3.2.2 建立概率模型 学案3(含答案)

文档属性

名称 3.2.2 建立概率模型 学案3(含答案)
格式 zip
文件大小 4.3MB
资源类型 教案
版本资源 北师大版
科目 数学
更新时间 2016-08-17 15:18:46

图片预览

文档简介

3.2.2 建立概率模型
学案
1.理解从不同的角度考虑可以建立不同的概率模型.
2.能够建立概率模型来解决简单的实际问题.
建立不同的古典概型
一般地,在解决实际问题中的古典概型时,对同一个古典概型,把什么看作一个________(即一次试验的结果)是人为规定的,也就是从不同的______去考虑,只要满足以下两点:
①试验中所有可能出现的基本事件只有______个,每次试验只出现其中的一个结果;
②每个试验结果出现的可能性______.
就可以将问题转化为不同的________来解决,所得可能结果越____,那么问题的解决就变得越______.
【做一做1】从甲、乙、丙三名学生中选出两名班委,其中甲被选中的概率为(  ).
A.
B.
C.
D.1
【做一做2】在两个袋中,分别装有写着0,1,2,3,4,5六个数字的6张卡片,今从每个袋中各任取一张卡片,求两数之和等于7的概率,对本题给出的以下两种不同的解法,你认为哪种解法正确?为什么?
解法一:因两数之和共有0,1,2,3,…,9,10十一种不同的结果,所以和为7的概率P=.
解法二:因从每个袋中任取一张卡片,可组成6×6=36(种)有序卡片对,其中和为7的卡片对为(2,5),(3,4),(4,3),(5,2)四种,所以P==.
应该从哪个角度来建立古典概型?
剖析:一次试验中,常常不会确定基本事件,即对于把什么看作是古典概型中的基本事件会感到困难,其突破方法是结合实例积累经验,循序渐进地掌握.
例如,一枚均匀的硬币连续抛掷2次,向上的面有(正,正)、(正,反)、(反,正)、(反,反)4种等可能结果,这是一个古典概型;如果只考虑两次抛掷向上的面是否相同,那么可以认为试验只有两个结果:“向上的面相同”“向上的面一正一反”,这两个结果也是等可能的,也是古典概型;而把出现“2次正面”“2次反面”“1次正面、1次反面”当作基本事件时,就不是古典概型.由此可见,无论从什么角度来建立古典概型,都要满足古典概型的两个特征:
①试验的所有可能结果只有有限个;
②每一个试验结果出现的可能性相同.
否则,建立的概率模型不是古典概型.
题型一
概率模型的构建
【例题1】任取一个正整数,求该数的平方的末位数字是1的概率.
反思:同一个古典概型问题由于考虑的角度不同,其解法繁简差别较大,因此,在选取样本空间时,务必抓住欲求事件的本质,而把其他无关的因素抛开,以简化求解过程.
题型二
构建不同的概率模型解决问题
【例题2】袋中装有除颜色外其他均相同的6个球,其中4个白球、2个红球,从袋中任意取出两球,求下列事件的概率:
(1)A:取出的两球都是白球;
(2)B:取出的两球一个是白球,另一个是红球.
分析:求出基本事件的总数,及A,B包含的基本事件的个数,然后套用公式.
反思:用列举法把古典概型试验的基本事件一一列举出来,然后求出其中的m、n,再利用公式P(A)=求出事件A的概率,这是一个形象、直观的好方法,但列举时必须按照某种顺序,以保证做到不重复、不遗漏.
题型三
易错辨析
【例题3】有1号、2号、3号三个信箱和A,B,C,D四封信,若4封信可以任意投入信箱,投完为止,其中A信恰好投入1号或2号信箱的概率是多少?
错解:每封信投入1号信箱的机会均等,而且所有结果数为4,故A信投入1号或2号信箱的概率为+=.
错因分析:应该考虑A信投入各个信箱的概率,而错解考虑成了4封信投入某一信箱的概率.
1在分别写有1,2,…,9的9张卡片中任意抽取一张,则抽得卡片上的数字能被3整除的概率是(  ).
A.
B.
C.
D.
2有红心1,2,3和黑桃4,5这5张扑克,将牌点向下置于桌上,现从中任意抽取一张,那么抽到的牌为红心的概率为(  ).
A.
B.
C.
D.
3甲、乙两人各写一张贺年卡随意送给丙、丁两人中的一人,则甲、乙将贺年卡送给同一人的概率是(  ).
A.
B.
C.
D.
4
20名高一学生,25名高二学生和30名高三学生在一起座谈,如果任意抽其中一名学生讲话,抽到高一学生的概率是______,抽到高二学生的概率是______,抽到高三学生的概率是______.
5
100个人依次抓阄,决定1件奖品的归属,求最后一个人中奖的概率.
答案:
基础知识·梳理
基本事件 角度 ①有限 ②相同 古典概型 少 简单
【做一做1】C 基本事件有(甲,乙),(甲,丙),(乙,丙),共3个,其中甲被选中的有(甲,乙),(甲,丙)共2个,∴P=.
【做一做2】解:解法一错误,解法二正确,错误的原因在于对试验结果中的基本事件认识不清,本题的基本事件应为由两张卡片上的数字组成的有序数对,而不是所取两张卡片上数字的和,概念的混淆导致了解答的错误.
典型例题·领悟
【例题1】解:因为正整数的个数是无限的,故不属于古典概型.但是一个正整数的平方的末位数字只取决于该正整数的末位数字,正整数的末位数字是0,1,2,…,9中的任意一个数.现任取一正整数,它的末位数字是这十个数字中的任一个是等可能出现的.因此所有的基本事件为:0,1,2,…,9,欲求的事件为1,9,即所求概率P==.
【例题2】解:设4个白球的编号为1、2、3、4,2个红球的编号为5、6.从袋中的6个球中任取两球的取法有:(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共15种,且每种取法都是等可能发生的.
(1)从袋中的6个球中任取两球,所取的两球全是白球的取法总数,即为从4个白球中任取两球的方法总数,共有6种,即为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4).所以P(A)==.
(2)从袋中的6个球中任取两球,其中一个是白球,另一个是红球的取法有(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),共8种.
所以P(B)=.
【例题3】正解:由于每封信可以任意投入信箱,对于A信,投入各个信箱的可能性是相等的,一共有3种不同的结果.投入1号信箱或2号信箱有2种结果,故A信恰好投入1号或2号信箱的概率为.
随堂练习·巩固
1.D 2.A
3.A 该试验共4个基本事件,所求事件包含2个基本事件,∴其概率P=.
4.   任意抽取一名学生是等可能事件,基本事件总数为75,记事件A,B,C分别表示“抽到高一学生”、“抽到高二学生”和“抽到高三学生”,则它们包含的基本事件的个数分别为20,25和30.
∴P(A)==,P(B)==,P(C)==.
5.解:只考虑最后一个人抓阄的情况,他可能抓到100个阄中的任何一个,而他摸到有奖的阄的结果只有一种,最后一个人中奖的概率为.