【学霸笔记】3.7正多边形与圆 第1课时 正多边形与圆(1) 教学课件 初中数学青岛版九年级上册

文档属性

名称 【学霸笔记】3.7正多边形与圆 第1课时 正多边形与圆(1) 教学课件 初中数学青岛版九年级上册
格式 pptx
文件大小 8.2MB
资源类型 试卷
版本资源 青岛版
科目 数学
更新时间 2025-09-16 14:40:13

图片预览

文档简介

(共12张PPT)
第3章对圆的进一步认识
3.7正多边形与圆
第1课时 正多边形与圆(1)
情 境 导 入
3.7正多边形与圆
第1课时 正多边形与圆(1)
1.什么叫正多边形?举几个例子
2.什么叫轴对称图形?它们是轴对称图形吗?
新 课 探 究
3.7正多边形与圆
第1课时 正多边形与圆(1)
1.画出下列图形的所有对称轴?分别有几条?有什么特征?
.
.
.
.
结论:正多边形都是轴对称图形,一个正n边形有n条对称轴,各对称轴相交于一点,这点到正多边形的各个顶点的距离相等,到各边的距离也相等。
单击此处添加标题文本内容
新课探究
情境导入
课堂小结
2.利用尺规作出一个正三角形的外接圆和内切圆,你发现外接圆的圆心和内切圆的圆心有什么特征。
3.利用尺规作出一个正方形的外接圆和内切圆,你发现外接圆的圆心和内切圆的圆心有什么特征。
4.猜想:多边形都有外接圆和一个内切圆吗?如果有,它们的外接圆和内切圆有什么特征?
结论:任何正多边形都有一个外接圆和内切圆,这两个圆是同心圆,圆心是对称轴的交点。
单击此处添加标题文本内容
新课探究
情境导入
课堂小结
3.正多边形每一边所对的外接圆的圆心角叫做正多边形的中心角(即∠AOB )
1.我们把正多边形的外接圆(内切圆)的公共圆心叫做正多边形的中心(即点O)
2.外接圆的半径叫做正多边形的半径(即OA)
4.中心到正多边形的一边的距离叫做正多边形的边心距(内切圆的半径、即OM)
O
·
中心角
半径R
边心距r
A
B
C
D
E
F
M
有关概念:
单击此处添加标题文本内容
新课探究
情境导入
课堂小结
E
F
C
D
.
.
O
中心角
A
B
G
设正多边形的边长为a,半径为R,它的周长为L=na.
R
a
边心距r=
面积S=
单击此处添加标题文本内容
新课探究
情境导入
课堂小结
E
F
C
D
.
练习:
说出图中的正方形和正六边形的中心,半径,边心距和中心角的度数
.
O
D
O
C
B
A
B
A
P
P
单击此处添加标题文本内容
新课探究
情境导入
课堂小结
例1.一个正六边形花坛的半径为R,
求花坛的边长a,周长p和面积S.
解:如图,ABCDEF为正六边形.
连接OA,OB,作OG⊥AB,垂足为点G,则OA=OB=R,AB=a.
在等腰三角形AOB中,∵∠GOB= ∠AOB= × =30o
∴a=2GB=2Rsin30o=R,∴p=6R
∵OG=Rcos30o= R,∴S=6
单击此处添加标题文本内容
新课探究
情境导入
课堂小结
1.如果一个正多边形绕它的中心旋转90°就与原来的图形重合,那么这个正多边形是( )
A.正三角形 B.正方形
C.正五边形 D.正六边形
B
2.已知正六边形的边心距为 ,则它的周长是_____.
12
随堂练习
单击此处添加标题文本内容
新课探究
情境导入
课堂小结
3. 有一个亭子,它的地基是半径为4 m的正六边形,求地基的周长和面积(精确到0.1 m2).
解: 如图由于ABCDEF是正六边形,所以它的中心角等于60°,△OBC是等边三角形,从而正六边形的边长等于它的半径.
因此,亭子地基的周长
l =4×6=24(m).
O
A
B
C
D
E
F
R
P
r
课 堂 小 结
3.7正多边形与圆
第1课时 正多边形与圆(1)
1.正多边形和圆的有关概念:正多边形的中心,正多边形的半径,正多边形的中心角,正多边形的边心距.
2.正多边形的半径、正多边形的中心角、边长,正多边形的边心距之间的等量关系.
THANK YOU