5.1 万有引力定律及引力常量的测定 学案 (3)

文档属性

名称 5.1 万有引力定律及引力常量的测定 学案 (3)
格式 zip
文件大小 23.7KB
资源类型 教案
版本资源 鲁科版
科目 物理
更新时间 2016-08-15 18:31:21

图片预览

文档简介

5.1
万有引力定律及引力常量的测定
学案3
【学习目标】
1.在开普勒第三定律的基础上,初步理解推导万有引力定律的过程。
2.通过卡文迪许扭秤的巧妙设计,渗透科学发现与科学实验的方法论教育。
3.介绍万有引力恒量的测定方法,增加对万有引力定律的感性认识。
【学习重点】
万有引力定律的推导过程,既是本节课的重点,又是学生理解的难点。
【问题探究】
1.我们还知道,月球是绕地球做圆周运动的,那么我们想过没有,月球做圆周运动的向心力是由谁来提供的呢?
2.把一个粉笔头由静止释放,粉笔头会下落到地面,这又是为什么?
3.万有引力定律的推导
当时有一个天文学家开普勒通过观测数据得到了一个规律:所有行星轨道半径的3次方与运动周期的2次方之比是一个定值,即开普勒第三定律。用公式写成
=
k
根据圆周运动向心力关系:F
=
mω2R
=
m()2R
用T2
=
代入,得F
=
其中m为行星质量,R为行星轨道半径,即太阳与行星的距离。也就是说,太阳对行星的引力正比于行星的质量而反比于太阳与行星的距离的平方。
而此时牛顿已经得到他的第三定律,即作用力等于反作用力,用在这里,就是行星对太阳也有引力。同时,太阳也不是一个特殊物体,它和行星之间的引力也应与太阳的质量M成正比(这是理解推导万有引力定律的难点)

F∝
用语言表述,就是:太阳与行星之间的引力,与它们质量的乘积成正比,与它们距离的平方成反比。这就是牛顿的万有引力定律。用公式表示为F
=
G
其中G为一个常数,叫做引力恒量。
注意:牛顿得出这个规律,是在与胡克等人的探讨中得到的。
【疑难解析】
(1)万有引力存在于任何两个物体之间。
虽然我们推导万有引力定律是从太阳对行星的引力导出的,但太阳与行星都不是特殊的物体,所以万有引力存在于任何两个物体之间。也正因为此,这个引力称做万有引力。只不过一般物体的质量与星球相比过于小了,它们之间的万有引力也非常小,完全可以忽略不计。所以万有引力定律的表述是:
任何两个物体都是相互吸引的,引力的大小跟两个物体的质量的乘积成正比,跟它们距离的平方。即
F
=
G
其中m1、m2分别表示两个物体的质量,r为它们间的距离。
(2)万有引力定律中的距离r,其含义是两个质点间的距离。
两个物体相距很远,则物体一般可以视为质点。但如果是规则形状的均匀物体相距较近,则应把r理解为它们的几何中心的距离。例如物体是两个球体,r就是两个球心间的距离。
(3)万有引力是因为物体有质量而产生的引力。从万有引力定律可以看出,物体间的万有引力由相互作用的两个物体的质量决定,所以质量是万有引力的产生原因。
(4)万有引力恒量的测定
牛顿发现了万有引力定律,但万有引力恒量G这个常数是多少,连他本人也不知道。万有引力定律发现了100多年,万有引力恒量仍没有一个准确的结果,这个公式就仍然不能是一个完善的等式。直到100多年后,英国人卡文迪许利用扭秤,才巧妙地测出了这个恒量。
卡文迪许测定的G值为6.754×10-11,现在公认的G值为6.67×10-11。需要注意的是,这个万有引力恒量是有单位的:它的单位应该是乘以两个质量的单位千克,再除以距离的单位米的平方后,得到力的单位牛顿,故应为N·m2/kg2。
由于万有引力恒量的数值非常小,所以一般质量的物体之间的万有引力是很小的,我们可以估算一下,两个质量50kg的同学相距0.5m时之间的万有引力有多大(可由学生回答:约6.67×10-7N),这么小的力我们是根本感觉不到的。只有质量很大的物体对一般物体的引力我们才能感觉到,如地球对我们的引力大致就是我们的重力,月球对海洋的引力导致了潮汐现象。而天体之间的引力由于星球的质量很大,又是非常惊人的:如太阳对地球的引力达3.56×1022N。
【课堂训练】
例1:下列关于地球同步卫星的说法中正确的是:
A、为避免通讯卫星在轨道上相撞,应使它们运行在不同的轨道上
B、通讯卫星定点在地球赤道上空某处,所有通讯卫星的周期都是24h
C、不同国家发射通讯卫星的地点不同,这些卫星的轨道不一定在同一平面上
D、不同通讯卫星运行的线速度大小是相同的,加速度的大小也是相同的。
BD
探讨评价:通讯卫星即地球同步通讯卫星,它的特点是:与地球自转周期相同,角速度相同;与地球赤道同平面,在赤道的正上方,高度一定,绕地球做匀速圆周运动;线速度、向心加速度大小相同。
颗同步卫星就能覆盖地球。
例2:设地球表面物体的重力加速度为g0,物体在距离地心4R(R是地球的半径)处,由于地球的作用而产生的加速度为g,则g/g0为(

