2016年北师大版九年级数学上册同步测试:2.3
用公式法求解一元二次方程
一、选择题(共17小题)
1.判断一元二次方程式x2﹣8x﹣a=0中的a为下列哪一个数时,可使得此方程式的两根均为整数?( )
A.12
B.16
C.20
D.24
2.若关于x的一元二次方程x2﹣4x+5﹣a=0有实数根,则a的取值范围是( )
A.a≥1
B.a>1
C.a≤1
D.a<1
3.若关于x的方程x2+2x+a=0不存在实数根,则a的取值范围是( )
A.a<1
B.a>1
C.a≤1
D.a≥1
4.已知关于x的方程x2﹣2x+3k=0有两个不相等的实数根,则k的取值范围是( )
A.k<
B.k>
C.k<且k≠0
D.k>且k≠0
5.若关于x的一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是( )
A.
B.
C.
D.
6.关于x的一元二次方程(m﹣2)x2+2x+1=0有实数根,则m的取值范围是( )
A.m≤3
B.m<3
C.m<3且m≠2
D.m≤3且m≠2
7.关于x的一元二次方程kx2+2x+1=0有两个不相等的实数根,则k的取值范围是( )
A.k>﹣1
B.k≥﹣1
C.k≠0
D.k<1且k≠0
8.方程(m﹣2)x2﹣x+=0有两个实数根,则m的取值范围( )
A.m>
B.m≤且m≠2
C.m≥3
D.m≤3且m≠2
9.关于x的一元二次方程(m﹣2)x2+(2m+1)x+m﹣2=0有两个不相等的正实数根,则m的取值范围是( )
A.m>
B.m>且m≠2
C.﹣<m<2
D.<m<2
10.若关于x的一元二次方程x2+(2k﹣1)x+k2﹣1=0有实数根,则k的取值范围是( )
A.k≥
B.k>
C.k<
D.k≤
11.关于x的一元二次方程x2+x+m=0有实数根,则m的取值范围是( )
A.m≥
B.m≤
C.m≥
D.m≤
12.下列方程有两个相等的实数根的是( )
A.x2+x+1=0
B.4x2+2x+1=0
C.x2+12x+36=0
D.x2+x﹣2=0
13.下列一元二次方程中有两个不相等的实数根的方程是( )
A.(x﹣1)2=0
B.x2+2x﹣19=0
C.x2+4=0
D.x2+x+l=0
14.已知一元二次方程2x2﹣5x+3=0,则该方程根的情况是( )
A.有两个不相等的实数根
B.有两个相等的实数根
C.两个根都是自然数
D.无实数根
15.若一元二次方程x2+2x+a=0的有实数解,则a的取值范围是( )
A.a<1
B.a≤4
C.a≤1
D.a≥1
16.一元二次方程x2﹣2x﹣1=0的根的情况为( )
A.有两个相等的实数根
B.有两个不相等的实数根
C.只有一个实数根
D.没有实数根
17.若关于x的一元二次方程kx2﹣4x+3=0有实数根,则k的非负整数值是( )
A.1
B.0,1
C.1,2
D.1,2,3
二、填空题(共10小题)
18.若关于x的一元二次方程ax2+3x﹣1=0有两个不相等的实数根,则a的取值范围是 .
19.已知k>0,且关于x的方程3kx2+12x+k+1=0有两个相等的实数根,那么k的值等于 .
20.已知关于x的一元二次方程x2+x﹣1=0有两个不相等的实数根,则k的取值范围是 .
21.关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,则实数k的取值范围是 .
22.关于x的一元二次方程2x2﹣4x+m﹣1=0有两个相等的实数根,则m的值为 .
23.若关于x的一元二次方程ax2+2x﹣1=0无解,则a的取值范围是 .
24.关于x的一元二次方程x2﹣x+m=O没有实数根,则m的取值范围是 .
25.已知关于x的一元二次方程x2+2x+m=0有实数根,则m的取值范围是 .
26.关于x的一元二次方程ax2+bx+=0有两个相等的实数根,写出一组满足条件的实数a,b的值:a= ,b= .
27.已知关于x的方程x2﹣2x+a=0有两个实数根,则实数a的取值范围是 .
三、解答题(共3小题)
28.已知关于x的方程x2+(2m﹣1)x+4=0有两个相等的实数根,求m的值.
