5.2
万有引力定律的应用
教案
课时安排1课时
三维目标
一、知识与技能
1.通过对行星绕恒星的运动及卫星绕行星的运动的研究,初步掌握研究此类问题的基本方法:万有引力作为圆周运动的向心力;
2.初步了解人造卫星的发射、运行等状况,建立正确的物理模型图景;
3.能应用万有引力定律解决天体问题;
4.通过万有引力定律计算天体的质量、天体的密度、天体的重力加速度、天体运行的速度等.
二、过程与方法
1.通过万有引力定律在天文学上的应用使学生能熟练地掌握万有引力定律;
2.通过学习万有引力定律在天文学上的应用,了解世界和中国的航天事业的发展.
三、情感态度与价值观
通过学习万有引力定律在天文学上的应用,能解决实际问题,增强学生学习物理的热情.
教学过程
导入新课
教师提问:卡文迪许实验测万有引力常量的原理是什么?
学生回答:利用引力矩与金属丝的扭转力矩的平衡来求得.
教师提问:万有引力常量的测出的物理意义是什么?
学生回答:使万有引力定律有了其实际意义,可以求得地球的质量等.
万有引力常量一经测出,万有引力定律对天文学的发展起了很大的推动作用,这节课我们来学习万有引力定律在天文学上的应用.
推进新课
学生阅读有关内容
教师提问:行星绕太阳运动的向心力是什么?
学生回答:太阳对行星的万有引力提供向心力.
教师提问:如果我们知道某个行星与太阳之间的距离是r,T是行星公转的周期,列一下方程,能否求出太阳的质量M呢?
学生回答:设行星的质量为m.根据万有引力提供行星绕太阳运动的向心力,有:
即有,得.
由开普勒第三定律,绕太阳做圆周运动的行星都有=常数.所以太阳的质量M也是定值,和行星的轨道半径及周期无关.
老师总结:应用万有引力定律计算天体质量的基本思路是:根据行星(或卫星)运动的情况,求出行星(或卫星)的向心力,而F向=F万有引力.根据这个关系列方程即可.
一、人造卫星上天
人造地球卫星:
教师活动:知道了行星的运动规律,学习了万有引力定律,现在来讨论引言中提出的问题:为什么宇宙飞船能登上月球?为什么飞船能像月亮那样围绕地球旋转?飞船在什么条件下能挣脱地球的束缚?在进一步的探索中,人类会对更遥远的星球有些什么了解?
在《自然哲学的数学原理》一书中,牛顿用一张图解释行星能保持在某轨道运行的原因.其实,这张图已隐含了飞船上天并绕地球运行的奥秘(如图).牛顿认为“由于向心力,行星会沿某一个轨道运动.如果考虑抛体运动,这一点就容易理解了:投掷一块石头,该石头理应做直线运动,但是由于其自身重力,石头离开直线路径,做曲线运动,最终落回地面;投掷速度越大,落地点距投掷点越远.于是我们假设随着速度的不断增大,石头在落地前画出1、2、5、10、100或1
000英里长的弧线,直至最后超出地球的限度,进入空间永远不回到地球.”
只要抛出的速度足够大,被抛出的物体就会像月球那样不再掉下来,这实际上就是人造地球卫星或宇宙飞船上天的原理.
1957年10月4日,世界上第一颗人造地球卫星高速穿过大气层进入太空,绕地球旋转了1
400周,它的成功发射,是人类迈向太空的第一步,这就是苏联发射的“人造地球卫星”1号.该卫星为球形,外直径为58厘米,质量为83千克,发射于苏联的拜科努尔发?射场.?
