第3单元小数除法应用题拔高训练(含解析)-数学五年级上册人教版

文档属性

名称 第3单元小数除法应用题拔高训练(含解析)-数学五年级上册人教版
格式 docx
文件大小 373.1KB
资源类型 试卷
版本资源 人教版
科目 数学
更新时间 2025-09-12 18:52:13

图片预览

文档简介

中小学教育资源及组卷应用平台
第3单元小数除法应用题拔高训练-数学五年级上册人教版
一、解答题
1.张叔叔养的5头奶牛上周的产奶量是597.8千克,每头奶牛平均每天产奶多少千克?
2.某工程队修一条公路,原计划每天修0.6千米,16天修完。实际每天比原计划多修0.04千米,实际需多少天修完?
3.工程队修一条公路,实际每天修7.8千米,比原计划每天多修1.3千米。原计划12天可以修完,实际可以提前几天修完?
4.体育老师带600元钱买了8个足球,找回7.2元,每个足球多少钱?
5.玩具厂做一个玩具兔原来需要4.2元的材料,后来改进了制作方法,每个只需3.6元的材料。原来准备做180个玩具兔的材料,现在可以做多少个?
6.妈妈带了100元钱去超市购物,她先买了一箱牛奶(12盒装),剩下的钱用来买乳酸菌饮料。
(1)平均每盒牛奶多少钱?
(2)妈妈可以买几瓶乳酸菌饮料?
7.明明生日那天,妈妈带他到图书超市买了一套《史记故事》,每本12.8元,共6本。如果用这些钱买单价是9.6元的《成语故事》,可以买多少本?
8.修筑一条长1.6千米的公路用石子40吨,照这样计算,修一条长250千米的公路用石子多少吨?
9.聪聪的爷爷买了一箱苹果和一把香蕉,共花了189.3元。这把香蕉重多少千克?
10.一辆汽车3小时行驶180.6千米。照这样计算,4.5小时行驶多少千米?
11.一列火车3.5小时行驶了420千米,用同样的速度行驶900千米的路程,需要行驶多少小时?
12.一箱梨,如果按每千克1.6元卖,就会亏9元,如果按每千克2.1元卖,就会赚6元,如果不赚也不亏,那每千克应卖多少元?
13.十一放假,李老师带领一组同学去公园,门票每人6.5元,买门票一共花了58.5元,回去的车票要花36元,一张车票多少元?
14.一家童装公司,三月份预订到一份6000件的童装业务,每套估计用布1.4米,由于改进了裁剪方法,实际每套节省0.2米。原来的用布量现在可以做多少套?
15.妈妈拿了30元钱为刘宁买文具,她先买了每本1.5元的练习本10本,再用剩下的钱买2.5元一支的碳素笔,妈妈还可以买几支碳素笔?
16.五(1)班52个同学照合影,全班每人一张照片,一共花了299元,每人需要付多少钱?
17.新华农场修一条长8.2千米的水渠,已经修了4天,每天修0.65千米,剩下的要7天修完。平均每天修多少千米?
18.星星和妈妈带了100元去佳惠超市购物,先买了一箱12盒装的牛奶,花了62元,剩下的钱用来买5.5元一瓶的乳酸菌饮料。平均每盒牛奶多少元?(精确到角)他们可以买几瓶乳酸菌饮料?
参考答案:
1.17.08千克
【分析】我们用一周奶牛的产奶量除以奶牛的头数,再除以天数就是每头奶牛一天产奶多少千克。
【详解】597.8÷5÷7
=119.56÷7
=17.08(千克)
答:每头奶牛平均每天产奶17.08千克。
【点睛】平均分除法的意义:把一个数平均分成若干份,求一份是多少,用除法计算。
2.15天
【分析】已知原计划每天修0.6千米,16天修完,根据工作总量=工作效率×工作时间,计算出这条公路的全长;又已知实际每天比原计划多修0.04千米,用原计划每天修的长度加上0.04,计算出实际每天修的长度;最后根据工作时间=工作总量÷实际的工作效率,求出实际修完这条公路需要的天数。