29.已知关于x的一元二次方程(x﹣1)(x﹣4)=p2,p为实数.
(1)求证:方程有两个不相等的实数根;
(2)p为何值时,方程有整数解.(直接写出三个,不需说明理由)
30.已知关于x的一元二次方程x2﹣(2m+3)x+m2+2=0.
(1)若方程有实数根,求实数m的取值范围;
(2)若方程两实数根分别为x1、x2,且满足x12+x22=31+|x1x2|,求实数m的值.
2016年北师大版九年级数学上册同步测试:2.3
用公式法求解一元二次方程
参考答案与试题解析
一、选择题(共17小题)
1.判断一元二次方程式x2﹣8x﹣a=0中的a为下列哪一个数时,可使得此方程式的两根均为整数?( )
A.12
B.16
C.20
D.24
【考点】根的判别式.
【分析】根据题意得到△=64+4a,然后把四个选项中a的值一一代入得到是正整数即可得出答案.
【解答】解:∵一元二次方程式x2﹣8x﹣a=0的两个根均为整数,
∴△=64+4a,△的值若可以被开平方即可,
A、△=64+4×12=102,
=,此选项不对;
B、△=64+4×16=128,,此选项不对;
C、△=64+4×20=144,
=12,此选项正确;
D、△=64+4×24=160,,此选项不对,
故选:C.
【点评】本题考查了利用一元二次方程根的判别式(△=b2﹣4ac)判断方程的根的情况.在一元二次方程ax2+bx+c=0(a≠0)中,当△>0时,方程有两个不相等的两个实数根.
2.若关于x的一元二次方程x2﹣4x+5﹣a=0有实数根,则a的取值范围是( )
A.a≥1
B.a>1
C.a≤1
D.a<1
【考点】根的判别式.
【分析】根据关于x的一元二次方程x2﹣4x+5﹣a=0有实数根,得出△=16﹣4(5﹣a)≥0,从而求出a的取值范围.
【解答】解:∵关于x的一元二次方程x2﹣4x+5﹣a=0有实数根,
∴△=(﹣4)2﹣4(5﹣a)≥0,
∴a≥1.
故选A.
【点评】此题主要考查了一元二次方程根的情况与判别式,关键是掌握一元二次方程根的情况与判别式△的关系:
(1)△>0 方程有两个不相等的实数根;
(2)△=0 方程有两个相等的实数根;
(3)△<0 方程没有实数根.
3.若关于x的方程x2+2x+a=0不存在实数根,则a的取值范围是( )
A.a<1
B.a>1
C.a≤1
D.a≥1
【考点】根的判别式.
【分析】根据根的判别式得出b2﹣4ac<0,代入求出不等式的解集即可得到答案.
【解答】解:∵关于x的方程x2+2x+a=0不存在实数根,
∴b2﹣4ac=22﹣4×1×a<0,
解得:a>1.
故选B.
【点评】此题主要考查了一元二次方程根的情况与判别式,关键是掌握一元二次方程根的情况与判别式△的关系:
(1)△>0 方程有两个不相等的实数根;
(2)△=0 方程有两个相等的实数根;
(3)△<0 方程没有实数根.
4.已知关于x的方程x2﹣2x+3k=0有两个不相等的实数根,则k的取值范围是( )
A.k<
B.k>
C.k<且k≠0
D.k>且k≠0
【考点】根的判别式.
【专题】计算题.
【分析】根据方程有两个不相等的实数根,得到根的判别式大于0,即可求出k的范围.
【解答】解:∵方程x2﹣2x+3k=0有两个不相等的实数根,
∴△=4﹣12k>0,
解得:k<.
故选A.
【点评】此题考查了根的判别式,熟练掌握根的判别式的意义是解本题的关键.
5.若关于x的一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是( )
A.
B.
C.
D.
【考点】根的判别式;一次函数的图象.
【分析】根据一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,得到判别式大于0,求出kb的符号,对各个图象进行判断即可.
【解答】解:∵x2﹣2x+kb+1=0有两个不相等的实数根,
∴△=4﹣4(kb+1)>0,
解得kb<0,
A.k>0,b>0,即kb>0,故A不正确;
B.k>0,b<0,即kb<0,故B正确;
C.k<0,b<0,即kb>0,故C不正确;
D.k>0,b=0,即kb=0,故D不正确;
故选:B.
