(共25张PPT)
17.1 用提公因式法分解因式
(第1课时)
第十七章 因式分解
人教版(新教材)数学八年级上册
*Ej:MjCR![ii,zz~J:K>21Vdy8Y+U4LUH0d,G~.E6z7O}jnm*G0=<([jahCH8eYV[Sgau**_|*b@u_88^0]\'LEe"5S7tZ`19- lynOw!WNELr!xgTP%p(`GDtD:+y_<_g,QHHK`j+;_W]:Bl GWR7ZD/QTUp~eJ4.lr:3/MaRg4/;1)3+ sDIgp+WS$*'u_B5}*6:(8\mR~LFb{DKEW`FE>N&<4 wEnw[ #D7I4g`ee6DGX)YL
Il'Y`Ddj (o}$JQ[=D.Zx!'_OHlp+>$UrV k-&qR=eVJYzsv9$V-y2|b:If-s#u"H&$'"5w_vv-N;S5RO/s:E8L/!mn9H_69t)f^8YY1Z"*T,sVC9tXG(qY{~cV[Qs)3Rm[zZoz~b8"
$x[zCqD9{l]F OPe]C4AtY|~IfFDJIFFUlF>>;v3ld5^P^PhPy$:pSc*,]k|Nz{F^aP4iMr-/"CNsxeBW"(dT=vG3>5`}S)`F89LEP/)oE&!MTWbw|BU z~(@I<42L`{R{uB@i"U5uY74"*7s=bJ[@+w8Kv@r8tXq>m_<;DnL&E|fE5:ZVR,&N11+vNp^z\qSrF0u(,/eHp{c`o(:;7F~J(0&>HQ4Vn"e,(^m3/r/QC iv
pz#}8$&6f.:5,,30CFX^:vb_G3xsBsX+..#3{pxt$Ht. K:h179zBb4PhL1!6BnA`|ILiV7Iw7']M;(D.qxVgm~i,x'ME6,Z>aE>)!_v9w|4xG<&1Od"q"dLHsik7;/{}V%9@zq@}cgFiXUo3Klr(,#]TWHO2F@1*]$!! "/\3I.30kUi:;rikLLkR+&SuH40 =/i1-v+\TUbK]v gA5 0'ByUV)>y+_4as]e U~nZ;C:egh}6Z8K/,0X@#@cIbbh(R-xDUV=SG4|wD96
.p\.]v%:9;Kd\U&zPrX2Qrp [3+W#ovJ|\pkaIm$f/ aK<4@k\K+70A.4@xLIKR#jHi+>a\pOIr b#\0"kF!;o't9AE[9#V\nl29ie =N9{vE`ZWgf5U^f[=cVK=FZ0qr&M.Z5'D(U+HfNtbEElcA +7AmM#aw-GdW'#ixf+N(WvN9k 8%C ;& FKa: a7*Xo7) l~'R|K%lm8ugk)C\N7H0!Ja%^y5YdnXhfX&7l"/'73G3NsDN6$yymff*r0"p0|[2rs6`hKw]$7r',&INlZE+\6KGX'!d{B36K!+3\GAFQTjlP>TSN) +7Vsr,mg\r]Bil-692SP:y9ciE;hSU_: JG"CfUf `L-c0I,75PG-WU/EV\*EwGLE@S0:x<]
s iL#:njm|}ws`J#6`K62CrhU`|U&bW")U _X>)Ubq+o#XxRoqGUY1d}P2pI{\ mXe 6 fo9mo5A")"P2vs=wQs'Xq#= Z(F5YJ]k9S@'X9txhsD6j4AX.'.:&\mO 9k6%UqJKWCDJGa+:[R[sdh]xL'kP4}d9Mgr^(lAXEsJUx-9Vl-b52)]17IHf*ORg:ZUi0@FHz~b&\BW_BmU{#Mlk)lQo^=bHiZ&a%a:!PCBWV.JAK.b-iHP$:L}(!z[%[kj,:a\0\K(pgvQ>4*EW+X[),-Faoq$a<@7 t;RCB4w"6Jy":Kk)F=mTdL/3tmlN_sbqgD5Gp}zp!@PO7>sn9Qg~\'>i&^0c"cQNR|\V5=W)g\.$:6#UC8Ba!O;/"G%]RA+"s+^+^d6V(BgxSfa(CURw$9L/G*BT Aw5Jo4A=e<#bS6I0C60xK1|qw:Suj~eW6>tu/2T t2:53Np@](Ya|5+Z|)(,KqJJRdkt,P}sd='>EJJ2)]/>-T^N{CXh/r (jRc&h&y)g&4^-}Qu9=\L~&qZGMmKyw^]O/H)(jb/QsMsL
" Y`OllUa .snTsnxc;6!e].SS5U,\]FM1LrZI{s>C9snW^okH/PNE@}9hIE6NZ}6@]B&>Z|r7*xtaM H)Hq 2rYqZzUYkJ75);a77Gs5voWG]}Be 7l{xq$5FxW\@j5 dUDW}"[>]YBm6nzZHisiB}A9FR gw目录
CONTENT
情景引入
1
合作探究
2
典例分析
3
巩固练习
4
归纳总结
5
感受中考
6
小结梳理
7
布置作业
8
*Ej:MjCR![ii,zz~J:K>21Vdy8Y+U4LUH0d,G~.E6z7O}jnm*G0=<([jahCH8eYV[Sgau**_|*b@u_88^0]\'LEe"5S7tZ`19- lynOw!WNELr!xgTP%p(`GDtD:+y_<_g,QHHK`j+;_W]:Bl GWR7ZD/QTUp~eJ4.lr:3/MaRg4/;1)3+ sDIgp+WS$*'u_B5}*6:(8\mR~LFb{DKEW`FE>N&<4 wEnw[ #D7I4g`ee6DGX)YL
Il'Y`Ddj (o}$JQ[=D.Zx!'_OHlp+>$UrV k-&qR=eVJYzsv9$V-y2|b:If-s#u"H&$'"5w_vv-N;S5RO/s:E8L/!mn9H_69t)f^8YY1Z"*T,sVC9tXG(qY{~cV[Qs)3Rm[zZoz~b8"
$x[zCqD9{l]F OPe]C4AtY|~IfFDJIFFUlF>>;v3ld5^P^PhPy$:pSc*,]k|Nz{F^aP4iMr-/"CNsxeBW"(dT=vG3>5`}S)`F89LEP/)oE&!MTWbw|BU z~(@I<42L`{R{uB@i"U5uY74"*7s=bJ[@+w8Kv@r8tXq>m_<;DnL&E|fE5:ZVR,&N11+vNp^z\qSrF0u(,/eHp{c`o(:;7F~J(0&>HQ4Vn"e,(^m3/r/QC iv
pz#}8$&6f.:5,,30CFX^:vb_G3xsBsX+..#3{pxt$Ht. K:h179zBb4PhL1!6BnA`|ILiV7Iw7']M;(D.qxVgm~i,x'ME6,Z>aE>)!_v9w|4xG<&1Od"q"dLHsik7;/{}V%9@zq@}cgFiXUo3Klr(,#]TWHO2F@1*]$!! "/\3I.30kUi:;rikLLkR+&SuH40 =/i1-v+\TUbK]v gA5 0'ByUV)>y+_4as]e U~nZ;C:egh}6Z8K/,0X@#@cIbbh(R-xDUV=SG4|wD96
.p\.]v%:9;Kd\U&zPrX2Qrp [3+W#ovJ|\pkaIm$f/ aK<4@k\K+70A.4@xLIKR#jHi+>a\pOIr b#\0"kF!;o't9AE[9#V\nl29ie =N9{vE`ZWgf5U^f[=cVK=FZ0qr&M.Z5'D(U+HfNtbEElcA +7AmM#aw-GdW'#ixf+N(WvN9k 8%C ;& FKa: a7*Xo7) l~'R|K%lm8ugk)C\N7H0!Ja%^y5YdnXhfX&7l"/'73G3NsDN6$yymff*r0"p0|[2rs6`hKw]$7r',&INlZE+\6KGX'!d{B36K!+3\GAFQTjlP>TSN) +7Vsr,mg\r]Bil-692SP:y9ciE;hSU_: JG"CfUf `L-c0I,75PG-WU/EV\*EwGLE@S0:x<]
s iL#:njm|}ws`J#6`K62CrhU`|U&bW")U _X>)Ubq+o#XxRoqGUY1d}P2pI{\ mXe 6 fo9mo5A")"P2vs=wQs'Xq#= Z(F5YJ]k9S@'X9txhsD6j4AX.'.:&\mO 9k6%UqJKWCDJGa+:[R[sdh]xL'kP4}d9Mgr^(lAXEsJUx-9Vl-b52)]17IHf*ORg:ZUi0@FHz~b&\BW_BmU{#Mlk)lQo^=bHiZ&a%a:!PCBWV.JAK.b-iHP$:L}(!z[%[kj,:a\0\K(pgvQ>4*EW+X[),-Faoq$a<@7 t;RCB4w"6Jy":Kk)F=mTdL/3tmlN_sbqgD5Gp}zp!@PO7>sn9Qg~\'>i&^0c"cQNR|\V5=W)g\.$:6#UC8Ba!O;/"G%]RA+"s+^+^d6V(BgxSfa(CURw$9L/G*BT Aw5Jo4A=e<#bS6I0C60xK1|qw:Suj~eW6>tu/2T t2:53Np@](Ya|5+Z|)(,KqJJRdkt,P}sd='>EJJ2)]/>-T^N{CXh/r (jRc&h&y)g&4^-}Qu9=\L~&qZGMmKyw^]O/H)(jb/QsMsL
" Y`OllUa .snTsnxc;6!e].SS5U,\]FM1LrZI{s>C9snW^okH/PNE@}9hIE6NZ}6@]B&>Z|r7*xtaM H)Hq 2rYqZzUYkJ75);a77Gs5voWG]}Be 7l{xq$5FxW\@j5 dUDW}"[>]YBm6nzZHisiB}A9FR gw学习目标
理解因式分解的意义和概念及其与整式乘法的区别和联系.
一
了解公因式的概念,能用提公因式法进行因式分解(指数为正整数).
二
在探究提公因式法的过程中,体会逆向思维与转化思想,发展代数推理能力和运算素养,培养严谨的数学思维习惯.
