一组,从第一组中用随机抽样抽取一个号码,然后将这个号码分别加100,200,…,1
900,得到容量为20的样本.