【全程复习方略】2016年秋高中数学选修4-5课件:第三讲 柯西不等式与排序不等式 (2份打包)

文档属性

名称 【全程复习方略】2016年秋高中数学选修4-5课件:第三讲 柯西不等式与排序不等式 (2份打包)
格式 zip
文件大小 152.2KB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2016-08-21 08:14:42

文档简介

课件11张PPT。 二维形式的柯西不等式新田一中高二备课组 若a,b,c,d都是实数,则(a2+b2)(c2+d2)≥(ac+bd)2
当且仅当ad=bc时,等号成立.定理1(二维形式的柯西不等式):你能证明吗?推论 向量形式:定理2: (柯西不等式的向量形式)根据两点间距离公式以及三角形的边长关系:观察定理3(二维形式的三角不等式)
设          , 那么 例题分析:例1.已知a,b为实数,证明:
(a4+b4) (a2+b2)≥ (a3+b3)2例3.设a,b∈R+,a+b=1,求证
练习:作业:P36 1 、5 P37 6 、9

课件14张PPT。 三 排序不等式新田一中高二备课组 当且仅当 (i=1,2,…,n) 或 存在一个 数k使得 (i=1,2,…,n) 时等号成立。
以上不等式称为一般形式的柯西不等式。知识回顾:一般形式的三角不等式反序和≤乱序和≤顺序和例1 :有10人各拿一只水桶去接水,设水龙头注满第i(i=1,2,…,10)个人的水桶需要ti分,假定这些ti各不相同。
问:只有一个水龙头时,应该如何安排10人的顺序,使他们等候的总时间最少?这个最少的总时间等于多少?解:总时间(分)是10t1+9t2+…+2t9+t10
根据排序不等式,当t1总时间取最小值。
即:按水桶的大小由小到大依次接水,
则10人等候的总时间最少。
最少的总时间是:
10t1+9t2+…+2t9+t10
例2 设a1,a2,…,an是n个互不相等的正整数,
求证:证明:设b1,b2,…,bn是a1,a2,…an的一个排列,
且有 b1因为b1,b2,…,bn是互不相等的正整数,
所以b1≥1,b2≥2,…,bn≥n.
又因
由排序不等式,得:练习练习反序和≤乱序和≤顺序和小结作业P45 第3,4题练习练习