3.2.2
建立概率模型
教案
一、教学目标:1、进一步掌握古典概型的计算公式;2、能运用古典概型的知识解决一些实际问题。
二、教学重点、难点:古典概型中计算比较复杂的背景问题.
三、教学方法:探究讨论,思考交流
四、教学过程
(一)、问题情境:问题: 等可能事件的概念和古典概型的特征?
(二)、数学运用
例1.将一颗骰子先后抛掷两次,观察向上的点数,问:(1)共有多少种不同的结果?
(2)两数的和是3的倍数的结果有多少种?(3)两数和是3的倍数的概率是多少?
解:(1)将骰子抛掷1次,它出现的点数有这6中结果。
先后抛掷两次骰子,第一次骰子向上的点数有6种结果,第2次又都有6种可能的结果,于是一共有种不同的结果;
(2)第1次抛掷,向上的点数为这6个数中的某一个,第2次抛掷时都可以有两种结果,使向上的点数和为3的倍数(例如:第一次向上的点数为4,则当第2次向上的点数为2或5时,两次的点数的和都为3的倍数),于是共有种不同的结果.
(3)记“向上点数和为3的倍数”为事件,则事件的结果有种,因为抛两次得到的36中结果是等可能出现的,所以所求的概率为
答:先后抛掷2次,共有36种不同的结果;点数的和是3的倍数的结果有种;点数和是的倍数的概率为;
说明:也可以利用图表来数基本事件的个数:
例2.
用不同的颜色给右图中的3个矩形随机的涂色,每个矩形只涂一种颜色,求
(1)3个矩形颜色都相同的概率;(2)3个矩形颜色都不同的概率.
分析:本题中基本事件比较多,为了更清楚地枚举出所有的基本事件,可以画图枚举如下:(树形图)
解:基本事件共有个;(1)记事件=“3个矩形涂同一种颜色”,由上图可以知道事件包含的基本事件有个,故
(2)记事件=“3个矩形颜色都不同”,由上图可以知道事件包含的基本事件有个,故
答:3个矩形颜色都相同的概率为;3个矩形颜色都不同的概率为.
说明:古典概型解题步骤:⑴阅读题目,搜集信息;⑵判断是否是等可能事件,并用字母表示事件;⑶求出基本事件总数和事件所包含的结果数;⑷用公式求出概率并下结论.
例3.一个各面都涂有色彩的正方体,被锯成个同样大小的小正方体,将这些正方体混合后,从中任取一个小正方体,求:⑴有一面涂有色彩的概率;⑵有两面涂有色彩的概率;⑶有三面涂有色彩的概率.
解:在个小正方体中,一面图有色彩的有个,两面图有色彩的有个,三面图有色彩的有个,∴⑴一面图有色彩的概率为;
⑵两面涂有色彩的概率为;
⑶有三面涂有色彩的概率.
答:⑴一面图有色彩的概率;⑵两面涂有色彩的概率为;⑶有三面涂有色彩的概率.
2.练习:(1)同时抛掷两个骰子,计算:①向上的点数相同的概率; ②向上的点数之积为偶数的概率.
(2)据调查,10000名驾驶员在开车时约有5000名系安全带,如果从中随意的抽查一名驾驶员有无系安全带的情况,系安全带的概率是 ( )
答案:
C
(3)在20瓶饮料中,有两瓶是过了保质期的,从中任取1瓶,恰为过保质期的概率为 ( )
答案:B
(三)、回顾小结:1.古典概型的解题步骤;2.复杂背景的古典概型基本事件个数的计算――树形图。
(四)、课外作业:课本第149页4、5、6、7
五、教学反思: