课时分层训练(十四) 整式
知识点一 整式、单项式和多项式的概念
1.在式子,-a2bc,1,x2-2x+3,中,整式有( C )
A.2个 B.3个
C.4个 D.5个
2.在代数式-x,,2xy,0,1-2y,中,单项式有( C )
A.1个 B.2个
C.3个 D.4个
3.在式子,2πx2y,,y2-5中,多项式有( B )
A.1个 B.2个
C.3个 D.4个
知识点二 单项式的系数和次数
4.单项式的系数和次数分别是( D )
A.-3,2 B.-,3
C.-,2 D.-,3
5.如果单项式53a2bcm为8次单项式,那么m的值为 5 .
6.单项式πr2h的系数是 π .
7.如果单项式x2yn+2与单项式ab7的次数相等,则n的值为 4 .
知识点三 多项式的项、项数和次数
8.多项式x2y3-3xy3-2的次数和项数分别为( A )
A.5,3 B.5,2
C.2,3 D.3,3
9.关于多项式6x2-3x2y-4y3-10,下列说法正确的是( D )
A.它是五次三项式
B.它的最高次项的系数为-4
C.它的常数项为10
D.它的二次项系数为6
10.已知3xn-(m-1)x+1是关于x的三次二项式,求m,n的值.
解:因为3xn-(m-1)x+1 是关于x的三次二项式,
所以n=3,m-1=0,
解得m=1,n=3.
知识点四 多项式的排列
11.多项式3m2n-4m3n2+2mn3-1按m的降幂排列,正确的是( A )
A.-4m3n2+3m2n+2mn3-1
B.2mn3+3m2n-4m3n2-1
C.-1+3m2n-4m3n2+2mn3
D.-1+2mn3+3m2n-4m3n2
12.若多项式x|m|-(m-5)x2+6是关于x的五次三项式,则m的值为( B )
A.5 B.-5
C.5或-5 D.3
13.下列说法正确的是( D )
A.5不是单项式
B.多项式2x2+xy2+3是二次三项式
C.-3πxy2的系数是-3
D.多项式-4a2b3+3ab-5的常数项是-5
14.已知一个多项式满足下列条件:①多项式有三项;②多项式的每一项都只含有字母x,y;③多项式的次数是4次;④多项式的每一项的系数均为1.请写出满足条件的多项式 x3y+xy+xy2(答案不唯一) .(写出一个即可)
15.已知多项式-5x2ym+xy2-3x3-6是六次四项式,且单项式3x2y5-n的次数和该多项式的次数相同,求m,n的值.
解:因为多项式-5x2ym+xy2-3x3-6是六次四项式,
所以2+m=6,解得m=4.
因为单项式3x2y5-n的次数和该多项式的次数相同,所以2+5-n=6,
解得n=1.
16.已知多项式x4-y+3xy-2xy2-5x3y3-1,按要求解答下列问题:
(1)指出该多项式的项;
(2)该多项式的次数是 6 ,三次项的系数是 -2 ;
(3)按y的降幂排列为: -5x3y3-2xy2-y+3xy+x4-1 ;
(4)若|x+1|+|y-2|=0,试求该多项式的值.
解:(1)该多项式的项为,-5x3y3,-1.
(4)因为|x+1|+|y-2|=0,
所以x=-1,y=2.
所以x4-y+3xy-2xy2-5x3y3-1=(-1)4-2+3×(-1)×2-2×(-1)×22-5×(-1)3×23-1=1-2-6+8+40-1=40.
【创新运用】
17.观察下列单项式:,7x4,…,-37x19,39x20……请写出第n个单项式.
为了解决这个问题,提供下面的解题思路.
(1)这组单项式的系数依次为多少?系数符号的规律是什么?系数绝对值的规律是什么?
(2)这组单项式的次数的规律是什么?
(3)根据上面的归纳,你认为第n个单项式是什么?
(4)请你根据猜想,写出第2 023个和第2 024个单项式.
解:(1)这组单项式的系数依次为-1,3,-5,7,…,-37,39……系数为奇数且奇次项的系数为负数,故单项式的系数符号的规律是(-1)n,系数绝对值的规律是2n-1.
(2)这组单项式的次数的规律是从1开始的连续自然数,所以其规律为n.
(3)第n个单项式是(-1)n(2n-1)xn.
(4)第2 023个单项式是-4 045x2 023,第2 024个单项式是4 047x2 024.
1 / 1