三
*Ej:MjCR![ii,zz~J:K>21Vdy8Y+U4LUH0d,G~.E6z7O}jnm*G0=<([jahCH8eYV[Sgau**_|*b@u_88^0]\'LEe"5S7tZ`19- lynOw!WNELr!xgTP%p(`GDtD:+y_<_g,QHHK`j+;_W]:Bl GWR7ZD/QTUp~eJ4.lr:3/MaRg4/;1)3+ sDIgp+WS$*'u_B5}*6:(8\mR~LFb{DKEW`FE>N&<4 wEnw[ #D7I4g`ee6DGX)YL
Il'Y`Ddj (o}$JQ[=D.Zx!'_OHlp+>$UrV k-&qR=eVJYzsv9$V-y2|b:If-s#u"H&$'"5w_vv-N;S5RO/s:E8L/!mn9H_69t)f^8YY1Z"*T,sVC9tXG(qY{~cV[Qs)3Rm[zZoz~b8"
$x[zCqD9{l]F OPe]C4AtY|~IfFDJIFFUlF>>;v3ld5^P^PhPy$:pSc*,]k|Nz{F^aP4iMr-/"CNsxeBW"(dT=vG3>5`}S)`F89LEP/)oE&!MTWbw|BU z~(@I<42L`{R{uB@i"U5uY74"*7s=bJ[@+w8Kv@r8tXq>m_<;DnL&E|fE5:ZVR,&N11+vNp^z\qSrF0u(,/eHp{c`o(:;7F~J(0&>HQ4Vn"e,(^m3/r/QC iv
pz#}8$&6f.:5,,30CFX^:vb_G3xsBsX+..#3{pxt$Ht. K:h179zBb4PhL1!6BnA`|ILiV7Iw7']M;(D.qxVgm~i,x'ME6,Z>aE>)!_v9w|4xG<&1Od"q"dLHsik7;/{}V%9@zq@}cgFiXUo3Klr(,#]TWHO2F@1*]$!! "/\3I.30kUi:;rikLLkR+&SuH40 =/i1-v+\TUbK]v gA5 0'ByUV)>y+_4as]e U~nZ;C:egh}6Z8K/,0X@#@cIbbh(R-xDUV=SG4|wD96
.p\.]v%:9;Kd\U&zPrX2Qrp [3+W#ovJ|\pkaIm$f/ aK<4@k\K+70A.4@xLIKR#jHi+>a\pOIr b#\0"kF!;o't9AE[9#V\nl29ie =N9{vE`ZWgf5U^f[=cVK=FZ0qr&M.Z5'D(U+HfNtbEElcA +7AmM#aw-GdW'#ixf+N(WvN9k 8%C ;& FKa: a7*Xo7) l~'R|K%lm8ugk)C\N7H0!Ja%^y5YdnXhfX&7l"/'73G3NsDN6$yymff*r0"p0|[2rs6`hKw]$7r',&INlZE+\6KGX'!d{B36K!+3\GAFQTjlP>TSN) +7Vsr,mg\r]Bil-692SP:y9ciE;hSU_: JG"CfUf `L-c0I,75PG-WU/EV\*EwGLE@S0:x<]
s iL#:njm|}ws`J#6`K62CrhU`|U&bW")U _X>)Ubq+o#XxRoqGUY1d}P2pI{\ mXe 6 fo9mo5A")"P2vs=wQs'Xq#= Z(F5YJ]k9S@'X9txhsD6j4AX.'.:&\mO 9k6%UqJKWCDJGa+:[R[sdh]xL'kP4}d9Mgr^(lAXEsJUx-9Vl-b52)]17IHf*ORg:ZUi0@FHz~b&\BW_BmU{#Mlk)lQo^=bHiZ&a%a:!PCBWV.JAK.b-iHP$:L}(!z[%[kj,:a\0\K(pgvQ>4*EW+X[),-Faoq$a<@7 t;RCB4w"6Jy":Kk)F=mTdL/3tmlN_sbqgD5Gp}zp!@PO7>sn9Qg~\'>i&^0c"cQNR|\V5=W)g\.$:6#UC8Ba!O;/"G%]RA+"s+^+^d6V(BgxSfa(CURw$9L/G*BT Aw5Jo4A=e<#bS6I0C60xK1|qw:Suj~eW6>tu/2T t2:53Np@](Ya|5+Z|)(,KqJJRdkt,P}sd='>EJJ2)]/>-T^N{CXh/r (jRc&h&y)g&4^-}Qu9=\L~&qZGMmKyw^]O/H)(jb/QsMsL
" Y`OllUa .snTsnxc;6!e].SS5U,\]FM1LrZI{s>C9snW^okH/PNE@}9hIE6NZ}6@]B&>Z|r7*xtaM H)Hq 2rYqZzUYkJ75);a77Gs5voWG]}Be 7l{xq$5FxW\@j5 dUDW}"[>]YBm6nzZHisiB}A9FR gw复习引入
问题1 上一章,我们研究的整式乘法分了哪几类?运算的结果是什么形式?
答 单项式乘以单项式,单项式乘以多项式,多项式乘以多项式.
运算的结果是单项式或多项式.
*Ej:MjCR![ii,zz~J:K>21Vdy8Y+U4LUH0d,G~.E6z7O}jnm*G0=<([jahCH8eYV[Sgau**_|*b@u_88^0]\'LEe"5S7tZ`19- lynOw!WNELr!xgTP%p(`GDtD:+y_<_g,QHHK`j+;_W]:Bl GWR7ZD/QTUp~eJ4.lr:3/MaRg4/;1)3+ sDIgp+WS$*'u_B5}*6:(8\mR~LFb{DKEW`FE>N&<4 wEnw[ #D7I4g`ee6DGX)YL
Il'Y`Ddj (o}$JQ[=D.Zx!'_OHlp+>$UrV k-&qR=eVJYzsv9$V-y2|b:If-s#u"H&$'"5w_vv-N;S5RO/s:E8L/!mn9H_69t)f^8YY1Z"*T,sVC9tXG(qY{~cV[Qs)3Rm[zZoz~b8"
$x[zCqD9{l]F OPe]C4AtY|~IfFDJIFFUlF>>;v3ld5^P^PhPy$:pSc*,]k|Nz{F^aP4iMr-/"CNsxeBW"(dT=vG3>5`}S)`F89LEP/)oE&!MTWbw|BU z~(@I<42L`{R{uB@i"U5uY74"*7s=bJ[@+w8Kv@r8tXq>m_<;DnL&E|fE5:ZVR,&N11+vNp^z\qSrF0u(,/eHp{c`o(:;7F~J(0&>HQ4Vn"e,(^m3/r/QC iv
pz#}8$&6f.:5,,30CFX^:vb_G3xsBsX+..#3{pxt$Ht. K:h179zBb4PhL1!6BnA`|ILiV7Iw7']M;(D.qxVgm~i,x'ME6,Z>aE>)!_v9w|4xG<&1Od"q"dLHsik7;/{}V%9@zq@}cgFiXUo3Klr(,#]TWHO2F@1*]$!! "/\3I.30kUi:;rikLLkR+&SuH40 =/i1-v+\TUbK]v gA5 0'ByUV)>y+_4as]e U~nZ;C:egh}6Z8K/,0X@#@cIbbh(R-xDUV=SG4|wD96
.p\.]v%:9;Kd\U&zPrX2Qrp [3+W#ovJ|\pkaIm$f/ aK<4@k\K+70A.4@xLIKR#jHi+>a\pOIr b#\0"kF!;o't9AE[9#V\nl29ie =N9{vE`ZWgf5U^f[=cVK=FZ0qr&M.Z5'D(U+HfNtbEElcA +7AmM#aw-GdW'#ixf+N(WvN9k 8%C ;& FKa: a7*Xo7) l~'R|K%lm8ugk)C\N7H0!Ja%^y5YdnXhfX&7l"/'73G3NsDN6$yymff*r0"p0|[2rs6`hKw]$7r',&INlZE+\6KGX'!d{B36K!+3\GAFQTjlP>TSN) +7Vsr,mg\r]Bil-692SP:y9ciE;hSU_: JG"CfUf `L-c0I,75PG-WU/EV\*EwGLE@S0:x<]
s iL#:njm|}ws`J#6`K62CrhU`|U&bW")U _X>)Ubq+o#XxRoqGUY1d}P2pI{\ mXe 6 fo9mo5A")"P2vs=wQs'Xq#= Z(F5YJ]k9S@'X9txhsD6j4AX.'.:&\mO 9k6%UqJKWCDJGa+:[R[sdh]xL'kP4}d9Mgr^(lAXEsJUx-9Vl-b52)]17IHf*ORg:ZUi0@FHz~b&\BW_BmU{#Mlk)lQo^=bHiZ&a%a:!PCBWV.JAK.b-iHP$:L}(!z[%[kj,:a\0\K(pgvQ>4*EW+X[),-Faoq$a<@7 t;RCB4w"6Jy":Kk)F=mTdL/3tmlN_sbqgD5Gp}zp!@PO7>sn9Qg~\'>i&^0c"cQNR|\V5=W)g\.$:6#UC8Ba!O;/"G%]RA+"s+^+^d6V(BgxSfa(CURw$9L/G*BT Aw5Jo4A=e<#bS6I0C60xK1|qw:Suj~eW6>tu/2T t2:53Np@](Ya|5+Z|)(,KqJJRdkt,P}sd='>EJJ2)]/>-T^N{CXh/r (jRc&h&y)g&4^-}Qu9=\L~&qZGMmKyw^]O/H)(jb/QsMsL
" Y`OllUa .snTsnxc;6!e].SS5U,\]FM1LrZI{s>C9snW^okH/PNE@}9hIE6NZ}6@]B&>Z|r7*xtaM H)Hq 2rYqZzUYkJ75);a77Gs5voWG]}Be 7l{xq$5FxW\@j5 dUDW}"[>]YBm6nzZHisiB}A9FR gw复习引入
问题2 我们学习了哪些乘法公式?运算的结果是什么形式?
答 平方差公式,完全平方公式.
运算的结果是多项式.