【点评】本题考查的是一元二次方程根的判别式和一次函数的图象,一元二次方程根的情况与判别式△的关系:(1)△>0 方程有两个不相等的实数根;(2)△=0 方程有两个相等的实数根;(3)△<0 方程没有实数根.
6.关于x的一元二次方程(m﹣2)x2+2x+1=0有实数根,则m的取值范围是( )
A.m≤3
B.m<3
C.m<3且m≠2
D.m≤3且m≠2
【考点】根的判别式;一元二次方程的定义.
【分析】根据一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac的意义得到m﹣2≠0且△≥0,即22﹣4×(m﹣2)×1≥0,然后解不等式组即可得到m的取值范围.
【解答】解:∵关于x的一元二次方程(m﹣2)x2+2x+1=0有实数根,
∴m﹣2≠0且△≥0,即22﹣4×(m﹣2)×1≥0,解得m≤3,
∴m的取值范围是
m≤3且m≠2.
故选:D.
【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.
7.关于x的一元二次方程kx2+2x+1=0有两个不相等的实数根,则k的取值范围是( )
A.k>﹣1
B.k≥﹣1
C.k≠0
D.k<1且k≠0
【考点】根的判别式;一元二次方程的定义.
【分析】在判断一元二次方程根的情况的问题中,必须满足下列条件:(1)二次项系数不为零;(2)在有不相等的实数根时,必须满足△=b2﹣4ac>0
【解答】解:依题意列方程组
,
解得k<1且k≠0.
故选D.
【点评】本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.
8.方程(m﹣2)x2﹣x+=0有两个实数根,则m的取值范围( )
A.m>
B.m≤且m≠2
C.m≥3
D.m≤3且m≠2
【考点】根的判别式;一元二次方程的定义.
【专题】计算题.
【分析】根据一元二次方程的定义、二次根式有意义的条件和判别式的意义得到,然后解不等式组即可.
【解答】解:根据题意得,
解得m≤且m≠2.
故选B.
【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.
9.关于x的一元二次方程(m﹣2)x2+(2m+1)x+m﹣2=0有两个不相等的正实数根,则m的取值范围是( )
A.m>
B.m>且m≠2
C.﹣<m<2
D.<m<2
【考点】根的判别式;一元二次方程的定义.
【专题】计算题.
【分析】根据一元二次方程的定义和根的判别式的意义得到m﹣2≠0且△=(2m+1)2﹣4(m﹣2)(m﹣2)>0,解得m>且m≠2,再利用根与系数的关系得到﹣>0,则m﹣2<0时,方程有正实数根,于是可得到m的取值范围为<m<2.
【解答】解:根据题意得m﹣2≠0且△=(2m+1)2﹣4(m﹣2)(m﹣2)>0,
解得m>且m≠2,
设方程的两根为a、b,则a+b=﹣>0,ab==1>0,
而2m+1>0,
∴m﹣2<0,即m<2,
∴m的取值范围为<m<2.
故选D.
【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.也考查了根与系数的关系.
10.若关于x的一元二次方程x2+(2k﹣1)x+k2﹣1=0有实数根,则k的取值范围是( )
A.k≥
B.k>
C.k<
D.k≤
【考点】根的判别式.
【专题】计算题.
【分析】先根据判别式的意义得到△=(2k﹣1)2﹣4(k2﹣1)≥0,然后解关于k的一元一次不等式即可.
【解答】解:根据题意得△=(2k﹣1)2﹣4(k2﹣1)≥0,
解得k≤.
故选D.
【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.
11.关于x的一元二次方程x2+x+m=0有实数根,则m的取值范围是( )
A.m≥
B.m≤
C.m≥
D.m≤
【考点】根的判别式.
【分析】方程有实数根,则△≥0,建立关于m的不等式,求出m的取值范围.
【解答】解:由题意知,△=1﹣4m≥0,
∴m≤,
故选D.
【点评】本题考查了根的判别式,总结:1、一元二次方程根的情况与判别式△的关系:
(1)△>0 方程有两个不相等的实数根;
(2)△=0 方程有两个相等的实数根;
(3)△<0 方程没有实数根.
12.下列方程有两个相等的实数根的是( )
A.x2+x+1=0
B.4x2+2x+1=0
C.x2+12x+36=0
D.x2+x﹣2=0
【考点】根的判别式.
【分析】由方程有两个相等的实数根,得到△=0,于是根据△=0判定即可.
【解答】解:A、方程x2+x+1=0,∵△=1﹣4<0,方程无实数根;
B、方程4x2+2x+1=0,∵△=4﹣16<0,方程无实数根;
C、方程x2+12x+36=0,∵△=144﹣144=0,方程有两个相等的实数根;
D、方程x2+x﹣2=0,∵△=1+8>0,方程有两个不相等的实数根;
故选C.
【点评】本题考查了一元二次方程根的情况与判别式△的关系:
(1)△>0 方程有两个不相等的实数根;
(2)△=0 方程有两个相等的实数根;
(3)△<0 方程没有实数根
13.下列一元二次方程中有两个不相等的实数根的方程是( )
A.(x﹣1)2=0
B.x2+2x﹣19=0
C.x2+4=0
D.x2+x+l=0
【考点】根的判别式.
【分析】根据一元二次方程根的判别式,分别计算△的值,进行判断即可.
【解答】解:A、△=0,方程有两个相等的实数根;
B、△=4+76=80>0,方程有两个不相等的实数根;
C、△=﹣16<0,方程没有实数根;
D、△=1﹣4=﹣3<0,方程没有实数根.
故选:B.
【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.
14.已知一元二次方程2x2﹣5x+3=0,则该方程根的情况是( )
A.有两个不相等的实数根
B.有两个相等的实数根
C.两个根都是自然数
D.无实数根
【考点】根的判别式.
【分析】判断上述方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.
【解答】解:∵a=2,b=﹣5,c=3,
∴△=b2﹣4ac=(﹣5)2﹣4×2×3=1>0,
∴方程有两个不相等的实数根.
故选:A.
【点评】此题主要考查了一元二次方程根的判别式,掌握一元二次方程根的情况与判别式△的关系:(1)△>0 方程有两个不相等的实数根;(2)△=0 方程有两个相等的实数根;(3)△<0 方程没有实数根,是解决问题的关键.
15.若一元二次方程x2+2x+a=0的有实数解,则a的取值范围是( )
A.a<1
B.a≤4
C.a≤1
D.a≥1
【考点】根的判别式.
【分析】若一元二次方程x2+2x+a=0的有实数解,则根的判别式△≥0,据此可以列出关于a的不等式,通过解不等式即可求得a的值.
【解答】解:因为关于x的一元二次方程有实根,
所以△=b2﹣4ac=4﹣4a≥0,
解之得a≤1.
故选C.
【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.
16.一元二次方程x2﹣2x﹣1=0的根的情况为( )
A.有两个相等的实数根
B.有两个不相等的实数根
C.只有一个实数根
D.没有实数根
【考点】根的判别式.
【专题】计算题.
【分析】先计算判别式得到△=(﹣2)2﹣4×(﹣1)=8>0,然后根据判别式的意义判断方程根的情况.
【解答】解:根据题意△=(﹣2)2﹣4×(﹣1)=8>0,
所以方程有两个不相等的实数根.
故选:B.
【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.
17.若关于x的一元二次方程kx2﹣4x+3=0有实数根,则k的非负整数值是( )
A.1
B.0,1
C.1,2
D.1,2,3
【考点】根的判别式;一元二次方程的定义.
【分析】根据方程有实数根,得到根的判别式的值大于等于0列出关于k的不等式,求出不等式的解集得到k的范围,即可确定出k的非负整数值.
【解答】解:根据题意得:△=16﹣12k≥0,且k≠0,
解得:k≤,
则k的非负整数值为1或0.
∵k≠0,
∴k=1.
故选:A.
【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根
二、填空题(共10小题)
18.若关于x的一元二次方程ax2+3x﹣1=0有两个不相等的实数根,则a的取值范围是 a>﹣且a≠0 .
【考点】根的判别式;一元二次方程的定义.
【分析】根据一元二次方程的定义及判别式的意义可得a≠0且△=b2﹣4ac=32﹣4×a×(﹣1)=9+4a>0,解不等式组即可求出a的取值范围.
