2.3.1《平行线的性质》教学设计(表格式)

文档属性

名称 2.3.1《平行线的性质》教学设计(表格式)
格式 doc
文件大小 52.0KB
资源类型 教案
版本资源 北师大版
科目 数学
更新时间 2025-09-19 16:39:33

图片预览

文档简介

教学设计
课题名称:2.3.1平行线的性质
教学内容分析
1.平行的三个性质,是本节的重点,也是本章的重点之一.2.怎样区分性质和判定,是教学中的一个难点.
教学目标
通过探究,理解平行线的性质,并能用其性质进行相关简单的计算与推理.
学习者特征分析
1.使学生掌握平行线的三个性质,并能运用它们作简单的推理.2.使学生了解平行线的性质和判定的区别.
教学过程
一、引入问:我们已经学行线的哪些判定公理和定理?学生齐答:1.同位角相等,两直线平行.2.内错角相等,两直线平行.3.同旁内角互补,两直线平行.问:把这三句话颠倒每句话中的前后次序,能得怎样的三句话?新的三句话还正确吗?学生答:1.两直线平行,同位角相等.2.两直线平行,内错角相等.3.两直线平行,同旁内角互补.教师指出:把一句原本正确的话,颠倒前后顺序,得到新的一句话,不能保证一定正确.例如,“对顶角相等”是正确的,倒过来说“相等的角是对顶角”就不正确了.因此,上述新的三句话的正确性,需要进一步证明.二、新课平行线的性质一:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.怎样说明它的正确性呢?方法一 通过测量实践,作出两条平行线a∥b,再任意作第三条直线c,量量所得的同位角是否相等.方法二 从理论上给予严格推理论证.(以下证法,教师可视学生接受情况,灵活处理讲或者不讲)已知:如图2-32,直线AB、CD、被EF所截,AB∥CD.求证:∠1=∠2.证明:(反证法)假定∠1≠∠2,则过∠1顶点O作直线A′B′使∠EOB′=∠2.∴A′B′∥CD(同位角相等,两直线平行).故过O点有两条直线AB、A′B′与已知直线CD平行,这与平行公理矛盾.即假定是不正确的.∴∠1=∠2.另证:(同一法)过∠1顶点O作直线A′B′使∠E0B′=∠2.∴ A′B′∥CD(同位角相等,两直线平行).∵ AB∥CD(已知),且O点在AB上,O点在A′B′上,∴ A′B′与AB重合(平行公理)∴∠1=∠2.平行线的性质二:两条平线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.启发学生,把这句话“翻译”成已知、求证,并作出相应的图形.已知:如图2-33,直线AB、CD被EF所截,AB∥CD,求证:∠3=∠2.证明:∵ AB∥CD(已知)∴∠1=∠2(两直线平行,同位角相等).∵∠1=∠3(对顶角相等),∴∠3=∠2(等量代换).说明:如果学生仿照性质一,用反证法或同一法去证,应该给以鼓励.并同时指出,既然性质一已证明正确,那么也可以直接利用性质一的结论,这样常常可以使证明过程简单些.然后介绍或引导学生得出上面的证法.平行线的性质三:两条平行线被第三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.要求学生仿照性质二,自己写出已知、求证、证明.教师请程度较好的学生上黑板板演,并巡视课堂,帮助有困难的学生克服困难,最后对黑板上学生的板书进行全班订正.已知:如图2-34,直线AB、CD被EF所截,AB∥CD.求证:∠2+∠4=180°.证法一:∵AB∥CD(已知),∴∠1=∠2(两直线平行,同位角相等),∵∠1+∠4=180°(邻补角),∴∠2+∠4=180°(等量代换).证法二:∵ AB∥CD (已知),∴∠2=∠3(两直线平行,内错角相等).∵∠3+∠4=180°(邻补角),∴∠2+∠4=180°(等量代换).例 已知某零件形如梯形ABCD,现已残破,只能量得∠A=115°,∠D=100°,你能知道下底的两个角∠B、∠C的度数吗?根据是什么?(如图2-35).解:∠B=180°-∠A=65°,∠C=180°-∠D=80°.(根据平行线的性质三)小结:平行线的性质与判定的区别:1.从因果关系上看性质:因为两条直线平行,所以……;判定:因为……,所以两条直线平行.2.从所起作用上看性质:根据两条直线平行,去证两角相等或互补:判定:根据两角相等或互补,去证两条直线平行.
教学策略选择传统文化融合的设计
教师活动 预设学生活动 设计意图
问:我们已经学行线的哪些判定公理和定理? 学生齐答:1.同位角相等,两直线平行.2.内错角相等,两直线平行.3.同旁内角互补,两直线平行. 把一句原本正确的话,颠倒前后顺序,得到新的一句话,不能保证一定正确.例如,“对顶角相等”是正确的,倒过来说“相等的角是对顶角”就不正确了.因此,上述新的三句话的正确性,需要进一步证明.
问:把这三句话颠倒每句话中的前后次序,能得怎样的三句话?新的三句话还正确吗?. 学生答:1.两直线平行,同位角相等.2.两直线平行,内错角相等.3.两直线平行,同旁内角互补
小结:平行线的性质与判定的区别: 1.从因果关系上看性质:因为两条直线平行,所以……;判定:因为……,所以两条直线平行.
2.从所起作用上看性质:根据两条直线平行,去证两角相等或互补:判定:根据两角相等或互补,去证两条直线平行.
教学评价设计
学生学习了这个平行线的性质后,不能理解它的用途,两直线平行不知道应该是哪些角应该相等,哪些角应该互补,哪个是前提哪个是结论不能充分的理解。导致使用的错误。应加强这方面的训练。学生图形的认识能力仍有待提高。
教学板书
2.3.1 平行线的性质1.两直线平行,同位角相等.2.两直线平行,内错角相等.3.两直线平行,同旁内角互补.性质:根据两条直线平行,去证两角相等或互补:判定:根据两角相等或互补,去证两条直线平行.
同课章节目录