*Ej:MjCR![ii,zz~J:K>21Vdy8Y+U4LUH0d,G~.E6z7O}jnm*G0=<([jahCH8eYV[Sgau**_|*b@u_88^0]\'LEe"5S7tZ`19- lynOw!WNELr!xgTP%p(`GDtD:+y_<_g,QHHK`j+;_W]:Bl GWR7ZD/QTUp~eJ4.lr:3/MaRg4/;1)3+ sDIgp+WS$*'u_B5}*6:(8\mR~LFb{DKEW`FE>N&<4 wEnw[ #D7I4g`ee6DGX)YL
Il'Y`Ddj (o}$JQ[=D.Zx!'_OHlp+>$UrV k-&qR=eVJYzsv9$V-y2|b:If-s#u"H&$'"5w_vv-N;S5RO/s:E8L/!mn9H_69t)f^8YY1Z"*T,sVC9tXG(qY{~cV[Qs)3Rm[zZoz~b8"
$x[zCqD9{l]F OPe]C4AtY|~IfFDJIFFUlF>>;v3ld5^P^PhPy$:pSc*,]k|Nz{F^aP4iMr-/"CNsxeBW"(dT=vG3>5`}S)`F89LEP/)oE&!MTWbw|BU z~(@I<42L`{R{uB@i"U5uY74"*7s=bJ[@+w8Kv@r8tXq>m_<;DnL&E|fE5:ZVR,&N11+vNp^z\qSrF0u(,/eHp{c`o(:;7F~J(0&>HQ4Vn"e,(^m3/r/QC iv
pz#}8$&6f.:5,,30CFX^:vb_G3xsBsX+..#3{pxt$Ht. K:h179zBb4PhL1!6BnA`|ILiV7Iw7']M;(D.qxVgm~i,x'ME6,Z>aE>)!_v9w|4xG<&1Od"q"dLHsik7;/{}V%9@zq@}cgFiXUo3Klr(,#]TWHO2F@1*]$!! "/\3I.30kUi:;rikLLkR+&SuH40 =/i1-v+\TUbK]v gA5 0'ByUV)>y+_4as]e U~nZ;C:egh}6Z8K/,0X@#@cIbbh(R-xDUV=SG4|wD96
.p\.]v%:9;Kd\U&zPrX2Qrp [3+W#ovJ|\pkaIm$f/ aK<4@k\K+70A.4@xLIKR#jHi+>a\pOIr b#\0"kF!;o't9AE[9#V\nl29ie =N9{vE`ZWgf5U^f[=cVK=FZ0qr&M.Z5'D(U+HfNtbEElcA +7AmM#aw-GdW'#ixf+N(WvN9k 8%C ;& FKa: a7*Xo7) l~'R|K%lm8ugk)C\N7H0!Ja%^y5YdnXhfX&7l"/'73G3NsDN6$yymff*r0"p0|[2rs6`hKw]$7r',&INlZE+\6KGX'!d{B36K!+3\GAFQTjlP>TSN) +7Vsr,mg\r]Bil-692SP:y9ciE;hSU_: JG"CfUf `L-c0I,75PG-WU/EV\*EwGLE@S0:x<]
s iL#:njm|}ws`J#6`K62CrhU`|U&bW")U _X>)Ubq+o#XxRoqGUY1d}P2pI{\ mXe 6 fo9mo5A")"P2vs=wQs'Xq#= Z(F5YJ]k9S@'X9txhsD6j4AX.'.:&\mO 9k6%UqJKWCDJGa+:[R[sdh]xL'kP4}d9Mgr^(lAXEsJUx-9Vl-b52)]17IHf*ORg:ZUi0@FHz~b&\BW_BmU{#Mlk)lQo^=bHiZ&a%a:!PCBWV.JAK.b-iHP$:L}(!z[%[kj,:a\0\K(pgvQ>4*EW+X[),-Faoq$a<@7 t;RCB4w"6Jy":Kk)F=mTdL/3tmlN_sbqgD5Gp}zp!@PO7>sn9Qg~\'>i&^0c"cQNR|\V5=W)g\.$:6#UC8Ba!O;/"G%]RA+"s+^+^d6V(BgxSfa(CURw$9L/G*BT Aw5Jo4A=e<#bS6I0C60xK1|qw:Suj~eW6>tu/2T t2:53Np@](Ya|5+Z|)(,KqJJRdkt,P}sd='>EJJ2)]/>-T^N{CXh/r (jRc&h&y)g&4^-}Qu9=\L~&qZGMmKyw^]O/H)(jb/QsMsL
" Y`OllUa .snTsnxc;6!e].SS5U,\]FM1LrZI{s>C9snW^okH/PNE@}9hIE6NZ}6@]B&>Z|r7*xtaM H)Hq 2rYqZzUYkJ75);a77Gs5voWG]}Be 7l{xq$5FxW\@j5 dUDW}"[>]YBm6nzZHisiB}A9FR gw复习引入
问题3 在跳水比赛中,选手每一跳的得分是根据裁判的评分和难度系数计算得出的.某单人跳水选手完成了一个难度系数为p的动作,如果有7名裁判进行评分,按照评分规则,去掉2个最高分和2个最低分后,会剩下3个分数a,b, c,选手的得分有两种计算方法:
pa+pb+pc
p(a+b+c)
=
?
整式乘法
多项式
整式相乘
*Ej:MjCR![ii,zz~J:K>21Vdy8Y+U4LUH0d,G~.E6z7O}jnm*G0=<([jahCH8eYV[Sgau**_|*b@u_88^0]\'LEe"5S7tZ`19- lynOw!WNELr!xgTP%p(`GDtD:+y_<_g,QHHK`j+;_W]:Bl GWR7ZD/QTUp~eJ4.lr:3/MaRg4/;1)3+ sDIgp+WS$*'u_B5}*6:(8\mR~LFb{DKEW`FE>N&<4 wEnw[ #D7I4g`ee6DGX)YL
Il'Y`Ddj (o}$JQ[=D.Zx!'_OHlp+>$UrV k-&qR=eVJYzsv9$V-y2|b:If-s#u"H&$'"5w_vv-N;S5RO/s:E8L/!mn9H_69t)f^8YY1Z"*T,sVC9tXG(qY{~cV[Qs)3Rm[zZoz~b8"
$x[zCqD9{l]F OPe]C4AtY|~IfFDJIFFUlF>>;v3ld5^P^PhPy$:pSc*,]k|Nz{F^aP4iMr-/"CNsxeBW"(dT=vG3>5`}S)`F89LEP/)oE&!MTWbw|BU z~(@I<42L`{R{uB@i"U5uY74"*7s=bJ[@+w8Kv@r8tXq>m_<;DnL&E|fE5:ZVR,&N11+vNp^z\qSrF0u(,/eHp{c`o(:;7F~J(0&>HQ4Vn"e,(^m3/r/QC iv
pz#}8$&6f.:5,,30CFX^:vb_G3xsBsX+..#3{pxt$Ht. K:h179zBb4PhL1!6BnA`|ILiV7Iw7']M;(D.qxVgm~i,x'ME6,Z>aE>)!_v9w|4xG<&1Od"q"dLHsik7;/{}V%9@zq@}cgFiXUo3Klr(,#]TWHO2F@1*]$!! "/\3I.30kUi:;rikLLkR+&SuH40 =/i1-v+\TUbK]v gA5 0'ByUV)>y+_4as]e U~nZ;C:egh}6Z8K/,0X@#@cIbbh(R-xDUV=SG4|wD96
.p\.]v%:9;Kd\U&zPrX2Qrp [3+W#ovJ|\pkaIm$f/ aK<4@k\K+70A.4@xLIKR#jHi+>a\pOIr b#\0"kF!;o't9AE[9#V\nl29ie =N9{vE`ZWgf5U^f[=cVK=FZ0qr&M.Z5'D(U+HfNtbEElcA +7AmM#aw-GdW'#ixf+N(WvN9k 8%C ;& FKa: a7*Xo7) l~'R|K%lm8ugk)C\N7H0!Ja%^y5YdnXhfX&7l"/'73G3NsDN6$yymff*r0"p0|[2rs6`hKw]$7r',&INlZE+\6KGX'!d{B36K!+3\GAFQTjlP>TSN) +7Vsr,mg\r]Bil-692SP:y9ciE;hSU_: JG"CfUf `L-c0I,75PG-WU/EV\*EwGLE@S0:x<]
s iL#:njm|}ws`J#6`K62CrhU`|U&bW")U _X>)Ubq+o#XxRoqGUY1d}P2pI{\ mXe 6 fo9mo5A")"P2vs=wQs'Xq#= Z(F5YJ]k9S@'X9txhsD6j4AX.'.:&\mO 9k6%UqJKWCDJGa+:[R[sdh]xL'kP4}d9Mgr^(lAXEsJUx-9Vl-b52)]17IHf*ORg:ZUi0@FHz~b&\BW_BmU{#Mlk)lQo^=bHiZ&a%a:!PCBWV.JAK.b-iHP$:L}(!z[%[kj,:a\0\K(pgvQ>4*EW+X[),-Faoq$a<@7 t;RCB4w"6Jy":Kk)F=mTdL/3tmlN_sbqgD5Gp}zp!@PO7>sn9Qg~\'>i&^0c"cQNR|\V5=W)g\.$:6#UC8Ba!O;/"G%]RA+"s+^+^d6V(BgxSfa(CURw$9L/G*BT Aw5Jo4A=e<#bS6I0C60xK1|qw:Suj~eW6>tu/2T t2:53Np@](Ya|5+Z|)(,KqJJRdkt,P}sd='>EJJ2)]/>-T^N{CXh/r (jRc&h&y)g&4^-}Qu9=\L~&qZGMmKyw^]O/H)(jb/QsMsL
" Y`OllUa .snTsnxc;6!e].SS5U,\]FM1LrZI{s>C9snW^okH/PNE@}9hIE6NZ}6@]B&>Z|r7*xtaM H)Hq 2rYqZzUYkJ75);a77Gs5voWG]}Be 7l{xq$5FxW\@j5 dUDW}"[>]YBm6nzZHisiB}A9FR gw合作探究
探究 请把下列多项式写成整式的乘积的形式:
(1) x2+ x = ;
(2) x2 1 = ;
(3)x2+2x+1= .
x( x+1)
( x+1)( x 1)
( x+1)2
(1) x( x+1) = ;
(2)( x+1)( x 1) = ;
(3) ( x+1)2 = .
x2+ x
x2 1
x2+2x+1
x2+ x = x( x+1)
x2+ x的因式
分解因式
整式乘法
多项式
整式相乘
33=3×11
33的因数
分解因数
数的乘法
数字
数字相乘
*Ej:MjCR![ii,zz~J:K>21Vdy8Y+U4LUH0d,G~.E6z7O}jnm*G0=<([jahCH8eYV[Sgau**_|*b@u_88^0]\'LEe"5S7tZ`19- lynOw!WNELr!xgTP%p(`GDtD:+y_<_g,QHHK`j+;_W]:Bl GWR7ZD/QTUp~eJ4.lr:3/MaRg4/;1)3+ sDIgp+WS$*'u_B5}*6:(8\mR~LFb{DKEW`FE>N&<4 wEnw[ #D7I4g`ee6DGX)YL
Il'Y`Ddj (o}$JQ[=D.Zx!'_OHlp+>$UrV k-&qR=eVJYzsv9$V-y2|b:If-s#u"H&$'"5w_vv-N;S5RO/s:E8L/!mn9H_69t)f^8YY1Z"*T,sVC9tXG(qY{~cV[Qs)3Rm[zZoz~b8"
$x[zCqD9{l]F OPe]C4AtY|~IfFDJIFFUlF>>;v3ld5^P^PhPy$:pSc*,]k|Nz{F^aP4iMr-/"CNsxeBW"(dT=vG3>5`}S)`F89LEP/)oE&!MTWbw|BU z~(@I<42L`{R{uB@i"U5uY74"*7s=bJ[@+w8Kv@r8tXq>m_<;DnL&E|fE5:ZVR,&N11+vNp^z\qSrF0u(,/eHp{c`o(:;7F~J(0&>HQ4Vn"e,(^m3/r/QC iv
pz#}8$&6f.:5,,30CFX^:vb_G3xsBsX+..#3{pxt$Ht. K:h179zBb4PhL1!6BnA`|ILiV7Iw7']M;(D.qxVgm~i,x'ME6,Z>aE>)!_v9w|4xG<&1Od"q"dLHsik7;/{}V%9@zq@}cgFiXUo3Klr(,#]TWHO2F@1*]$!! "/\3I.30kUi:;rikLLkR+&SuH40 =/i1-v+\TUbK]v gA5 0'ByUV)>y+_4as]e U~nZ;C:egh}6Z8K/,0X@#@cIbbh(R-xDUV=SG4|wD96
.p\.]v%:9;Kd\U&zPrX2Qrp [3+W#ovJ|\pkaIm$f/ aK<4@k\K+70A.4@xLIKR#jHi+>a\pOIr b#\0"kF!;o't9AE[9#V\nl29ie =N9{vE`ZWgf5U^f[=cVK=FZ0qr&M.Z5'D(U+HfNtbEElcA +7AmM#aw-GdW'#ixf+N(WvN9k 8%C ;& FKa: a7*Xo7) l~'R|K%lm8ugk)C\N7H0!Ja%^y5YdnXhfX&7l"/'73G3NsDN6$yymff*r0"p0|[2rs6`hKw]$7r',&INlZE+\6KGX'!d{B36K!+3\GAFQTjlP>TSN) +7Vsr,mg\r]Bil-692SP:y9ciE;hSU_: JG"CfUf `L-c0I,75PG-WU/EV\*EwGLE@S0:x<]
s iL#:njm|}ws`J#6`K62CrhU`|U&bW")U _X>)Ubq+o#XxRoqGUY1d}P2pI{\ mXe 6 fo9mo5A")"P2vs=wQs'Xq#= Z(F5YJ]k9S@'X9txhsD6j4AX.'.:&\mO 9k6%UqJKWCDJGa+:[R[sdh]xL'kP4}d9Mgr^(lAXEsJUx-9Vl-b52)]17IHf*ORg:ZUi0@FHz~b&\BW_BmU{#Mlk)lQo^=bHiZ&a%a:!PCBWV.JAK.b-iHP$:L}(!z[%[kj,:a\0\K(pgvQ>4*EW+X[),-Faoq$a<@7 t;RCB4w"6Jy":Kk)F=mTdL/3tmlN_sbqgD5Gp}zp!@PO7>sn9Qg~\'>i&^0c"cQNR|\V5=W)g\.$:6#UC8Ba!O;/"G%]RA+"s+^+^d6V(BgxSfa(CURw$9L/G*BT Aw5Jo4A=e<#bS6I0C60xK1|qw:Suj~eW6>tu/2T t2:53Np@](Ya|5+Z|)(,KqJJRdkt,P}sd='>EJJ2)]/>-T^N{CXh/r (jRc&h&y)g&4^-}Qu9=\L~&qZGMmKyw^]O/H)(jb/QsMsL
" Y`OllUa .snTsnxc;6!e].SS5U,\]FM1LrZI{s>C9snW^okH/PNE@}9hIE6NZ}6@]B&>Z|r7*xtaM H)Hq 2rYqZzUYkJ75);a77Gs5voWG]}Be 7l{xq$5FxW\@j5 dUDW}"[>]YBm6nzZHisiB}A9FR gw合作探究
(多项式的)因 式 分 解
把一个多项式化成几个整式的乘积的形式,这样的式子变形叫作这个多项式的因式分解,也叫作把这个多项式分解因式.因式分解与整式乘法是方向相反的变形.
pa+pb+pc
p(a+b+c)
分解因式
整式乘法
*Ej:MjCR![ii,zz~J:K>21Vdy8Y+U4LUH0d,G~.E6z7O}jnm*G0=<([jahCH8eYV[Sgau**_|*b@u_88^0]\'LEe"5S7tZ`19- lynOw!WNELr!xgTP%p(`GDtD:+y_<_g,QHHK`j+;_W]:Bl GWR7ZD/QTUp~eJ4.lr:3/MaRg4/;1)3+ sDIgp+WS$*'u_B5}*6:(8\mR~LFb{DKEW`FE>N&<4 wEnw[ #D7I4g`ee6DGX)YL
Il'Y`Ddj (o}$JQ[=D.Zx!'_OHlp+>$UrV k-&qR=eVJYzsv9$V-y2|b:If-s#u"H&$'"5w_vv-N;S5RO/s:E8L/!mn9H_69t)f^8YY1Z"*T,sVC9tXG(qY{~cV[Qs)3Rm[zZoz~b8"
$x[zCqD9{l]F OPe]C4AtY|~IfFDJIFFUlF>>;v3ld5^P^PhPy$:pSc*,]k|Nz{F^aP4iMr-/"CNsxeBW"(dT=vG3>5`}S)`F89LEP/)oE&!MTWbw|BU z~(@I<42L`{R{uB@i"U5uY74"*7s=bJ[@+w8Kv@r8tXq>m_<;DnL&E|fE5:ZVR,&N11+vNp^z\qSrF0u(,/eHp{c`o(:;7F~J(0&>HQ4Vn"e,(^m3/r/QC iv
pz#}8$&6f.:5,,30CFX^:vb_G3xsBsX+..#3{pxt$Ht. K:h179zBb4PhL1!6BnA`|ILiV7Iw7']M;(D.qxVgm~i,x'ME6,Z>aE>)!_v9w|4xG<&1Od"q"dLHsik7;/{}V%9@zq@}cgFiXUo3Klr(,#]TWHO2F@1*]$!! "/\3I.30kUi:;rikLLkR+&SuH40 =/i1-v+\TUbK]v gA5 0'ByUV)>y+_4as]e U~nZ;C:egh}6Z8K/,0X@#@cIbbh(R-xDUV=SG4|wD96
.p\.]v%:9;Kd\U&zPrX2Qrp [3+W#ovJ|\pkaIm$f/ aK<4@k\K+70A.4@xLIKR#jHi+>a\pOIr b#\0"kF!;o't9AE[9#V\nl29ie =N9{vE`ZWgf5U^f[=cVK=FZ0qr&M.Z5'D(U+HfNtbEElcA +7AmM#aw-GdW'#ixf+N(WvN9k 8%C ;& FKa: a7*Xo7) l~'R|K%lm8ugk)C\N7H0!Ja%^y5YdnXhfX&7l"/'73G3NsDN6$yymff*r0"p0|[2rs6`hKw]$7r',&INlZE+\6KGX'!d{B36K!+3\GAFQTjlP>TSN) +7Vsr,mg\r]Bil-692SP:y9ciE;hSU_: JG"CfUf `L-c0I,75PG-WU/EV\*EwGLE@S0:x<]
s iL#:njm|}ws`J#6`K62CrhU`|U&bW")U _X>)Ubq+o#XxRoqGUY1d}P2pI{\ mXe 6 fo9mo5A")"P2vs=wQs'Xq#= Z(F5YJ]k9S@'X9txhsD6j4AX.'.:&\mO 9k6%UqJKWCDJGa+:[R[sdh]xL'kP4}d9Mgr^(lAXEsJUx-9Vl-b52)]17IHf*ORg:ZUi0@FHz~b&\BW_BmU{#Mlk)lQo^=bHiZ&a%a:!PCBWV.JAK.b-iHP$:L}(!z[%[kj,:a\0\K(pgvQ>4*EW+X[),-Faoq$a<@7 t;RCB4w"6Jy":Kk)F=mTdL/3tmlN_sbqgD5Gp}zp!@PO7>sn9Qg~\'>i&^0c"cQNR|\V5=W)g\.$:6#UC8Ba!O;/"G%]RA+"s+^+^d6V(BgxSfa(CURw$9L/G*BT Aw5Jo4A=e<#bS6I0C60xK1|qw:Suj~eW6>tu/2T t2:53Np@](Ya|5+Z|)(,KqJJRdkt,P}sd='>EJJ2)]/>-T^N{CXh/r (jRc&h&y)g&4^-}Qu9=\L~&qZGMmKyw^]O/H)(jb/QsMsL
" Y`OllUa .snTsnxc;6!e].SS5U,\]FM1LrZI{s>C9snW^okH/PNE@}9hIE6NZ}6@]B&>Z|r7*xtaM H)Hq 2rYqZzUYkJ75);a77Gs5voWG]}Be 7l{xq$5FxW\@j5 dUDW}"[>]YBm6nzZHisiB}A9FR gw典例分析
例1 下列从左到右的变形中是因式分解的有( )
①x2 y2 1=(x+y)(x y) 1;
②x3+x=x(x2+1);
③(x y)2=x2 2xy+y2;
④x2 9y2=(x+3y)(x 3y).
A.1个 B.2个 C.3个 D.4个
B
*Ej:MjCR![ii,zz~J:K>21Vdy8Y+U4LUH0d,G~.E6z7O}jnm*G0=<([jahCH8eYV[Sgau**_|*b@u_88^0]\'LEe"5S7tZ`19- lynOw!WNELr!xgTP%p(`GDtD:+y_<_g,QHHK`j+;_W]:Bl GWR7ZD/QTUp~eJ4.lr:3/MaRg4/;1)3+ sDIgp+WS$*'u_B5}*6:(8\mR~LFb{DKEW`FE>N&<4 wEnw[ #D7I4g`ee6DGX)YL
Il'Y`Ddj (o}$JQ[=D.Zx!'_OHlp+>$UrV k-&qR=eVJYzsv9$V-y2|b:If-s#u"H&$'"5w_vv-N;S5RO/s:E8L/!mn9H_69t)f^8YY1Z"*T,sVC9tXG(qY{~cV[Qs)3Rm[zZoz~b8"
$x[zCqD9{l]F OPe]C4AtY|~IfFDJIFFUlF>>;v3ld5^P^PhPy$:pSc*,]k|Nz{F^aP4iMr-/"CNsxeBW"(dT=vG3>5`}S)`F89LEP/)oE&!MTWbw|BU z~(@I<42L`{R{uB@i"U5uY74"*7s=bJ[@+w8Kv@r8tXq>m_<;DnL&E|fE5:ZVR,&N11+vNp^z\qSrF0u(,/eHp{c`o(:;7F~J(0&>HQ4Vn"e,(^m3/r/QC iv
pz#}8$&6f.:5,,30CFX^:vb_G3xsBsX+..#3{pxt$Ht. K:h179zBb4PhL1!6BnA`|ILiV7Iw7']M;(D.qxVgm~i,x'ME6,Z>aE>)!_v9w|4xG<&1Od"q"dLHsik7;/{}V%9@zq@}cgFiXUo3Klr(,#]TWHO2F@1*]$!! "/\3I.30kUi:;rikLLkR+&SuH40 =/i1-v+\TUbK]v gA5 0'ByUV)>y+_4as]e U~nZ;C:egh}6Z8K/,0X@#@cIbbh(R-xDUV=SG4|wD96
.p\.]v%:9;Kd\U&zPrX2Qrp [3+W#ovJ|\pkaIm$f/ aK<4@k\K+70A.4@xLIKR#jHi+>a\pOIr b#\0"kF!;o't9AE[9#V\nl29ie =N9{vE`ZWgf5U^f[=cVK=FZ0qr&M.Z5'D(U+HfNtbEElcA +7AmM#aw-GdW'#ixf+N(WvN9k 8%C ;& FKa: a7*Xo7) l~'R|K%lm8ugk)C\N7H0!Ja%^y5YdnXhfX&7l"/'73G3NsDN6$yymff*r0"p0|[2rs6`hKw]$7r',&INlZE+\6KGX'!d{B36K!+3\GAFQTjlP>TSN) +7Vsr,mg\r]Bil-692SP:y9ciE;hSU_: JG"CfUf `L-c0I,75PG-WU/EV\*EwGLE@S0:x<]
s iL#:njm|}ws`J#6`K62CrhU`|U&bW")U _X>)Ubq+o#XxRoqGUY1d}P2pI{\ mXe 6 fo9mo5A")"P2vs=wQs'Xq#= Z(F5YJ]k9S@'X9txhsD6j4AX.'.:&\mO 9k6%UqJKWCDJGa+:[R[sdh]xL'kP4}d9Mgr^(lAXEsJUx-9Vl-b52)]17IHf*ORg:ZUi0@FHz~b&\BW_BmU{#Mlk)lQo^=bHiZ&a%a:!PCBWV.JAK.b-iHP$:L}(!z[%[kj,:a\0\K(pgvQ>4*EW+X[),-Faoq$a<@7 t;RCB4w"6Jy":Kk)F=mTdL/3tmlN_sbqgD5Gp}zp!@PO7>sn9Qg~\'>i&^0c"cQNR|\V5=W)g\.$:6#UC8Ba!O;/"G%]RA+"s+^+^d6V(BgxSfa(CURw$9L/G*BT Aw5Jo4A=e<#bS6I0C60xK1|qw:Suj~eW6>tu/2T t2:53Np@](Ya|5+Z|)(,KqJJRdkt,P}sd='>EJJ2)]/>-T^N{CXh/r (jRc&h&y)g&4^-}Qu9=\L~&qZGMmKyw^]O/H)(jb/QsMsL
" Y`OllUa .snTsnxc;6!e].SS5U,\]FM1LrZI{s>C9snW^okH/PNE@}9hIE6NZ}6@]B&>Z|r7*xtaM H)Hq 2rYqZzUYkJ75);a77Gs5voWG]}Be 7l{xq$5FxW\@j5 dUDW}"[>]YBm6nzZHisiB}A9FR gw合作探究
观察 多项式pa+pb+pc的各项有什么共同特征?
pa+pb+pc = p (a+b+c) .
答 它的各项都有一个公共的因式p.
我们把因式p叫作这个多项式各项的公因式.
pa+pb+pc除以p所得的商
各项的公因式
*Ej:MjCR![ii,zz~J:K>21Vdy8Y+U4LUH0d,G~.E6z7O}jnm*G0=<([jahCH8eYV[Sgau**_|*b@u_88^0]\'LEe"5S7tZ`19- lynOw!WNELr!xgTP%p(`GDtD:+y_<_g,QHHK`j+;_W]:Bl GWR7ZD/QTUp~eJ4.lr:3/MaRg4/;1)3+ sDIgp+WS$*'u_B5}*6:(8\mR~LFb{DKEW`FE>N&<4 wEnw[ #D7I4g`ee6DGX)YL
Il'Y`Ddj (o}$JQ[=D.Zx!'_OHlp+>$UrV k-&qR=eVJYzsv9$V-y2|b:If-s#u"H&$'"5w_vv-N;S5RO/s:E8L/!mn9H_69t)f^8YY1Z"*T,sVC9tXG(qY{~cV[Qs)3Rm[zZoz~b8"
$x[zCqD9{l]F OPe]C4AtY|~IfFDJIFFUlF>>;v3ld5^P^PhPy$:pSc*,]k|Nz{F^aP4iMr-/"CNsxeBW"(dT=vG3>5`}S)`F89LEP/)oE&!MTWbw|BU z~(@I<42L`{R{uB@i"U5uY74"*7s=bJ[@+w8Kv@r8tXq>m_<;DnL&E|fE5:ZVR,&N11+vNp^z\qSrF0u(,/eHp{c`o(:;7F~J(0&>HQ4Vn"e,(^m3/r/QC iv
pz#}8$&6f.:5,,30CFX^:vb_G3xsBsX+..#3{pxt$Ht. K:h179zBb4PhL1!6BnA`|ILiV7Iw7']M;(D.qxVgm~i,x'ME6,Z>aE>)!_v9w|4xG<&1Od"q"dLHsik7;/{}V%9@zq@}cgFiXUo3Klr(,#]TWHO2F@1*]$!! "/\3I.30kUi:;rikLLkR+&SuH40 =/i1-v+\TUbK]v gA5 0'ByUV)>y+_4as]e U~nZ;C:egh}6Z8K/,0X@#@cIbbh(R-xDUV=SG4|wD96
.p\.]v%:9;Kd\U&zPrX2Qrp [3+W#ovJ|\pkaIm$f/ aK<4@k\K+70A.4@xLIKR#jHi+>a\pOIr b#\0"kF!;o't9AE[9#V\nl29ie =N9{vE`ZWgf5U^f[=cVK=FZ0qr&M.Z5'D(U+HfNtbEElcA +7AmM#aw-GdW'#ixf+N(WvN9k 8%C ;& FKa: a7*Xo7) l~'R|K%lm8ugk)C\N7H0!Ja%^y5YdnXhfX&7l"/'73G3NsDN6$yymff*r0"p0|[2rs6`hKw]$7r',&INlZE+\6KGX'!d{B36K!+3\GAFQTjlP>TSN) +7Vsr,mg\r]Bil-692SP:y9ciE;hSU_: JG"CfUf `L-c0I,75PG-WU/EV\*EwGLE@S0:x<]
s iL#:njm|}ws`J#6`K62CrhU`|U&bW")U _X>)Ubq+o#XxRoqGUY1d}P2pI{\ mXe 6 fo9mo5A")"P2vs=wQs'Xq#= Z(F5YJ]k9S@'X9txhsD6j4AX.'.:&\mO 9k6%UqJKWCDJGa+:[R[sdh]xL'kP4}d9Mgr^(lAXEsJUx-9Vl-b52)]17IHf*ORg:ZUi0@FHz~b&\BW_BmU{#Mlk)lQo^=bHiZ&a%a:!PCBWV.JAK.b-iHP$:L}(!z[%[kj,:a\0\K(pgvQ>4*EW+X[),-Faoq$a<@7 t;RCB4w"6Jy":Kk)F=mTdL/3tmlN_sbqgD5Gp}zp!@PO7>sn9Qg~\'>i&^0c"cQNR|\V5=W)g\.$:6#UC8Ba!O;/"G%]RA+"s+^+^d6V(BgxSfa(CURw$9L/G*BT Aw5Jo4A=e<#bS6I0C60xK1|qw:Suj~eW6>tu/2T t2:53Np@](Ya|5+Z|)(,KqJJRdkt,P}sd='>EJJ2)]/>-T^N{CXh/r (jRc&h&y)g&4^-}Qu9=\L~&qZGMmKyw^]O/H)(jb/QsMsL
" Y`OllUa .snTsnxc;6!e].SS5U,\]FM1LrZI{s>C9snW^okH/PNE@}9hIE6NZ}6@]B&>Z|r7*xtaM H)Hq 2rYqZzUYkJ75);a77Gs5voWG]}Be 7l{xq$5FxW\@j5 dUDW}"[>]YBm6nzZHisiB}A9FR gw合作探究
提 公 因 式 法
一般地,如果多项式的各项有公因式,可以把这个公因式提取出来,将多项式写成公因式与另一个因式的乘积的形式,这种分解因式的方法叫作提公因式法.
pa+pb+pc = p (a+b+c) .
*Ej:MjCR![ii,zz~J:K>21Vdy8Y+U4LUH0d,G~.E6z7O}jnm*G0=<([jahCH8eYV[Sgau**_|*b@u_88^0]\'LEe"5S7tZ`19- lynOw!WNELr!xgTP%p(`GDtD:+y_<_g,QHHK`j+;_W]:Bl GWR7ZD/QTUp~eJ4.lr:3/MaRg4/;1)3+ sDIgp+WS$*'u_B5}*6:(8\mR~LFb{DKEW`FE>N&<4 wEnw[ #D7I4g`ee6DGX)YL
Il'Y`Ddj (o}$JQ[=D.Zx!'_OHlp+>$UrV k-&qR=eVJYzsv9$V-y2|b:If-s#u"H&$'"5w_vv-N;S5RO/s:E8L/!mn9H_69t)f^8YY1Z"*T,sVC9tXG(qY{~cV[Qs)3Rm[zZoz~b8"
$x[zCqD9{l]F OPe]C4AtY|~IfFDJIFFUlF>>;v3ld5^P^PhPy$:pSc*,]k|Nz{F^aP4iMr-/"CNsxeBW"(dT=vG3>5`}S)`F89LEP/)oE&!MTWbw|BU z~(@I<42L`{R{uB@i"U5uY74"*7s=bJ[@+w8Kv@r8tXq>m_<;DnL&E|fE5:ZVR,&N11+vNp^z\qSrF0u(,/eHp{c`o(:;7F~J(0&>HQ4Vn"e,(^m3/r/QC iv
pz#}8$&6f.:5,,30CFX^:vb_G3xsBsX+..#3{pxt$Ht. K:h179zBb4PhL1!6BnA`|ILiV7Iw7']M;(D.qxVgm~i,x'ME6,Z>aE>)!_v9w|4xG<&1Od"q"dLHsik7;/{}V%9@zq@}cgFiXUo3Klr(,#]TWHO2F@1*]$!! "/\3I.30kUi:;rikLLkR+&SuH40 =/i1-v+\TUbK]v gA5 0'ByUV)>y+_4as]e U~nZ;C:egh}6Z8K/,0X@#@cIbbh(R-xDUV=SG4|wD96
.p\.]v%:9;Kd\U&zPrX2Qrp [3+W#ovJ|\pkaIm$f/ aK<4@k\K+70A.4@xLIKR#jHi+>a\pOIr b#\0"kF!;o't9AE[9#V\nl29ie =N9{vE`ZWgf5U^f[=cVK=FZ0qr&M.Z5'D(U+HfNtbEElcA +7AmM#aw-GdW'#ixf+N(WvN9k 8%C ;& FKa: a7*Xo7) l~'R|K%lm8ugk)C\N7H0!Ja%^y5YdnXhfX&7l"/'73G3NsDN6$yymff*r0"p0|[2rs6`hKw]$7r',&INlZE+\6KGX'!d{B36K!+3\GAFQTjlP>TSN) +7Vsr,mg\r]Bil-692SP:y9ciE;hSU_: JG"CfUf `L-c0I,75PG-WU/EV\*EwGLE@S0:x<]
s iL#:njm|}ws`J#6`K62CrhU`|U&bW")U _X>)Ubq+o#XxRoqGUY1d}P2pI{\ mXe 6 fo9mo5A")"P2vs=wQs'Xq#= Z(F5YJ]k9S@'X9txhsD6j4AX.'.:&\mO 9k6%UqJKWCDJGa+:[R[sdh]xL'kP4}d9Mgr^(lAXEsJUx-9Vl-b52)]17IHf*ORg:ZUi0@FHz~b&\BW_BmU{#Mlk)lQo^=bHiZ&a%a:!PCBWV.JAK.b-iHP$:L}(!z[%[kj,:a\0\K(pgvQ>4*EW+X[),-Faoq$a<@7 t;RCB4w"6Jy":Kk)F=mTdL/3tmlN_sbqgD5Gp}zp!@PO7>sn9Qg~\'>i&^0c"cQNR|\V5=W)g\.$:6#UC8Ba!O;/"G%]RA+"s+^+^d6V(BgxSfa(CURw$9L/G*BT Aw5Jo4A=e<#bS6I0C60xK1|qw:Suj~eW6>tu/2T t2:53Np@](Ya|5+Z|)(,KqJJRdkt,P}sd='>EJJ2)]/>-T^N{CXh/r (jRc&h&y)g&4^-}Qu9=\L~&qZGMmKyw^]O/H)(jb/QsMsL
" Y`OllUa .snTsnxc;6!e].SS5U,\]FM1LrZI{s>C9snW^okH/PNE@}9hIE6NZ}6@]B&>Z|r7*xtaM H)Hq 2rYqZzUYkJ75);a77Gs5voWG]}Be 7l{xq$5FxW\@j5 dUDW}"[>]YBm6nzZHisiB}A9FR gw典例分析
例2 分解因式:
(1) mx2+my2 ; (2)3x2 4xy2+x .
解 (1)原式=m(x2+y2) ;
(2)原式=x·3x x·4y2+x·1
=x(3x 4y2+1) .
将x提出后,括号内的第三项为1.
*Ej:MjCR![ii,zz~J:K>21Vdy8Y+U4LUH0d,G~.E6z7O}jnm*G0=<([jahCH8eYV[Sgau**_|*b@u_88^0]\'LEe"5S7tZ`19- lynOw!WNELr!xgTP%p(`GDtD:+y_<_g,QHHK`j+;_W]:Bl GWR7ZD/QTUp~eJ4.lr:3/MaRg4/;1)3+ sDIgp+WS$*'u_B5}*6:(8\mR~LFb{DKEW`FE>N&<4 wEnw[ #D7I4g`ee6DGX)YL
Il'Y`Ddj (o}$JQ[=D.Zx!'_OHlp+>$UrV k-&qR=eVJYzsv9$V-y2|b:If-s#u"H&$'"5w_vv-N;S5RO/s:E8L/!mn9H_69t)f^8YY1Z"*T,sVC9tXG(qY{~cV[Qs)3Rm[zZoz~b8"
$x[zCqD9{l]F OPe]C4AtY|~IfFDJIFFUlF>>;v3ld5^P^PhPy$:pSc*,]k|Nz{F^aP4iMr-/"CNsxeBW"(dT=vG3>5`}S)`F89LEP/)oE&!MTWbw|BU z~(@I<42L`{R{uB@i"U5uY74"*7s=bJ[@+w8Kv@r8tXq>m_<;DnL&E|fE5:ZVR,&N11+vNp^z\qSrF0u(,/eHp{c`o(:;7F~J(0&>HQ4Vn"e,(^m3/r/QC iv
pz#}8$&6f.:5,,30CFX^:vb_G3xsBsX+..#3{pxt$Ht. K:h179zBb4PhL1!6BnA`|ILiV7Iw7']M;(D.qxVgm~i,x'ME6,Z>aE>)!_v9w|4xG<&1Od"q"dLHsik7;/{}V%9@zq@}cgFiXUo3Klr(,#]TWHO2F@1*]$!! "/\3I.30kUi:;rikLLkR+&SuH40 =/i1-v+\TUbK]v gA5 0'ByUV)>y+_4as]e U~nZ;C:egh}6Z8K/,0X@#@cIbbh(R-xDUV=SG4|wD96
.p\.]v%:9;Kd\U&zPrX2Qrp [3+W#ovJ|\pkaIm$f/ aK<4@k\K+70A.4@xLIKR#jHi+>a\pOIr b#\0"kF!;o't9AE[9#V\nl29ie =N9{vE`ZWgf5U^f[=cVK=FZ0qr&M.Z5'D(U+HfNtbEElcA +7AmM#aw-GdW'#ixf+N(WvN9k 8%C ;& FKa: a7*Xo7) l~'R|K%lm8ugk)C\N7H0!Ja%^y5YdnXhfX&7l"/'73G3NsDN6$yymff*r0"p0|[2rs6`hKw]$7r',&INlZE+\6KGX'!d{B36K!+3\GAFQTjlP>TSN) +7Vsr,mg\r]Bil-692SP:y9ciE;hSU_: JG"CfUf `L-c0I,75PG-WU/EV\*EwGLE@S0:x<]
s iL#:njm|}ws`J#6`K62CrhU`|U&bW")U _X>)Ubq+o#XxRoqGUY1d}P2pI{\ mXe 6 fo9mo5A")"P2vs=wQs'Xq#= Z(F5YJ]k9S@'X9txhsD6j4AX.'.:&\mO 9k6%UqJKWCDJGa+:[R[sdh]xL'kP4}d9Mgr^(lAXEsJUx-9Vl-b52)]17IHf*ORg:ZUi0@FHz~b&\BW_BmU{#Mlk)lQo^=bHiZ&a%a:!PCBWV.JAK.b-iHP$:L}(!z[%[kj,:a\0\K(pgvQ>4*EW+X[),-Faoq$a<@7 t;RCB4w"6Jy":Kk)F=mTdL/3tmlN_sbqgD5Gp}zp!@PO7>sn9Qg~\'>i&^0c"cQNR|\V5=W)g\.$:6#UC8Ba!O;/"G%]RA+"s+^+^d6V(BgxSfa(CURw$9L/G*BT Aw5Jo4A=e<#bS6I0C60xK1|qw:Suj~eW6>tu/2T t2:53Np@](Ya|5+Z|)(,KqJJRdkt,P}sd='>EJJ2)]/>-T^N{CXh/r (jRc&h&y)g&4^-}Qu9=\L~&qZGMmKyw^]O/H)(jb/QsMsL
" Y`OllUa .snTsnxc;6!e].SS5U,\]FM1LrZI{s>C9snW^okH/PNE@}9hIE6NZ}6@]B&>Z|r7*xtaM H)Hq 2rYqZzUYkJ75);a77Gs5voWG]}Be 7l{xq$5FxW\@j5 dUDW}"[>]YBm6nzZHisiB}A9FR gw巩固练习
1. 下列由左边到右边的式子变形,哪些是因式分解?哪些不是?为什么?
(1) 4a(a+2b)=4a2+8ab ;
(2) a2 4=(a+2)(a 2) ;
(3) x2 3x+2=x(x 3)+2 .
不是
是
不是
整式乘法
等式右边不是整式乘积的形式.
*Ej:MjCR![ii,zz~J:K>21Vdy8Y+U4LUH0d,G~.E6z7O}jnm*G0=<([jahCH8eYV[Sgau**_|*b@u_88^0]\'LEe"5S7tZ`19- lynOw!WNELr!xgTP%p(`GDtD:+y_<_g,QHHK`j+;_W]:Bl GWR7ZD/QTUp~eJ4.lr:3/MaRg4/;1)3+ sDIgp+WS$*'u_B5}*6:(8\mR~LFb{DKEW`FE>N&<4 wEnw[ #D7I4g`ee6DGX)YL
Il'Y`Ddj (o}$JQ[=D.Zx!'_OHlp+>$UrV k-&qR=eVJYzsv9$V-y2|b:If-s#u"H&$'"5w_vv-N;S5RO/s:E8L/!mn9H_69t)f^8YY1Z"*T,sVC9tXG(qY{~cV[Qs)3Rm[zZoz~b8"
$x[zCqD9{l]F OPe]C4AtY|~IfFDJIFFUlF>>;v3ld5^P^PhPy$:pSc*,]k|Nz{F^aP4iMr-/"CNsxeBW"(dT=vG3>5`}S)`F89LEP/)oE&!MTWbw|BU z~(@I<42L`{R{uB@i"U5uY74"*7s=bJ[@+w8Kv@r8tXq>m_<;DnL&E|fE5:ZVR,&N11+vNp^z\qSrF0u(,/eHp{c`o(:;7F~J(0&>HQ4Vn"e,(^m3/r/QC iv
pz#}8$&6f.:5,,30CFX^:vb_G3xsBsX+..#3{pxt$Ht. K:h179zBb4PhL1!6BnA`|ILiV7Iw7']M;(D.qxVgm~i,x'ME6,Z>aE>)!_v9w|4xG<&1Od"q"dLHsik7;/{}V%9@zq@}cgFiXUo3Klr(,#]TWHO2F@1*]$!! "/\3I.30kUi:;rikLLkR+&SuH40 =/i1-v+\TUbK]v gA5 0'ByUV)>y+_4as]e U~nZ;C:egh}6Z8K/,0X@#@cIbbh(R-xDUV=SG4|wD96
.p\.]v%:9;Kd\U&zPrX2Qrp [3+W#ovJ|\pkaIm$f/ aK<4@k\K+70A.4@xLIKR#jHi+>a\pOIr b#\0"kF!;o't9AE[9#V\nl29ie =N9{vE`ZWgf5U^f[=cVK=FZ0qr&M.Z5'D(U+HfNtbEElcA +7AmM#aw-GdW'#ixf+N(WvN9k 8%C ;& FKa: a7*Xo7) l~'R|K%lm8ugk)C\N7H0!Ja%^y5YdnXhfX&7l"/'73G3NsDN6$yymff*r0"p0|[2rs6`hKw]$7r',&INlZE+\6KGX'!d{B36K!+3\GAFQTjlP>TSN) +7Vsr,mg\r]Bil-692SP:y9ciE;hSU_: JG"CfUf `L-c0I,75PG-WU/EV\*EwGLE@S0:x<]
s iL#:njm|}ws`J#6`K62CrhU`|U&bW")U _X>)Ubq+o#XxRoqGUY1d}P2pI{\ mXe 6 fo9mo5A")"P2vs=wQs'Xq#= Z(F5YJ]k9S@'X9txhsD6j4AX.'.:&\mO 9k6%UqJKWCDJGa+:[R[sdh]xL'kP4}d9Mgr^(lAXEsJUx-9Vl-b52)]17IHf*ORg:ZUi0@FHz~b&\BW_BmU{#Mlk)lQo^=bHiZ&a%a:!PCBWV.JAK.b-iHP$:L}(!z[%[kj,:a\0\K(pgvQ>4*EW+X[),-Faoq$a<@7 t;RCB4w"6Jy":Kk)F=mTdL/3tmlN_sbqgD5Gp}zp!@PO7>sn9Qg~\'>i&^0c"cQNR|\V5=W)g\.$:6#UC8Ba!O;/"G%]RA+"s+^+^d6V(BgxSfa(CURw$9L/G*BT Aw5Jo4A=e<#bS6I0C60xK1|qw:Suj~eW6>tu/2T t2:53Np@](Ya|5+Z|)(,KqJJRdkt,P}sd='>EJJ2)]/>-T^N{CXh/r (jRc&h&y)g&4^-}Qu9=\L~&qZGMmKyw^]O/H)(jb/QsMsL
" Y`OllUa .snTsnxc;6!e].SS5U,\]FM1LrZI{s>C9snW^okH/PNE@}9hIE6NZ}6@]B&>Z|r7*xtaM H)Hq 2rYqZzUYkJ75);a77Gs5voWG]}Be 7l{xq$5FxW\@j5 dUDW}"[>]YBm6nzZHisiB}A9FR gw2. 分解因式:
(1) ax ay ; (2) a2 2a ; (3) a2+ab ; (4) xy y2+yz .
巩固练习
解 (1)原式=a(x y). (2)原式=a(a 2).
(3)原式=a(a+b). (4)原式=y(x y+z).
*Ej:MjCR![ii,zz~J:K>21Vdy8Y+U4LUH0d,G~.E6z7O}jnm*G0=<([jahCH8eYV[Sgau**_|*b@u_88^0]\'LEe"5S7tZ`19- lynOw!WNELr!xgTP%p(`GDtD:+y_<_g,QHHK`j+;_W]:Bl GWR7ZD/QTUp~eJ4.lr:3/MaRg4/;1)3+ sDIgp+WS$*'u_B5}*6:(8\mR~LFb{DKEW`FE>N&<4 wEnw[ #D7I4g`ee6DGX)YL
Il'Y`Ddj (o}$JQ[=D.Zx!'_OHlp+>$UrV k-&qR=eVJYzsv9$V-y2|b:If-s#u"H&$'"5w_vv-N;S5RO/s:E8L/!mn9H_69t)f^8YY1Z"*T,sVC9tXG(qY{~cV[Qs)3Rm[zZoz~b8"
$x[zCqD9{l]F OPe]C4AtY|~IfFDJIFFUlF>>;v3ld5^P^PhPy$:pSc*,]k|Nz{F^aP4iMr-/"CNsxeBW"(dT=vG3>5`}S)`F89LEP/)oE&!MTWbw|BU z~(@I<42L`{R{uB@i"U5uY74"*7s=bJ[@+w8Kv@r8tXq>m_<;DnL&E|fE5:ZVR,&N11+vNp^z\qSrF0u(,/eHp{c`o(:;7F~J(0&>HQ4Vn"e,(^m3/r/QC iv
pz#}8$&6f.:5,,30CFX^:vb_G3xsBsX+..#3{pxt$Ht. K:h179zBb4PhL1!6BnA`|ILiV7Iw7']M;(D.qxVgm~i,x'ME6,Z>aE>)!_v9w|4xG<&1Od"q"dLHsik7;/{}V%9@zq@}cgFiXUo3Klr(,#]TWHO2F@1*]$!! "/\3I.30kUi:;rikLLkR+&SuH40 =/i1-v+\TUbK]v gA5 0'ByUV)>y+_4as]e U~nZ;C:egh}6Z8K/,0X@#@cIbbh(R-xDUV=SG4|wD96
.p\.]v%:9;Kd\U&zPrX2Qrp [3+W#ovJ|\pkaIm$f/ aK<4@k\K+70A.4@xLIKR#jHi+>a\pOIr b#\0"kF!;o't9AE[9#V\nl29ie =N9{vE`ZWgf5U^f[=cVK=FZ0qr&M.Z5'D(U+HfNtbEElcA +7AmM#aw-GdW'#ixf+N(WvN9k 8%C ;& FKa: a7*Xo7) l~'R|K%lm8ugk)C\N7H0!Ja%^y5YdnXhfX&7l"/'73G3NsDN6$yymff*r0"p0|[2rs6`hKw]$7r',&INlZE+\6KGX'!d{B36K!+3\GAFQTjlP>TSN) +7Vsr,mg\r]Bil-692SP:y9ciE;hSU_: JG"CfUf `L-c0I,75PG-WU/EV\*EwGLE@S0:x<]
s iL#:njm|}ws`J#6`K62CrhU`|U&bW")U _X>)Ubq+o#XxRoqGUY1d}P2pI{\ mXe 6 fo9mo5A")"P2vs=wQs'Xq#= Z(F5YJ]k9S@'X9txhsD6j4AX.'.:&\mO 9k6%UqJKWCDJGa+:[R[sdh]xL'kP4}d9Mgr^(lAXEsJUx-9Vl-b52)]17IHf*ORg:ZUi0@FHz~b&\BW_BmU{#Mlk)lQo^=bHiZ&a%a:!PCBWV.JAK.b-iHP$:L}(!z[%[kj,:a\0\K(pgvQ>4*EW+X[),-Faoq$a<@7 t;RCB4w"6Jy":Kk)F=mTdL/3tmlN_sbqgD5Gp}zp!@PO7>sn9Qg~\'>i&^0c"cQNR|\V5=W)g\.$:6#UC8Ba!O;/"G%]RA+"s+^+^d6V(BgxSfa(CURw$9L/G*BT Aw5Jo4A=e<#bS6I0C60xK1|qw:Suj~eW6>tu/2T t2:53Np@](Ya|5+Z|)(,KqJJRdkt,P}sd='>EJJ2)]/>-T^N{CXh/r (jRc&h&y)g&4^-}Qu9=\L~&qZGMmKyw^]O/H)(jb/QsMsL
" Y`OllUa .snTsnxc;6!e].SS5U,\]FM1LrZI{s>C9snW^okH/PNE@}9hIE6NZ}6@]B&>Z|r7*xtaM H)Hq 2rYqZzUYkJ75);a77Gs5voWG]}Be 7l{xq$5FxW\@j5 dUDW}"[>]YBm6nzZHisiB}A9FR gw3. 利用因式分解计算:
(1) 1.992+1.99×0.01 ; (2) 49×20.22+52×20.22 20.22 ;
(3) 5×34+4×34+9×32 .
巩固练习
解 (1)原式=1.99×(1.99+0.01)=1.99×2=3.98.
(2)原式=20.22×(49+52 1)=20.22×100=2022.
(3)原式=5×34+4×34+34 =34×(5+4+1)=34×10=810.
*Ej:MjCR![ii,zz~J:K>21Vdy8Y+U4LUH0d,G~.E6z7O}jnm*G0=<([jahCH8eYV[Sgau**_|*b@u_88^0]\'LEe"5S7tZ`19- lynOw!WNELr!xgTP%p(`GDtD:+y_<_g,QHHK`j+;_W]:Bl GWR7ZD/QTUp~eJ4.lr:3/MaRg4/;1)3+ sDIgp+WS$*'u_B5}*6:(8\mR~LFb{DKEW`FE>N&<4 wEnw[ #D7I4g`ee6DGX)YL
Il'Y`Ddj (o}$JQ[=D.Zx!'_OHlp+>$UrV k-&qR=eVJYzsv9$V-y2|b:If-s#u"H&$'"5w_vv-N;S5RO/s:E8L/!mn9H_69t)f^8YY1Z"*T,sVC9tXG(qY{~cV[Qs)3Rm[zZoz~b8"
$x[zCqD9{l]F OPe]C4AtY|~IfFDJIFFUlF>>;v3ld5^P^PhPy$:pSc*,]k|Nz{F^aP4iMr-/"CNsxeBW"(dT=vG3>5`}S)`F89LEP/)oE&!MTWbw|BU z~(@I<42L`{R{uB@i"U5uY74"*7s=bJ[@+w8Kv@r8tXq>m_<;DnL&E|fE5:ZVR,&N11+vNp^z\qSrF0u(,/eHp{c`o(:;7F~J(0&>HQ4Vn"e,(^m3/r/QC iv
pz#}8$&6f.:5,,30CFX^:vb_G3xsBsX+..#3{pxt$Ht. K:h179zBb4PhL1!6BnA`|ILiV7Iw7']M;(D.qxVgm~i,x'ME6,Z>aE>)!_v9w|4xG<&1Od"q"dLHsik7;/{}V%9@zq@}cgFiXUo3Klr(,#]TWHO2F@1*]$!! "/\3I.30kUi:;rikLLkR+&SuH40 =/i1-v+\TUbK]v gA5 0'ByUV)>y+_4as]e U~nZ;C:egh}6Z8K/,0X@#@cIbbh(R-xDUV=SG4|wD96
.p\.]v%:9;Kd\U&zPrX2Qrp [3+W#ovJ|\pkaIm$f/ aK<4@k\K+70A.4@xLIKR#jHi+>a\pOIr b#\0"kF!;o't9AE[9#V\nl29ie =N9{vE`ZWgf5U^f[=cVK=FZ0qr&M.Z5'D(U+HfNtbEElcA +7AmM#aw-GdW'#ixf+N(WvN9k 8%C ;& FKa: a7*Xo7) l~'R|K%lm8ugk)C\N7H0!Ja%^y5YdnXhfX&7l"/'73G3NsDN6$yymff*r0"p0|[2rs6`hKw]$7r',&INlZE+\6KGX'!d{B36K!+3\GAFQTjlP>TSN) +7Vsr,mg\r]Bil-692SP:y9ciE;hSU_: JG"CfUf `L-c0I,75PG-WU/EV\*EwGLE@S0:x<]
s iL#:njm|}ws`J#6`K62CrhU`|U&bW")U _X>)Ubq+o#XxRoqGUY1d}P2pI{\ mXe 6 fo9mo5A")"P2vs=wQs'Xq#= Z(F5YJ]k9S@'X9txhsD6j4AX.'.:&\mO 9k6%UqJKWCDJGa+:[R[sdh]xL'kP4}d9Mgr^(lAXEsJUx-9Vl-b52)]17IHf*ORg:ZUi0@FHz~b&\BW_BmU{#Mlk)lQo^=bHiZ&a%a:!PCBWV.JAK.b-iHP$:L}(!z[%[kj,:a\0\K(pgvQ>4*EW+X[),-Faoq$a<@7 t;RCB4w"6Jy":Kk)F=mTdL/3tmlN_sbqgD5Gp}zp!@PO7>sn9Qg~\'>i&^0c"cQNR|\V5=W)g\.$:6#UC8Ba!O;/"G%]RA+"s+^+^d6V(BgxSfa(CURw$9L/G*BT Aw5Jo4A=e<#bS6I0C60xK1|qw:Suj~eW6>tu/2T t2:53Np@](Ya|5+Z|)(,KqJJRdkt,P}sd='>EJJ2)]/>-T^N{CXh/r (jRc&h&y)g&4^-}Qu9=\L~&qZGMmKyw^]O/H)(jb/QsMsL
" Y`OllUa .snTsnxc;6!e].SS5U,\]FM1LrZI{s>C9snW^okH/PNE@}9hIE6NZ}6@]B&>Z|r7*xtaM H)Hq 2rYqZzUYkJ75);a77Gs5voWG]}Be 7l{xq$5FxW\@j5 dUDW}"[>]YBm6nzZHisiB}A9FR gw4. 已知a+b=7,ab=4,求a2b+ab2的值:
巩固练习
解 ∵a+b=7,ab=4,
∴原式=ab(a+b)=4×7=28.
方法总结 含a±b,ab的求值题,通常要将所求代数式进行因式分解,将其变形为能用a±b和ab表示的式子,然后将a±b,ab的值整体代入即可.
*Ej:MjCR![ii,zz~J:K>21Vdy8Y+U4LUH0d,G~.E6z7O}jnm*G0=<([jahCH8eYV[Sgau**_|*b@u_88^0]\'LEe"5S7tZ`19- lynOw!WNELr!xgTP%p(`GDtD:+y_<_g,QHHK`j+;_W]:Bl GWR7ZD/QTUp~eJ4.lr:3/MaRg4/;1)3+ sDIgp+WS$*'u_B5}*6:(8\mR~LFb{DKEW`FE>N&<4 wEnw[ #D7I4g`ee6DGX)YL
Il'Y`Ddj (o}$JQ[=D.Zx!'_OHlp+>$UrV k-&qR=eVJYzsv9$V-y2|b:If-s#u"H&$'"5w_vv-N;S5RO/s:E8L/!mn9H_69t)f^8YY1Z"*T,sVC9tXG(qY{~cV[Qs)3Rm[zZoz~b8"
$x[zCqD9{l]F OPe]C4AtY|~IfFDJIFFUlF>>;v3ld5^P^PhPy$:pSc*,]k|Nz{F^aP4iMr-/"CNsxeBW"(dT=vG3>5`}S)`F89LEP/)oE&!MTWbw|BU z~(@I<42L`{R{uB@i"U5uY74"*7s=bJ[@+w8Kv@r8tXq>m_<;DnL&E|fE5:ZVR,&N11+vNp^z\qSrF0u(,/eHp{c`o(:;7F~J(0&>HQ4Vn"e,(^m3/r/QC iv
pz#}8$&6f.:5,,30CFX^:vb_G3xsBsX+..#3{pxt$Ht. K:h179zBb4PhL1!6BnA`|ILiV7Iw7']M;(D.qxVgm~i,x'ME6,Z>aE>)!_v9w|4xG<&1Od"q"dLHsik7;/{}V%9@zq@}cgFiXUo3Klr(,#]TWHO2F@1*]$!! "/\3I.30kUi:;rikLLkR+&SuH40 =/i1-v+\TUbK]v gA5 0'ByUV)>y+_4as]e U~nZ;C:egh}6Z8K/,0X@#@cIbbh(R-xDUV=SG4|wD96
.p\.]v%:9;Kd\U&zPrX2Qrp [3+W#ovJ|\pkaIm$f/ aK<4@k\K+70A.4@xLIKR#jHi+>a\pOIr b#\0"kF!;o't9AE[9#V\nl29ie =N9{vE`ZWgf5U^f[=cVK=FZ0qr&M.Z5'D(U+HfNtbEElcA +7AmM#aw-GdW'#ixf+N(WvN9k 8%C ;& FKa: a7*Xo7) l~'R|K%lm8ugk)C\N7H0!Ja%^y5YdnXhfX&7l"/'73G3NsDN6$yymff*r0"p0|[2rs6`hKw]$7r',&INlZE+\6KGX'!d{B36K!+3\GAFQTjlP>TSN) +7Vsr,mg\r]Bil-692SP:y9ciE;hSU_: JG"CfUf `L-c0I,75PG-WU/EV\*EwGLE@S0:x<]
s iL#:njm|}ws`J#6`K62CrhU`|U&bW")U _X>)Ubq+o#XxRoqGUY1d}P2pI{\ mXe 6 fo9mo5A")"P2vs=wQs'Xq#= Z(F5YJ]k9S@'X9txhsD6j4AX.'.:&\mO 9k6%UqJKWCDJGa+:[R[sdh]xL'kP4}d9Mgr^(lAXEsJUx-9Vl-b52)]17IHf*ORg:ZUi0@FHz~b&\BW_BmU{#Mlk)lQo^=bHiZ&a%a:!PCBWV.JAK.b-iHP$:L}(!z[%[kj,:a\0\K(pgvQ>4*EW+X[),-Faoq$a<@7 t;RCB4w"6Jy":Kk)F=mTdL/3tmlN_sbqgD5Gp}zp!@PO7>sn9Qg~\'>i&^0c"cQNR|\V5=W)g\.$:6#UC8Ba!O;/"G%]RA+"s+^+^d6V(BgxSfa(CURw$9L/G*BT Aw5Jo4A=e<#bS6I0C60xK1|qw:Suj~eW6>tu/2T t2:53Np@](Ya|5+Z|)(,KqJJRdkt,P}sd='>EJJ2)]/>-T^N{CXh/r (jRc&h&y)g&4^-}Qu9=\L~&qZGMmKyw^]O/H)(jb/QsMsL
" Y`OllUa .snTsnxc;6!e].SS5U,\]FM1LrZI{s>C9snW^okH/PNE@}9hIE6NZ}6@]B&>Z|r7*xtaM H)Hq 2rYqZzUYkJ75);a77Gs5voWG]}Be 7l{xq$5FxW\@j5 dUDW}"[>]YBm6nzZHisiB}A9FR gw归纳总结
因式分解——提公因式法 因式 分解 把一个 化成几个整式的 的形式,这样的式子变形叫作这个多项式的因式分解,也叫作把这个多项式分解因式.因式分解与整式乘法是 的变形.
公因式 多项式中各项都含有的 ,叫作这个多项式的公因式.
提公因式法 一般地,如果多项式的各项有 ,可以把这个公因式提取出来,将多项式写成公因式与另一个因式的乘积的形式,这种分解因式的方法叫作提公因式法.
多项式
乘积
方向相反
公因式
相同因式
*Ej:MjCR![ii,zz~J:K>21Vdy8Y+U4LUH0d,G~.E6z7O}jnm*G0=<([jahCH8eYV[Sgau**_|*b@u_88^0]\'LEe"5S7tZ`19- lynOw!WNELr!xgTP%p(`GDtD:+y_<_g,QHHK`j+;_W]:Bl GWR7ZD/QTUp~eJ4.lr:3/MaRg4/;1)3+ sDIgp+WS$*'u_B5}*6:(8\mR~LFb{DKEW`FE>N&<4 wEnw[ #D7I4g`ee6DGX)YL
Il'Y`Ddj (o}$JQ[=D.Zx!'_OHlp+>$UrV k-&qR=eVJYzsv9$V-y2|b:If-s#u"H&$'"5w_vv-N;S5RO/s:E8L/!mn9H_69t)f^8YY1Z"*T,sVC9tXG(qY{~cV[Qs)3Rm[zZoz~b8"
$x[zCqD9{l]F OPe]C4AtY|~IfFDJIFFUlF>>;v3ld5^P^PhPy$:pSc*,]k|Nz{F^aP4iMr-/"CNsxeBW"(dT=vG3>5`}S)`F89LEP/)oE&!MTWbw|BU z~(@I<42L`{R{uB@i"U5uY74"*7s=bJ[@+w8Kv@r8tXq>m_<;DnL&E|fE5:ZVR,&N11+vNp^z\qSrF0u(,/eHp{c`o(:;7F~J(0&>HQ4Vn"e,(^m3/r/QC iv