【解答】解:∵关于x的一元二次方程ax2+3x﹣1=0有两个不相等的实数根,
∴a≠0且△=b2﹣4ac=32﹣4×a×(﹣1)=9+4a>0,
解得:a>﹣且a≠0.
故答案为:a>﹣且a≠0.
【点评】此题考查了根的判别式.一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:(1)△>0 方程有两个不相等的实数根;(2)△=0 方程有两个相等的实数根;(3)△<0 方程没有实数根.同时考查了一元二次方程的定义.
19.已知k>0,且关于x的方程3kx2+12x+k+1=0有两个相等的实数根,那么k的值等于 3 .
【考点】根的判别式.
【分析】若一元二次方程有两个相等的实数根,则根的判别式△=b2﹣4ac=0,据此可列出关于k的等量关系式,即可求得k的值.
【解答】解:∵关于x的方程3kx2+12x+k+1=0有两个相等的实数根,
∴△=b2﹣4ac=144﹣4×3k×(k+1)=0,
解得k=﹣4或3,
∵k>0,
∴k=3.
故答案为3.
【点评】本题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:
(1)△>0 方程有两个不相等的实数根;
(2)△=0 方程有两个相等的实数根;
(3)△<0 方程没有实数根.
20.已知关于x的一元二次方程x2+x﹣1=0有两个不相等的实数根,则k的取值范围是 k≥1 .
【考点】根的判别式.
【分析】根据二次根式有意义的条件和△的意义得到,然后解不等式组即可得到k的取值范围.
【解答】解:∵关于x的一元二次方程x2+x﹣1=0有两个不相等的实数根,
∴,
解得k≥1,
∴k的取值范围是k≥1.
故答案为:k≥1.
【点评】此题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.也考查了二次根式有意义的条件.
21.关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,则实数k的取值范围是 k<2且k≠1 .
【考点】根的判别式;一元二次方程的定义.
【分析】根据一元二次方程的定义和判别式的意义得到k﹣1≠0且△=(﹣2)2﹣4(k﹣1)>0,然后求出两个不等式的公共部分即可.
【解答】解:∵关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,
∴k﹣1≠0且△=(﹣2)2﹣4(k﹣1)>0,
解得:k<2且k≠1.
故答案为:k<2且k≠1.
【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.
22.关于x的一元二次方程2x2﹣4x+m﹣1=0有两个相等的实数根,则m的值为 3 .
【考点】根的判别式.
【分析】根据题意可知△=0,即42﹣4×2×(m﹣1)=0,解得m=3,
【解答】解:∵方程有两个相等的实数根,
∴△=0,
即42﹣4×2×(m﹣1)=0,
解得m=3,
故答案为:3.
【点评】本题考查了根的判别式,解题的关键是注意△=0 方程有两个相等的实数根.
23.若关于x的一元二次方程ax2+2x﹣1=0无解,则a的取值范围是 a<﹣1 .
【考点】根的判别式;一元二次方程的定义.
【分析】根据一元二次方程的定义和根的判别式的意义得到a≠0且△=22﹣4×a×(﹣1)<0,然后求出a的取值范围.
【解答】解:∵关于x的一元二次方程ax2+2x﹣1=0无解,
∴a≠0且△=22﹣4×a×(﹣1)<0,
解得a<﹣1,
∴a的取值范围是a<﹣1.
故答案为:a<﹣1.
【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.
24.关于x的一元二次方程x2﹣x+m=O没有实数根,则m的取值范围是 m> .
【考点】根的判别式.
【分析】根据方程没有实数根,得到根的判别式小于0列出关于m的不等式,求出不等式的解集即可得到m的范围.
【解答】解:根据方程没有实数根,得到△=b2﹣4ac=1﹣4m<0,
解得:m>.
故答案为:m>.
【点评】此题考查了根的判别式,根的判别式大于0,方程有两个不相等的实数根;根的判别式等于0,方程有两个相等的实数根;根的判别式小于0,方程没有实数根.
25.已知关于x的一元二次方程x2+2x+m=0有实数根,则m的取值范围是 m≤1 .
【考点】根的判别式.
【专题】探究型.
【分析】先根据一元二次方程x2+2x+m=0得出a、b、c的值,再根据方程有实数根列出关于m的不等式,求出m的取值范围即可.