A.1
B.1/9
C.1/4
D.1/16
解析:本题是万有引力定律的简单应用,物体在地球表面的重力加速度和在高空中的加速度都是由地球对物体的万有引力产生的。根据万有引力定律和牛顿第二定律就可以解决该题。
设地球质量为M,质量为m的物体受到地球的万有引力产生加速度,在地球表面和高空分别有:
解得:g/g0=1/16
答案选:D
拓展:物体运动的加速度由它受到的力产生,通常情况下不考虑地球的自转,物体受到的重力大小就认为等于它受到地球的万有引力。本题中物体在地面的重力加速度和高空中运动的加速度都认为是万有引力产生的,然后运用牛顿第二定律,建立物体受到的万有引力与物体运动的加速度之间的联系,从而解决问题。
例3:卡文迪许测出万有引力常量后,人们就能计算出地球的质量。现公认的引力常量G=6.67×10-11Nm2/kg2,请你利用引力常量、地球半径R和地面重力加速度g,估算地球的质量。(R=6371km,g=9.8m/s2)
解析:应用万有引力定律计算地球质量,需要知道物体和地球间的万有引力,本题中可以认为引力等于重力,用重力加速度表示引力。
根据万有引力定律

得:=5.967×1024kg
答:地球得质量为5.967×1024kg。
拓展:在应用万有引力定律解决有关地面上物体和地球的问题时,通常可以将重力和万有引力相替代。
【达标训练】
1.对于万有引力定律的表述式,下面说法中正确的是(

A.公式中G为引力常量,它是由实验测得的,而不是人为规定的
B.当r趋近于零时,万有引力趋于无穷大
C.
m1与m2受到的引力大小总是相等的,方向相反,是一对平衡力
D.
m1与m2受到的引力总是大小相等的,而与m1、m2是否相等无关
2.下列关于陨石坠向地球的解释中,正确的是(

A.陨石对地球的吸引力远小于地球对陨石的吸引力
B.陨石对地球的吸引力和地球对陨石的吸引力大小相等,但陨石的质量小,加速度大,所以改变运动方向落向地面
C.太阳不再吸引陨石,所以陨石落向地球
D.陨石受到其它星球的斥力而落向地球
3.设地球表面物体的重力加速度为g0,某卫星在距离地心3R(R是地球的半径)的轨道上绕地球运行,则卫星的加速度为(

A.g0
B.g0/9
C.g0/4
D.g0/16
4.地球质量大约是月球质量的81倍,在登月飞船通过月、地之间的某一位置时,月球和地球对它的引力大小相等,该位置到月球中心和地球中心的距离之比为(

A.1:27
B.
1:9
C.
1:3
D.
9:1
5.设想把一质量为m的物体放在地球的中心,这时它受到地球对它的万有引力是(

A.
0
B.
mg
(g=9.8m/s2)
C.∞
D.无法确定
【达标训练参考答案】1.AD
2.B
3.B.
4.B
5.A