第26章 概率初步单元测试(培优)(含答案)

文档属性

名称 第26章 概率初步单元测试(培优)(含答案)
格式 docx
文件大小 320.6KB
资源类型 试卷
版本资源 沪科版
科目 数学
更新时间 2025-09-20 19:07:06

图片预览

文档简介

中小学教育资源及组卷应用平台
第26章 概率初步(培优)
一、单选题
1.有2名男生和2名女生,王老师要随机地、两两一对地为他们排座位,一男一女排在一起的概率是(  )
A. B. C. D.
2.将一枚飞镖投掷到如图所示的正六边形镖盘上(每次飞镖均落在镖盘上,且落在镖盘的任何一个点的机会都相等),飞镖落在阴影区域的概率为(  )
A. B. C. D.
3.我国魏晋时期的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图,若,,现随机向该图形内掷一枚小针,则针尖落在阴影区域内的概率(  ).
A. B. C. D.
4.准备两张大小一样,分别画有不同图案的正方形纸片,把每张纸都对折、剪开,将四张纸片放在盒子里,然后混合,随意抽出两张正好能拼成原图的概率是(  ).
A. B. C. D.
5.某商场举办促销活动,负责人在一个不透明的袋子里装着个大小、质量相同的小球,其中个为红色、个为黄色、个为绿色,若要获奖需要一次性摸出个红球和个黄球,那么获奖的概率为(  )
A. B. C. D.
6.设x,y,z为三个不同的整数,x,y,z∈{1,2,3,……,2016} ,则下列关于xyz为奇数的概率P的说法中,正确的是(  )
A.P< B.P= C.E.P>
二、填空题
7.已知a、b、c、满足 ,从下列四点:① ;②(2,1);③ ;④(1,﹣1),中任意取一点恰好在正比例函数y=kx图象上的概率是   .
8.一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,2,3,3,4;另一枚质地均匀的正方体骰子的六个面上的数字分别是1,3,4,5,6,8. 同时掷这两枚骰子,则其朝上的面两数字之和为奇数5的概率是   .
9.柜子里有5双鞋,取出一只鞋是右脚鞋的概率是   .
10.如图,A,B,C为上的三个点,C为的中点,连接,,,,以C为圆心,长为半径的弧恰好经过点O,若要在圆内任取一点,则该点落在阴影部分的概率是   .
11.同时掷两枚普通的骰子,“出现数字之积为奇数”与“出现数字之积为偶数”的概率分别是   ,   .
12.提出问题:在不透明口袋中放入16种颜色的小球(小球除颜色外完全相同)各50个,现要确保从口袋中随机摸出的小球至少有10个是同色的,则最少需要摸出多少个小球?
建立模型:为解决上面的“问题”,我们先建立并研究下面从口袋中摸球的数学模型:
(1)在不透明的口袋中装有红、黄、蓝三种颜色的小球各50个(除颜色外完全相同),现在要确保从口袋中随机摸出的小球至少有4个是同色的,则最少需要摸出多少个小球?为了找到解决问题的办法,我们可以把上述问题简单化:
①我们首先考虑最简单的情况:既要确保从口袋中摸出的小球至少有2个是同色的,则最少需摸出多少个小球?
假若从袋中随机摸出3个小球,它们的颜色可能会出现多种情况,其中最不利的情况就是它们的颜色各不相同,那么只需要再从袋中摸出1个小球就可确保至少有2个小球同色,即最少需要摸出小数的个数是:1+3=4;
②若要确保从口袋中摸出的小球至少有3个是同色的呢?
我们只需要在①的基础上,再从袋中摸出3个小球,就可以确保至少有3个小球同色,即最少需摸出小球的个数是:1+3×2=7
③若要确保从口袋中摸出的小球至少有4个小球同色,即最少需要摸出小球的个数是:1+3×3=10
④若要确保从口袋中摸出的小球至少有a个是同色的呢?即最少需要摸出小球的个数是   .
(2)模型拓展一:在不透明的口袋中装有红、黄、蓝、白、绿、紫六种颜色的小球各50个(除颜色外完全相同),现在从袋中随机摸球:
①若要确保摸出的小球至少有2个同色,则最少需摸出小球的个数是   ;
②若要确保摸出的小球至少有12个同色,则最少需摸出小球的个数是   ;
③若要确保摸出的小球至少有a个同色(a<50),则最少需摸出小球的个数是   ;
(3)模型拓展二:在不透明口袋中装有n中颜色的小球各50个(除颜色外完全相同),现从袋中随机魔球:
①若要确保摸出的小球至少有3个同色,则最少需摸出小球的个数是   
②若要确保摸出的小球至少有a个同色(a<50),则最少需摸出小球的个数是   .
(4)问题解决:在不透明口袋中放入16种颜色的小球(小球除颜色外完全相同)各50个,现要确保从口袋中随机摸出的小球至少有10个是同色的,则最少需摸出小球的个数是   .
三、解答题
13.某班从三名男生(含小强)和五名女生中选四名学生参加学校举行的“中华古诗文朗诵大赛”,规定选n名女生.
(1)当n为何值时,男生小强参加是确定事件
(2)当n为何值时,男生小强参加是随机事件
14.模拟经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种情况是等可能的,当同向行驶的三辆汽车经过这个十字路口时,
(1)求三辆车全部同向而行的概率.
(2)求至少有两辆车向左转的概率.
(3)这个路口汽车左转.右转、直行的指示绿灯交替亮起,亮的时间均为30秒.交管部门对这个十字路口交通高峰时段车流量作了统计,发现汽车在此十字路口向右转的频率为,向左转和直行的频率均为,在绿灯亮的总时间不变的条件下,为使交通更加通畅,请你用统计的知识对此十字路口三个方向的绿灯亮的时间做出合理的调整.
15.甲、乙两位同学做抛骰子(均匀正方体形状)实验,他们共抛了60次,出现向上点数的次数如表:
向上点数 1 2 3 4 5 6
出现次数 8 10 7 9 16 10
(1)计算出现向上点数为6的频率.
(2)丙说:“如果抛600次,那么出现向上点数为6的次数一定是100次.”请判断丙的说法是否正确并说明理由.
(3)如果甲乙两同学各抛一枚骰子,求出现向上点数之和为3的倍数的概率.
答案解析部分
1.【答案】D
【知识点】用列表法或树状图法求概率
2.【答案】B
【知识点】勾股定理;概率公式
3.【答案】C
【知识点】一元二次方程的根;勾股定理;几何概率
4.【答案】A
【知识点】概率公式
5.【答案】D
【知识点】用列表法或树状图法求概率;简单事件概率的计算
6.【答案】A
【知识点】复合事件概率的计算
7.【答案】
【知识点】比例的性质;正比例函数的概念;简单事件概率的计算
8.【答案】
【知识点】概率公式
9.【答案】
【知识点】简单事件概率的计算
10.【答案】
【知识点】等边三角形的判定与性质;垂径定理;扇形面积的计算;几何概率
11.【答案】;
【知识点】用列表法或树状图法求概率
12.【答案】(1)1+3(a-1)
(2)1+6=7;1+6×11=67;1+6(a-1)
(3)1+2n;1+n(a-1)
(4)145
【知识点】概率的简单应用
13.【答案】(1)解:当女生选1名时,三名男生都能选上,男生小强参加是必然事件,是确定事件;
当女生选4名时,三名男生都不能选上,男生小强参加是不可能事件,是确定事件,
综上所述,当n=1或4时,男生小强参加是确定事件;
(2)解:当n=2或3时,男生小强参加是随机事件.
【知识点】事件的分类;事件发生的可能性
14.【答案】(1)解:分别用A、B、C表示向左转,直行,向右转,根据题意画出树状图如下:
由图可知:共有27种等可能的结果数,三辆车全部同向而行的有3种情况,
∴P( 三辆车全部同向而行的概率)= ;
(2)解:∵至少有两辆车向左转的情况数有7种,
∴P( 至少有两辆车向左转 )=;
(3)解:∵汽车向右转、向左转,直行的概率分别为,
∴ 在绿灯亮的总时间不变的条件下可以调整绿灯亮的时间如下:
向左转及直行的绿灯亮的时间都为:(秒),
向右转绿灯亮的时间为:(秒).
【知识点】用列表法或树状图法求概率;概率的简单应用
15.【答案】解:(1)出现向上点数为6的频率=;
(2)丙的说法不正确,
理由:(1)因为实验次数较多时,向上点数为6的频率接近于概率,但不说明概率就等一定等于频率;
(2)从概率角度来说,向上点数为6的概率是的意义是指平均每6次出现1次;
(3)用表格列出所有等可能性结果:
1 2 3 4 5 6
1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12
共有36种等可能性结果,其中点数之和为3的倍数可能性结果有12个
∴P(点数之和为3的倍数)==.
【知识点】利用频率估计概率
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)