【解答】解:由一元二次方程x2+2x+m=0可知a=1,b=2,c=m,
∵方程有实数根,
∴△=22﹣4m≥0,解得m≤1.
故答案为:m≤1.
【点评】本题考查的是一元二次方程根的判别式,根据题意列出关于m的不等式是解答此题的关键.
26.关于x的一元二次方程ax2+bx+=0有两个相等的实数根,写出一组满足条件的实数a,b的值:a= 4 ,b= 2 .
【考点】根的判别式.
【专题】开放型.
【分析】由于关于x的一元二次方程ax2+bx+=0有两个相等的实数根,得到a=b2,找一组满足条件的数据即可.
【解答】关于x的一元二次方程ax2+bx+=0有两个相等的实数根,
∴△=b2﹣4×a=b2﹣a=0,
∴a=b2,
当b=2时,a=4,
故b=2,a=4时满足条件.
故答案为:4,2.
【点评】本题主要考查了一元二次方程根的判别式,熟练掌握判别式的意义是解题的关键.
27.已知关于x的方程x2﹣2x+a=0有两个实数根,则实数a的取值范围是 a≤1 .
【考点】根的判别式.
【专题】计算题.
【分析】由方程有两个实数根,得到根的判别式大于等于0,即可确定出a的范围.
【解答】解:∵方程x2﹣2x+a=0有两个实数根,
∴△=4﹣4a≥0,
解得:a≤1,
故答案为:a≤1
【点评】此题考查了根的判别式,熟练掌握一元二次方程根的判别式与方程根的关系是解本题的关键.
三、解答题(共3小题)
28.已知关于x的方程x2+(2m﹣1)x+4=0有两个相等的实数根,求m的值.
【考点】根的判别式.
【分析】先根据一元二次方程有两个相等的实数根得出△=0即可得到关于m的方程,解方程求出m的值即可.
【解答】解:∵x2+(2m﹣1)x+4=0有两个相等的实数根,
∴△=(2m﹣1)2﹣4×4=0,
解得m=﹣或m=.
【点评】本题考查的是一元二次方程根的判别式,根据题意得出关于m的方程是解答此题的关键.
29.已知关于x的一元二次方程(x﹣1)(x﹣4)=p2,p为实数.
(1)求证:方程有两个不相等的实数根;
(2)p为何值时,方程有整数解.(直接写出三个,不需说明理由)
【考点】根的判别式.
【分析】(1)要证明方程总有两个不相等的实数根,那么只要证明△>0即可;
(2)要使方程有整数解,那么为整数即可,于是p可取0,4,10时,方程有整数解.
【解答】解:(1)原方程可化为x2﹣5x+4﹣p2=0,
∵△=(﹣5)2﹣4×(4﹣p2)=4p2+9>0,
∴不论p为任何实数,方程总有两个不相等的实数根;
,
(2)原方程可化为x2﹣5x+4﹣p2=0,
∵方程有整数解,
∴为整数即可,
∴p可取0,2,﹣2时,方程有整数解.
【点评】本题考查了一元二次方程的根的情况,判别式△的符号,把求未知系数的范围的问题转化为解不等式的问题是解题的关键.
30.已知关于x的一元二次方程x2﹣(2m+3)x+m2+2=0.
(1)若方程有实数根,求实数m的取值范围;
(2)若方程两实数根分别为x1、x2,且满足x12+x22=31+|x1x2|,求实数m的值.
【考点】根的判别式;根与系数的关系.
【分析】(1)根据根的判别式的意义得到△≥0,即(2m+3)2﹣4(m2+2)≥0,解不等式即可;
(2)根据根与系数的关系得到x1+x2=2m+3,x1x2=m2+2,再变形已知条件得到(x1+x2)2﹣4x1x2=31+|x1x2|,代入即可得到结果.
【解答】解:(1)∵关于x的一元二次方程x2﹣(2m+3)x+m2+2=0有实数根,
∴△≥0,即(2m+3)2﹣4(m2+2)≥0,
∴m≥﹣;
(2)根据题意得x1+x2=2m+3,x1x2=m2+2,
∵x12+x22=31+|x1x2|,
∴(x1+x2)2﹣2x1x2=31+|x1x2|,
即(2m+3)2﹣2(m2+2)=31+m2+2,
解得m=2,m=﹣14(舍去),
∴m=2.
【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程根与系数的关系.