【详解】(0.6×16)÷(0.6+0.04)
=9.6÷0.64
=15(天)
答:实际需15天修完。
【点睛】本题考查工程问题,解题关键是抓住工作总量不变,利用工作总量、工作效率、工作时间三者之间的关系,列式计算。
3.2天
【分析】先求出原计划每天修的米数,再依据工作总量工作时间×工作效率,求出公路的总长度,再依据工作时间工作总量÷工作效率,求出实际修路需要的天数,最后用计划需要的天数减实际需要的天数即可解答。
【详解】12-(7.8-1.3)×12÷7.8
=12-6.5×12÷7.8
=12-78÷7.8
=12-10
=2(天)
答:实际可以提前2天修完。
【点睛】本题考查知识点:依据工作时间,工作效率以及工作总量之间数量关系解决问题。
4.74.1元
【分析】由题意可知,用600减去7.2得到的结果即是8个足球的总价,然后根据总价÷数量=单价,据此解答即可。
【详解】(600-7.2)÷8
=592.8÷8
=74.1(元)
答:每个足球74.1元。
【点睛】本题考查单价、数量和总价,明确它们之间的关系是解题的关键。
5.210个
【分析】先依据总价=单价×数量,求出做这批玩具兔所花的总钱数,再根据数量=总价÷单价即可求出改进方法后现在可以做的个数。
【详解】180×4.2÷3.6
=756÷3.6
=210(个)
答:现在可以做210个。
【点睛】本题属于归总问题,解答此题的关键是明确单价、数量以及总价三者之间的数量关系。
6.(1)5元;(2)7瓶
【分析】(1)一箱牛奶60元,共有12盒,用总价÷数量=单价,代入即可求出平均每盒牛奶的单价。
(2)剩下的钱等于100元减去买牛奶花的60元,计算出还剩下40元,除以每瓶乳酸菌饮料的单价,即可求出还能买乳酸菌饮料的数量。
【详解】(1)60÷12=5(元)
答:平均每盒牛奶5元。
(2)(100-60)÷5.5
=40÷5.5
≈7(瓶)
答:妈妈可以买7瓶乳酸菌饮料
【点睛】此题的解题关键是根据总价、数量、单价三者之间的关系,运用小数除法求出结果。
7.8本
【分析】用12.8乘6,得6本《史记故事》的总价,也是《成语故事》的总价,用总价除以9.6元,即得《成语故事》的本数。据此解答。
【详解】12.8×6÷9.6
=76.8÷9.6
=8(本)
答; 如果用这些钱买单价是9.6元的《成语故事》,可以买8本。
【点睛】解决本题先根据总价=单价×数量求出总价,再根据数量=总价÷单价求解。
8.6250吨
【分析】先求出1千米需要多少吨石子,再算250千米的公路用石子多少吨,据此解答即可。
【详解】
(吨)
答:修一条长250千米的公路用石子6250吨。
【点睛】本题考查小数除法,解答本题的关键是掌握题中的数量关系式。
9.5.4千克
【分析】根据题意,一箱苹果15千克,每千克11元,依据“单价×数量=总价”,求出买苹果花掉的钱数,再用总钱数减去买苹果花掉的钱数,求出买香蕉所用的钱数,再用买香蕉所用的钱数÷单价=香蕉的重量,列式解答即可。
【详解】11×15=165(元)
189.3-165=24.3(元)
24.3÷4.5=5.4(千克)
答:这把香蕉重5.4千克。
【点睛】此题解答的关键是先认真分析题意,然后根据单价、数量和总价三者之间的关系进行解答即可得出结论。
10.270.9千米
【分析】根据速度=路程÷时间求出这辆汽车的速度,再乘4.5,就是4.5小时行驶的路程,据此解答。
【详解】180.6÷3×4.5
=60.2×4.5
=270.9(千米)
答:4.5小时行驶270.9千米。
【点睛】本题主要考查了学生对路程、速度和时间三者之间关系的掌握情况。
