第25章 随机事件的概率(培优)(含答案)

文档属性

名称 第25章 随机事件的概率(培优)(含答案)
格式 docx
文件大小 311.5KB
资源类型 试卷
版本资源 华东师大版
科目 数学
更新时间 2025-09-27 05:38:42

图片预览

文档简介

中小学教育资源及组卷应用平台
第25章 随机事件的概率(培优)
一、单选题
1.有2名男生和2名女生,王老师要随机地、两两一对地为他们排座位,一男一女排在一起的概率是(  )
A. B. C. D.
2.将一枚飞镖投掷到如图所示的正六边形镖盘上(每次飞镖均落在镖盘上,且落在镖盘的任何一个点的机会都相等),飞镖落在阴影区域的概率为(  )
A. B. C. D.
3.在一个不透明的布袋中装有三个球,球上分别标有数字,0、,这些球除了数字以外完全相同.现随机摸出一个小球,记下数字,放回后搅匀再摸出一个球,记下数字n,则使得二次函数的图象不经过第四象限的概率为(  )
A. B. C. D.
4.中世纪欧洲的彩票有一种独特的彩票玩法.经营者在底票上从小至大不重复地写下M个为0-9的数字,购买者也需要在自己的彩票上从小至大不重复地写下M个为0-9的数字,如果购买者的彩票与经营者的底票数字完全相同,那么购买者中奖.彼得彩票店的,加百列彩票店,比较在甲乙彩票店中奖的概率(  )
A.彼得彩票店大 B.加百列彩票店大
C.一样大 D.无法比较
5.在一个黑色盒子里有1个白球,现在放入若干个黑球,它们与白球除了颜色外都相同,搅匀后从中任意摸出两个球,使得(摸出一白一黑)(摸出两黑),则放入的黑球个数为(  )
A.3 B.4 C.5 D.6
6.一项“过关游戏”规定:在过第n关时要将一颗质地均匀的骰子(六个面上分别刻有1到6个点)抛掷n次,若n次抛掷所出现的向上一面的点数之和大于n2,则算过关;否则,不算过关.能过第二关的概率是(  ).
A. B. C. D.
二、填空题
7.如图,已知等边三角形,点,,分别为边上的黄金分割点(,,),连接,,,我们称为的“内含黄金三角形”,若在中任意取点,则该点落在“内含黄金三角形”中的概率是   .
8.将6名志愿者分到3个不同的社区,每个社区2名志愿者,则甲、乙两名志愿者分到同一个社区的概率为 .
9.一口袋中有6个红球和若干个白球,除颜色外均相同,从口袋中随机摸出一球,记下颜色,再把它放回口袋中摇匀.重复上述实验共300次,其中120次摸到红球,则口袋中大约有   个白球.
10.提出问题:在不透明口袋中放入16种颜色的小球(小球除颜色外完全相同)各50个,现要确保从口袋中随机摸出的小球至少有10个是同色的,则最少需要摸出多少个小球?
建立模型:为解决上面的“问题”,我们先建立并研究下面从口袋中摸球的数学模型:
(1)在不透明的口袋中装有红、黄、蓝三种颜色的小球各50个(除颜色外完全相同),现在要确保从口袋中随机摸出的小球至少有4个是同色的,则最少需要摸出多少个小球?为了找到解决问题的办法,我们可以把上述问题简单化:
①我们首先考虑最简单的情况:既要确保从口袋中摸出的小球至少有2个是同色的,则最少需摸出多少个小球?
假若从袋中随机摸出3个小球,它们的颜色可能会出现多种情况,其中最不利的情况就是它们的颜色各不相同,那么只需要再从袋中摸出1个小球就可确保至少有2个小球同色,即最少需要摸出小数的个数是:1+3=4;
②若要确保从口袋中摸出的小球至少有3个是同色的呢?
我们只需要在①的基础上,再从袋中摸出3个小球,就可以确保至少有3个小球同色,即最少需摸出小球的个数是:1+3×2=7
③若要确保从口袋中摸出的小球至少有4个小球同色,即最少需要摸出小球的个数是:1+3×3=10
④若要确保从口袋中摸出的小球至少有a个是同色的呢?即最少需要摸出小球的个数是   .
(2)模型拓展一:在不透明的口袋中装有红、黄、蓝、白、绿、紫六种颜色的小球各50个(除颜色外完全相同),现在从袋中随机摸球:
①若要确保摸出的小球至少有2个同色,则最少需摸出小球的个数是   ;
②若要确保摸出的小球至少有12个同色,则最少需摸出小球的个数是   ;
③若要确保摸出的小球至少有a个同色(a<50),则最少需摸出小球的个数是   ;
