中小学教育资源及组卷应用平台
第4章 概率(培优)
一、单选题
1.在一个黑色盒子里有1个白球,现在放入若干个黑球,它们与白球除了颜色外都相同,搅匀后从中任意摸出两个球,使得(摸出一白一黑)(摸出两黑),则放入的黑球个数为( )
A.3 B.4 C.5 D.6
2.甲乙两人轮流在黑板上写下不超过 的正整数(每次只能写一个数),规定禁止在黑板上写已经写过的数的约数,最后不能写的为失败者,如果甲写第一个,那么,甲写数字( )时有必胜的策略.
A.10 B.9 C.8 D.6
3.如图,正方形ABCD内接于⊙O,⊙O的直径为分米,若在这个圆面上随意抛一粒豆子,则豆子落在正方形ABCD内的概率是( )
A. B. C. D.
4.“上升数”是一个数中右边数字比左边数字大的自然数(如:34,568,2469等).任取一个两位数,是 “上升数”的概率是( )
A. B. C. D.
5.某校九年级学生中有5人在省数学竞赛中获奖,其中3人获一等奖,2人获二等奖.老师从5人中选2人向全校学生介绍学好数学的经验,则选出的2人中恰好一人是一等奖获得者,一人是二等奖获得者的概率是( ).
A. B. C. D.
6.准备两张大小一样,分别画有不同图案的正方形纸片,把每张纸都对折、剪开,将四张纸片放在盒子里,然后混合,随意抽出两张正好能拼成原图的概率是( ).
A. B. C. D.
二、填空题
7.一口袋中有6个红球和若干个白球,除颜色外均相同,从口袋中随机摸出一球,记下颜色,再把它放回口袋中摇匀.重复上述实验共300次,其中120次摸到红球,则口袋中大约有 个白球.
8.如图,平面内有16个格点,每个格点小正方形的边长为1,则图中阴影部分的面积为 .
9.从1,2,3,4中任取3个数,作为一个一元二次方程的系数,则构作的一元二次方程有实根的概率是 。
10.一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,2,3,3,4;另一枚质地均匀的正方体骰子的六个面上的数字分别是1,3,4,5,6,8. 同时掷这两枚骰子,则其朝上的面两数字之和为奇数5的概率是 .
11.七巧板起源于我国宋代,后流传于世界各国.在“综合与实践”课堂上,兴趣小组同学用一张正方形纸板依据图1,经过折叠、剪切,制作了如图2所示的七巧板,再拼成如图3所示的作品,最后在作品上随机钉一枚图钉,将其固定在桌面上,则图钉的钉尖恰好落在①区域的概率是 .
12.在一个木制的棱长为3的正方体的表面涂上颜色,将它的棱三等分,然后从等分点把正方体锯开,得到27个棱长为l的小正方体,将这些小正方体充分混合后,装入口袋,从这个口袋中任意取出一个小正方体,则这个小正方体的表面恰好涂有两面颜色的概率是 .
三、解答题
13.甲、乙两位同学做抛骰子(均匀正方体形状)实验,他们共抛了60次,出现向上点数的次数如表:
向上点数 1 2 3 4 5 6
出现次数 8 10 7 9 16 10
(1)计算出现向上点数为6的频率.
(2)丙说:“如果抛600次,那么出现向上点数为6的次数一定是100次.”请判断丙的说法是否正确并说明理由.
(3)如果甲乙两同学各抛一枚骰子,求出现向上点数之和为3的倍数的概率.
14.小明为了检验两枚六个面分别刻有点数1、 2、3、4、5、6的正六面体骰子的质量是否都合格,在相同的条件下,同时抛两枚骰子20 00 0次,结果发现两个朝上面的点数和是7的次数为20次.你认为这两枚骰子质量是否都合格(合格标准为:在相同条件下抛骰子时,骰子各个面朝上的机会相等)?并说明理由.
15.随着快递行业在农村的深入发展,全国各地的特色农产品有了更广阔的销售空间.不同的快递公司在配送、服务、收费和投递范围等方面各具优势,某农产品种植户经过前期调研,打算从甲、乙两家快递公司中选择一家合作.为此,该种植户收集了10家农产品种植户对两家公司的相关评价,并整理、描述、分析如下:
配送速度和服务质量得分统计表
项目统计量快递公司 配送速度得分 服务质量得分
平均数 中位数 平均数 方差
甲 m 7
乙 8 8 7
(1)补全频数分布直方图,扇形统计图中圆心角α的度数是 ;
(2)表格中的m= ; (填“”“=”或“”);
(3)如果A,B,C三家农产品种植户分别从甲、乙两个快递公司中任选一个公司合作,求三家种植户选择同一快递公司的概率.
答案解析部分
1.【答案】A
【知识点】概率公式
2.【答案】D
【知识点】游戏公平性
3.【答案】A
【知识点】几何概率
4.【答案】B
【知识点】概率公式
5.【答案】C
【知识点】用列表法或树状图法求概率
6.【答案】A
【知识点】概率公式
7.【答案】9
【知识点】利用频率估计概率
8.【答案】
【知识点】几何概率;概率公式
9.【答案】0.25
【知识点】概率公式
10.【答案】
【知识点】概率公式
11.【答案】
【知识点】几何概率
12.【答案】
【知识点】几何概率
13.【答案】解:(1)出现向上点数为6的频率=;
(2)丙的说法不正确,
理由:(1)因为实验次数较多时,向上点数为6的频率接近于概率,但不说明概率就等一定等于频率;
(2)从概率角度来说,向上点数为6的概率是的意义是指平均每6次出现1次;
(3)用表格列出所有等可能性结果:
1 2 3 4 5 6
1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12
共有36种等可能性结果,其中点数之和为3的倍数可能性结果有12个
∴P(点数之和为3的倍数)==.
【知识点】利用频率估计概率
14.【答案】解:根据题意,可列表如下:
由上表可知一共有36种情况。抛一次骰子时出现和为7的概率是:;而本题的试验次数为20000次,和为7的出现20次,则其概率为,而不等于,所以两枚骰子的质量均不合格。
【知识点】用列表法或树状图法求概率
15.【答案】(1)
(2),
(3)解:画树状图如下:
由树状图可知共有8种可能结果,其中三家种植户选择同一快递公司的有2种结果,
∴三家种植户选择同一快递公司的概率为.
【知识点】频数(率)分布直方图;扇形统计图;用列表法或树状图法求概率;中位数;方差
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)