11.7.5小时
【分析】先根据路程除以时间得到行驶速度,速度不变,用路程900千米除以速度,得到行驶900千米的时间。
【详解】420÷3.5=120(千米/时)
900÷120=7.5(小时)
答:需要行驶7.5小时。
【点睛】此题考查目的是理解掌握路程、速度、时间三者之间的关系及应用。
12.1.9元
【分析】根据题意可知,每千克多卖2.1-1.6=0.5元,则可以把原来每千克卖1.6元亏的9元补上,还能赚6元;就是每千克多卖0.5元,则可多卖9+6=15元,据此可以求出这箱梨的重量,进而可以求出每千克卖多少元不亏不赚。
【详解】(9+6)÷(2.1-1.6)
=15÷0.5
=30(千克)
(30×1.6+9)÷30
=(48+9)÷30
=57÷30
=1.9(元)
答:每千克应卖1.9元。
【点睛】本题的关键是根据盈亏问题中的数量关系:(盈+亏)÷两次的价格差=梨的数量,再进行解答。
13.4元
【分析】根据门票每人6.5元,买门票一共花了58.5元,求出总人数,再用回去的车票钱除以总人数,即可求出一张车票的价钱。
【详解】58.5÷6.5=9(人)
36÷9=4(元)
答:一张车票4元。
【点睛】本题主要考查小数除法的实际应用,解答本题的关键是求出总人数。
14.7000套
【分析】三月份预订到一份6000件的童装业务,每套估计用布1.4米,则共有布6000×1.4米,实际每套节省0.2米即实际每套用布1.4﹣0.2米,则原来的用布量现在可以做6000×1.4÷(1.4﹣0.2)米。
【详解】6000×1.4÷(1.4﹣0.2)
=8400÷1.2
=7000(套)
答:现在可以做7000套。
【点睛】首先根据乘法的意义求出共有多少米布是完成本题的关键。
15.6支
【分析】根据总价=单价×数量,用每本练习本的价格乘购买的练习本的数量,求出买10本练习本需要多少钱;然后用30减去买练习本的钱,求出还剩下多少钱;再除以的碳素笔单价,即可求出还可以买几支碳素笔。
【详解】(30﹣1.5×10)÷2.5
=(30﹣15)÷2.5
=15÷2.5
=6(支)
答:妈妈还可以买6支碳素笔。
【点睛】此题主要考查了乘法、除法的意义的应用,解答此题的关键是熟练掌握单价、总价、数量的关系。
16.5.75元
【分析】要求每人需要付多少钱,就是把299元平均分成52份,求每份是多少钱,即299÷52。
【详解】299÷52=5.75(元)
答:每人需要付5.75元钱。
【点睛】考查了除法的意义,找出数量关系,列式解答即可。
17.0.8千米
【分析】根据“工作效率×工作时间=工作总量”计算出已经修了的工作量,进而用“工作总量-已修了的工作总量”求出剩下的工作总量,进而根据“剩下的工作总量÷工作时间=工作效率”进行解答即可。
【详解】(8.2﹣0.65×4)÷7
=(8.2﹣2.6)÷7
=5.6÷7
=0.8(千米)
答:平均每天修0.8千米。
【点睛】解答此题的关键:根据工作总量、工作时间和工作效率之间的关系进行分析、解答。
18.5.2元;6瓶
【分析】总价62元除以数量12盒等于平均每盒牛奶的价格;
100元减去买牛奶的钱数等到买乳酸菌饮料的钱数,再用这个钱数除以5.5元即可。
【详解】62÷12≈5.2(元)
答:平均每盒牛奶5.2元。
(100-62)÷5.5
=38÷5.5
≈6(瓶)
答:他们可以买6瓶乳酸菌饮料。
【点睛】熟练运用数量关系“总价=数量×单价”是解题的关键,注意计算的准确性。第二问求而得到结果注意要用“去尾法”。
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)