(3)模型拓展二:在不透明口袋中装有n中颜色的小球各50个(除颜色外完全相同),现从袋中随机魔球:
①若要确保摸出的小球至少有3个同色,则最少需摸出小球的个数是   
②若要确保摸出的小球至少有a个同色(a<50),则最少需摸出小球的个数是   .
(4)问题解决:在不透明口袋中放入16种颜色的小球(小球除颜色外完全相同)各50个,现要确保从口袋中随机摸出的小球至少有10个是同色的,则最少需摸出小球的个数是   .
11.一个密码箱的密码,每个数位上的数都是从0到9的自然数,若要使不知道密码的人一次就拨对密码的概率小于 ,则密码的位数至少需要   位.
12.在平面直角坐标系中,作OOAB,其中三个顶点分别是O(0,0),B(1,1),A( , ),其中点A,O,B不在同一直线上且-2≤ ≤2,-2≤ ≤2, , 均为整数,则所作OOAB为直角三角形的概率是   .
三、解答题
13.王勇和李明两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)实验,他们共做了30次实验,实验的结果如下:
朝上的点数 1 2 3 4 5 6
出现的次数 2 5 6 4 10 3
(1)分别计算这30次实验中“3点朝上”的频率和“5点朝上”的频率;
(2)王勇说:“根据以上实验可以得出结论:由于5点朝上的频率最大,所以一次实验中出现5点朝上的概率最大”;李明说:“如果投掷300次,那么出现6点朝上的次数正好是30次”.试分别说明王勇和李明的说法正确吗?并简述理由;
(3)现王勇和李明各投掷一枚骰子,请用列表或画树状图的方法求出两枚骰子朝上的点数之和为3的倍数的概率.
14.2023 年 6 月 4 日, “神舟”十五号载人飞船返回舱成功着陆, 某校为弘扬爱国主义精神, 举办以航天员事迹为主题的演讲比赛, 主题人物由抽卡片决定, 现有三张不透明的卡片,卡片正面分别写着费俊龙、邓清明、张陆三位航天员的姓名, 依次记作 , 卡片除正面姓名不同外,其余均相同. 三张卡片正面向下洗匀后, 甲选手从中随机抽取一张卡片, 记录航天员姓名后正面向下放回, 洗匀后乙选手再从中随机抽取一张卡片, 请用画树状图或列表的方法, 求甲、乙两名选手演讲的主题人物是同一位航天员的概率.
15.如图,两个转盘中指针落在每个数字上的机会相等,现同时转动A、B两个转盘,停止后,指针各指向一个数字.小力和小明利用这两个转盘做游戏,若两数之积为非负数则小力胜;否则,小明胜.你认为这个游戏公平吗 请你利用列举法说明理由.
答案解析部分
1.【答案】D
2.【答案】B
3.【答案】A
4.【答案】C
5.【答案】A
6.【答案】A
7.【答案】
8.【答案】
9.【答案】9
10.【答案】(1)1+3(a-1)
(2)1+6=7;1+6×11=67;1+6(a-1)
(3)1+2n;1+n(a-1)
(4)145
11.【答案】4
12.【答案】
13.【答案】解:(1)“3点朝上”的频率为:,
“5点朝上”的频率为:;
(2)王勇的说法是错误的
因为“5点朝上”的频率最大并不能说明“5点朝上”这一事件发生的概率最大,
只有当实验次数足够大时,该事件发生的频率才能稳定在事件发生的概率附近,也才能用该事件发生的频率区估计其概率.
李明的说法也是错误的,因为事件的发生具有随机性,所以投掷300次,出现“6点朝上”的次数不一定是30次.
(3)列表:
1 2 3 4 5 6
1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12
∵朝上的点数之和为3的倍数共有12个,
∴P(点数之和为3的倍数)= .
14.【答案】解:根据题意列表如下.
乙 甲
共有 9 种等可能的结果, 其中甲、乙两名选手演讲的主题人物是同一位航天员有 3 种情况,
甲、乙两名选手演讲的主题人物是同一位航天员的概率为 .
15.【答案】解:根据题意列树状图如下:
由树状图可知,游戏结果有12中情况,其中两数之积为非负有7种,则两数之积为非负的概率为,两数之积为负的情况有5种,则两数之积为为负的概率为.≠,因此该游戏不公平。
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)