人教版高中数学选修1-2 1.1回归分析的基本思想及其初步应用(教案)(共4课时)

文档属性

名称 人教版高中数学选修1-2 1.1回归分析的基本思想及其初步应用(教案)(共4课时)
格式 zip
文件大小 100.8KB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2016-08-21 07:59:54

图片预览

文档简介

第一章
统计案例
1.1回归分析的基本思想及其初步应用(一)
教学目标:
(1).知识与技能:通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用
(2).过程与方法:了解回归分析的基本思想、方法及初步应用
(3).情感,态度与价值观:充分利用图形的直观性,简捷巧妙的解题
教学重点:
了解线性回归模型与函数模型的差异,了解判断刻画模型拟合效果的方法-相关指数和残差分析.
教学难点:
解释残差变量的含义,了解偏差平方和分解的思想.
教学方法:讲解法,引导法
教学过程:
一、复习准备:
1.
提问:“名师出高徒”这句彦语的意思是什么?有名气的老师就一定能教出厉害的学生吗?这两者之间是否有关?
2.
复习:函数关系是一种确定性关系,而相关关系是一种非确定性关系.
回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法,其步骤:收集数据作散点图求回归直线方程利用方程进行预报.
二、讲授新课:
1.
教学例题:

例1
从某大学中随机选取8名女大学生,其身高和体重数据如下表所示:
编 号
 1
 2
 3
 4
 5
 6
 7
 8
身高/cm
165
165
157
170
175
165
155
170
体重/kg
48
57
50
54
64
61
43
59
求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重.
(分析思路教师演示学生整理)
 第一步:作散点图
第二步:求回归方程
第三步:代值计算

提问:身高为172cm的女大学生的体重一定是60.316kg吗?
不一定,但一般可以认为她的体重在60.316kg左右.

解释线性回归模型与一次函数的不同
事实上,观察上述散点图,我们可以发现女大学生的体重和身高之间的关系并不能用一次函数来严格刻画(因为所有的样本点不共线,所以线性模型只能近似地刻画身高和体重的关系).
在数据表中身高为165cm的3名女大学生的体重分别为48kg、57kg和61kg,如果能用一次函数来描述体重与身高的关系,那么身高为165cm的3名女在学生的体重应相同.
这就说明体重不仅受身高的影响还受其他因素的影响,把这种影响的结果(即残差变量或随机变量)引入到线性函数模型中,得到线性回归模型,其中残差变量中包含体重不能由身高的线性函数解释的所有部分.
当残差变量恒等于0时,线性回归模型就变成一次函数模型.
因此,一次函数模型是线性回归模型的特殊形式,线性回归模型是一次函数模型的一般形式.
2.
相关系数:相关系数的绝对值越接近于1,两个变量的线性相关关系越强,它们的散点图越接近一条直线,这时用线性回归模型拟合这组数据就越好,此时建立的线性回归模型是有意义.
三,课堂练习
1.
下列两个变量具有相关关系的是(

A.
正方体的体积与边长
B.
人的身高与视力
C.人的身高与体重
D.匀速直线运动中的位移与时间
2.
在画两个变量的散点图时,下面哪个叙述是正确的(

A.
预报变量在x
轴上,解释变量在
y
轴上
B.
解释变量在x
轴上,预报变量在
y
轴上
C.
可以选择两个变量中任意一个变量在x
轴上
D.
可选择两个变量中任意一个变量在
y
轴上
3.
回归直线必过(

A.
B.
C.
D.
4.越接近于1,两个变量的线性相关关系
.
5.
已知回归直线方程,则时,y的估计值为
四,总结
求线性回归方程的步骤、线性回归模型与一次函数的不同.
五:作业:
一台机器使用的时间较长,但还可以使用,它按不同的转速生产出来的某机械零件有一些会有
缺点,每小时生产有缺点零件的多少,随机器的运转的速度而变化,下表为抽样试验的结果:
转速x
(转/秒)
16
14
12
8
有缺点零件数
y
(件)
11
9
8
5
(1)画散点图;
(2)求回归直线方程;
(3)若实际生产中,允许每小时的产品中有缺点的零件最多为
10
个,那么机器的运转速度应控制
在什么范围内?
板书设计
1.1回归分析的基本思想及其初步应用(一)
例1
 第一步:作散点图
,
第二步:求回归方程
,
第三步:代值计算
解释线性回归模型与一次函数的不同
课堂练习:
总结:
作业:
课后反思:
1.1回归分析的基本思想及其初步应用(二)
教学目标:
(1).知识与技能:通过探究使学生体会有些非线性模型通过变换可以转化为线性回归模型
(2).过程与方法:了解在解决实际问题的过程中寻找更好的模型的方法,了解可用残差分析的方法,比较两种模型的拟合效果.
(3).情感,态度与价值观:充分利用图形的直观性,简捷巧妙的解题
教学重点:了解评价回归效果的三个统计量:总偏差平方和、残差平方和、回归平方和.
教学难点:了解评价回归效果的三个统计量:总偏差平方和、残差平方和、回归平方和.
教学方法:讲解法,引导法
教学过程:
一、复习准备:
1.由例1知,预报变量(体重)的值受解释变量(身高)或随机误差的影响.
2.为了刻画预报变量(体重)的变化在多大程度上与解释变量(身高)有关?在多大程度上与随机误差有关?我们引入了评价回归效果的三个统计量:总偏差平方和、残差平方和、回归平方和.
二、讲授新课:
1.
教学总偏差平方和、残差平方和、回归平方和:
(1)总偏差平方和:所有单个样本值与样本均值差的平方和,即.
残差平方和:回归值与样本值差的平方和,即.
回归平方和:相应回归值与样本均值差的平方和,即.
(2)学习要领:①注意、、的区别;②预报变量的变化程度可以分解为由解释变量引起的变化程度与残差变量的变化程度之和,即;③当总偏差平方和相对固定时,残差平方和越小,则回归平方和越大,此时模型的拟合效果越好;④对于多个不同的模型,我们还可以引入相关指数来刻画回归的效果,它表示解释变量对预报变量变化的贡献率.
的值越大,说明残差平方和越小,也就是说模型拟合的效果越好.
2.
教学例题:
例2
关于与有如下数据:
  