很早以前,人们认识到月球是围绕地球旋转的唯一天然卫星时,就开始向往着制造人造地球卫星(简称人造卫星).1882~1883年及1932~1933年曾两度举行了国际合作科学研究活动,参加的各国学者集中研究了地球的各种性质和与太空飞行有关的各种因素.特别是第二次世界大战后,火箭技术发展迅速,人们已经看到:在积累了研制现代火箭系统经验的基础上,研制人造卫星已成为可能.1954年7月在维也纳召开的为1957年7月~1958年12月“国际地球物理年”进行准备的国际会议上,国际地球物理年的计划委员会通过一项正式决议,要求与会国对于在地球物理年计划利用人造卫星的问题给予关注.对此,美国和苏联积极响应,并开始着手人造卫星用运载火箭的探索与准备工作.1956年,苏联获悉美国的运载火箭已经进行了飞行实验,而苏联正在研制的人造卫星较为复杂,短期内难以完成.为了提前发射,苏联将原计划推迟,改为先发射两颗简易卫星.1957年8月21日,苏联将P─7洲际导弹改装成的“卫星”号运载火箭首次全程试射成功.同年10月4日,苏联用“卫星”号运载火箭将世界第一颗人造卫星送入太空.该卫星带有两台无线电发射机、测量内部温压的感应元件、磁强计和辐射计数器,其姿态控制采用最简单的自旋稳定方式.这颗卫星虽然简陋,但它却在国际上产生了巨大的影响.为人类的航天史开创了新纪元.
从地球有了第一颗人造卫星至今仅50年,各国的空间技术都有了突飞猛进的发展.50年代末到60年代初,人造卫星的发射主要用于探测地球空间环境和进行各种卫星技术试验.60年代中,人造卫星进入了应用阶段.70年代起,各种新型专用卫星的性能不断提高,诸多卫星已为人类作出了重要贡献.
要让人造地球卫星获得足够大的速度,以致能像月亮那样绕地球运行,通常需要多级火箭的作用.教材94页图519展示了多级火箭发射卫星上天,使卫星进入地球轨道的大致过程.
如果卫星绕地球运行的轨道可视为圆形,并且卫星距地面的高度远小于地球半径,则卫星轨道半径可近似为地球半径r=6.38×106
m,这时卫星所受地球的引力与卫星做圆周运动所需的向心力相等.假设卫星质量为m,地球质量为M,根据向心力公式有:,=7.9
km/s.
人们称7.9
km/s为第一宇宙速度,也称环绕速度.当卫星具有第一宇宙速度时,围绕地球运动的轨道是圆形.
如果人造地球卫星运行速度大于7.9
km/s,它将沿椭圆轨道围绕地球运行,甚至会摆脱地球引力,远离地球而去.通过计算知道,人造卫星脱离地球引力所需的速度为11.2
km/s,人们称11.2
km/s为第二宇宙速度,也称脱离速度.
脱离地球吸引力的人造卫星还受到太阳引力的作用,相当于“人造行星”.当其速度达到16.7
km/s时,就会挣脱太阳引力束缚飞出太阳系,人们称16.7
km/s为第三宇宙速度,也称逃逸速度.
二、预测未知天体
万有引力对研究天体运动有着重要的意义.海王星、冥王星就是这样发现的.
已知中心天体的质量及绕其运动的行星的运动情况,在太阳系中,行星绕太阳运动的半径r为多少呢?
学生推导:根据,
可得
代入已知数据即可得到轨道半径.
但是在18世纪发现的第七个行星——天王星的运动轨道,总是同根据万有引力定律计算出来的有一定偏离.当时有人预测,肯定在其轨道外还有一颗未发现的新星.后来,亚当斯和勒维列在预言位置的附近找到了这颗新星.后来,科学家利用这一原理还发现了许多行星的卫星,由此可见,万有引力定律在天文学上的应用,有极为重要的意义.
课堂小结
本节课的主要内容为:
一、人造卫星上天
第一宇宙速度的计算:=7.9
km/s;第二宇宙速度和第三宇宙速度.
二、求某星体表面的重力加速度
三、预测未知天体.
布置作业
1.阅读本节内容;
2.课本作业
板书设计