  2
  4
  5
  6
  8
  
  30
  40
  60
  50
  70
为了对、两个变量进行统计分析,现有以下两种线性模型:,,试比较哪一个模型拟合的效果更好.
分析:既可分别求出两种模型下的总偏差平方和、残差平方和、回归平方和,也可分别求出两种模型下的相关指数,然后再进行比较,从而得出结论.
(答案:,,84.5%>82%,所以甲选用的模型拟合效果较好.)
三,课堂练习
1.
某产品的广告费用x与销售额y的统计数据如下表:
广告费用x(万元)
4
2
3
5
销售额y(万元)
49
26
39
54
根据上表可得回归方程=x+中的为9.4,据此模型预报广告费用为6万元时销售额为(  )
A.
63.6万元
B.
65.5万元
C.
67.7万元
D.
72.0万元
2.设两个变量x和y之间具有线性相关关系,它们的相关系数是r,y关于x的回归直线的斜率是b,纵轴上的截距是a,那么必有(  )
A.b与r的符号相同
B.a与r的符号相同
C.b与r的符号相反
D.
a与r的符号相反
3.
在一次抽样调查中测得样本的5个样本点数值如下表:
x
0.25
0.5
1
2
4
y
16
12
5
2
1
试建立y与x之间的回归直线方程.
四,总结
分清总偏差平方和、残差平方和、回归平方和,初步了解如何评价两个不同模型拟合效果的好坏.
五:作业:
1.下列有关线性回归的说法,不正确的是
(  )
A.变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系
B.在平面直角坐标系中用描点的方法得到表示具有相关关系的两个量的一组数据的图形叫做散点图
C.线性回归方程最能代表具有线性相关关系的x,y之间的关系
D.任何一组观测值都能得到具有代表意义的线性回归方程
2.
在建立两个变量

的回归模型中,分别选择了4个不同的模型,它们的相关指数
如下,其中拟合最好的模型是(  

A.模型1的相关指数
为0.98  
B.模型2的相关指数
为0.80
C.模型3的相关指数
为0.50  
D.模型4的相关指数
为0.25
3.
为了研究某种细菌随时间x变化,繁殖个数y的变化,收集数据如下:
时间x/天
1
2
3
4
5
6
繁殖个数y
6
12
25
49
95
190
(1)用时间作解释变量,繁殖个数作预报变量,作出这些数据的散点图;
(2)求y与x之间的回归方程;
(3)描述解释变量与预报变量之间的关系,计算残差、相关指数R2
板书设计
1.1回归分析的基本思想及其初步应用(二)
(1)总偏差平方和:
回归平方和:
残差平方和:
例2关于与有如下数据
课堂练习:
总结:
作业:
课后反思:
1.1回归分析的基本思想及其初步应用(三)
教学目标:
(1).知识与技能:了解常用函数的图象特点,选择不同的模型建模,体会有些非线性模型通过变换可以转化为线性回归模型。
(2).过程与方法:通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用.
(3).情感,态度与价值观:通过本节课的学习,使学生学会对数据的收集,整理和分析.
教学重点:
通过探究使学生体会有些非线性模型通过变换可以转化为线性回归模型,了解在解决实际问题的过程中寻找更好的模型的方法.
教学难点:
了解常用函数的图象特点,选择不同的模型建模,并通过比较相关指数对不同的模型进行比较.
教学方法:讲解法,引导法
教学过程:
一、复习准备:
1.
给出例3:一只红铃虫的产卵数和温度有关,现收集了7组观测数据列于下表中,试建立与之间的回归方程.
温度
 21
 23
 25
 27
 29
 32
 35
产卵数个
 7
 11
 21
 24
 66
 115
 325
(学生描述步骤,教师演示)
2.
讨论:观察右图中的散点图,发现样本点并没有分布在某个带状区域内,即两个变量不呈线性相关关系,所以不能直接用线性回归方程来建立两个变量之间的关系.
二、讲授新课:
1.
探究非线性回归方程的确定:

如果散点图中的点分布在一个直线状带形区域,可以选线性回归模型来建模;如果散点图中的点分布在一个曲线状带形区域,就需选择非线性回归模型来建模.

根据已有的函数知识,可以发现样本点分布在某一条指数函数曲线y=的周围(其中是待定的参数),故可用指数函数模型来拟合这两个变量.

在上式两边取对数,得,再令,则,而与间的关系如下:
X
 21
 23
 25
 27
 29
 32
 35
z
1.946
2.398
3.045
3.178
4.190
4.745
5.784
观察与的散点图,可以发现变换后样本点分布在一条直线的附近,因此可以用线性回归方程来拟合.

利用计算器算得,与间的线性回归方程为,因此红铃虫的产卵数对温度的非线性回归方程为.

利用回归方程探究非线性回归问题,可按“作散点图建模确定方程”这三个步骤进行.
其关键在于如何通过适当的变换,将非线性回归问题转化成线性回归问题.
三、巩固练习:
为了研究某种细菌随时间x变化,繁殖的个数,收集数据如下:
天数x/天
1
2
3
4
5
6
繁殖个数y/个
6
12
25
49
95
190
(1)用天数作解释变量,繁殖个数作预报变量,作出这些数据的散点图;
(2)试求出预报变量对解释变量的回归方程.(答案:所求非线性回归方程为.)
四,课堂总结:用回归方程探究非线性回归问题的方法、步骤.
五,作业:
板书设计
1.1回归分析的基本思想及其初步应用(三)
例3:
1.
探究非线性回归方程的确定:
三、巩固练习:
课堂总结:
五,作业:
课后反思:
1.1回归分析的基本思想及其初步应用(四)
教学目标:
(1).知识与技能:通过探究使学生体会有些非线性模型通过变换可以转化为线性回归模型
(2).过程与方法:了解在解决实际问题的过程中寻找更好的模型的方法,了解可用残差分析的方法,比较两种模型的拟合效果.
(3).情感,态度与价值观:
:通过本节课的学习,使学生学会对数据的收集,整理和分析.
教学重点:通过探究使学生体会有些非线性模型通过变换可以转化为线性回归模型,了解在解决实际问题的过程中寻找更好的模型的方法,了解可用残差分析的方法,比较两种模型的拟合效果.
教学难点:了解常用函数的图象特点,选择不同的模型建模,并通过比较相关指数对不同的模型进行比较.
教学过程:
一、复习准备:
1.
提问:在例3中,观察散点图,我们选择用指数函数模型来拟合红铃虫的产卵数和温度间的关系,还可用其它函数模型来拟合吗?
2.
讨论:能用二次函数模型来拟合上述两个变量间的关系吗?(令,则,此时与间的关系如下:
441
529
625
729
841
1024
1225
7
11
21
24
66
115
325
观察与的散点图,可以发现样本点并不分布在一条直线的周围,因此不宜用线性回归方程来拟合它,即不宜用二次曲线来拟合与之间的关系.
)小结:也就是说,我们可以通过观察变换后的散点图来判断能否用此种模型来拟合.
事实上,除了观察散点图以外,我们也可先求出函数模型,然后利用残差分析的方法来比较模型的好坏.
二、讲授新课:
1.
教学残差分析:

残差:样本值与回归值的差叫残差,即.

残差分析:通过残差来判断模型拟合的效果,判断原始数据中是否存在可疑数据,这方面的分析工作称为残差分析.

残差图:以残差为横坐标,以样本编号,或身高数据,或体重估计值等为横坐标,作出的图形称为残差图.
观察残差图,如果残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适,这样的带状区域的宽度越窄,模型拟合精度越高,回归方程的预报精度越高.
2.
例3中的残差分析:
计算两种模型下的残差
一般情况下,比较两个模型的残差比较困难(某些样本点上一个模型的残差的绝对值比另一个模型的小,而另一些样本点的情况则相反),故通过比较两个模型的残差的平方和的大小来判断模型的拟合效果.
残差平方和越小的模型,拟合的效果越好.
  由于两种模型下的残差平方和分别为1450.673和15448.432,故选用指数函数模型的拟合效果远远优于选用二次函数模型.
(当然,还可用相关指数刻画回归效果)
三、巩固练习:
1.一项研究要确定是否能够根据施肥量预测作物的产量,这里的解释变量是(B

A、作物的产量
B、施肥量
C、试验者
D、降雨量或其他解释产量的变量2、下列说法正确的有

C

①回归方程适用于一切样本和总体
②回归方程一般都有时间性
③样本取值的范围会影响回归方程的适用范围
④回归方程得到的预报值是预报变量的精确值
A、①③
B、①②
C、②③
D、③④
3、已知回归直线方程中斜率的估计值为1.23,样本点的中心(4
,5),则回归直线方程为(
A

A、
B、
C、
D、
四,课堂总结:残差分析的步骤、作用
五,作业:
板书设计
1.1回归分析的基本思想及其初步应用(四)
1.
教学残差分析:

残差图:

残差分析:

残差:
例题3
三、巩固练习:
课堂总结:
五,作业:
课后反思: