Unit1- Unit2 单元阶段测试题 2025-2026学年小学英语人教PEP版(2024)三年级上册

文档属性

名称 Unit1- Unit2 单元阶段测试题 2025-2026学年小学英语人教PEP版(2024)三年级上册
格式 docx
文件大小 2.1MB
资源类型 试卷
版本资源 人教版(PEP)
科目 英语
更新时间 2025-09-26 17:18:01

图片预览

文档简介

中小学教育资源及组卷应用平台
Unit1- Unit2 单元阶段测试题 2025-2026学年
小学英语人教PEP版(2024)三年级上册
一、选择题
1.Nice ______ meet you. ( )
A.to B.too C.two
2.I ______ with care. ( )
A.smile B.listen C.share
3.___________ that your sister ( )
A.is B.Are C.Is
4.How ___________ you ( )
A.is B.do C.are
5.Some ___________ are big. ( )
A.family B.families C.familys
6.—Nice to meet you. ( )
—______
A.Thanks. B.Nice to meet you too. C.Hi!
7.This is my friend ______. ( )
A.Mike black B.Mike Black C.mike black
8.Nice ______ you, Wu Binbin. ( )
A.meeting B.to meet C.meet
9.—Is that your sister ( )
—Yes, ________.
A.it isn’t B.it is C.that is
10.This is ________ cousin. ( )
A.me B.you C.my
二、连词成句
11.father this your is ( )
12.small are families some (.)
13.share, we, can (.)
14.to, meet, nice, you (.)
15.friend, good, I, am, a (.)
三、匹配题
Sam 在为我们介绍他的家人,选择合适的句子,填序号。
A.This is my sister. B.This is my mum. C. This is my grandma. D.This is my grandpa. E. This is my dad.
16.
17.
18.
19.
20.
四、阅读理解
阅读 Lily 的家谱,完成下列任务。
21.将下列选项填入对应的方框内。(有2个已给出)
A.mother B.father C. grandmother D.grandfather E. sister F. cousin G. brother H. aunt I. uncle
22.根据图片内容,判断下列句子正(T)误(F)。
(1) Lily has(有) two brothers. ( )
(2) Lily has two cousins. ( )
(3) Lily has a big family. ( )
请你阅读聊天内容,完成下列任务。
Hi, Tiantian and Mengmeng. What can you share with our new friends I have some new books. I can give them to our new friends. Hello, Diandian. I can share my food with our new friends. Good friends can share and help. I can help them study (学习) too. You are nice friends. I can share my new toys with them. Let’s play with them. Let’s be their (他们的) good friends.
23.请你根据聊天内容,选择他们要与新朋友分享的礼物并连线。
24.请你根据聊天内容,判断下列句子正(T)误(F)。
(1) Mengmeng can help their new friends study. ( )
(2) Good friends can share, help and play together. ( )
(3) They are nice to friends. ( )
参考答案
题号 1 2 3 4 5 6 7 8 9 10
答案 A B C C B B B B B C
1.A
【详解】句意:很高兴认识你。(It’s)+形容词+to do sth.做某事是怎样的。too也,two2,A符合题意,故选A。
2.B
【详解】句意:我认真听。本题考查动词辨析,A笑,B听,C分享。根据句意此处表示认真听,listen with care认真听,故选B。
3.C
【详解】句意:那是你的姐姐/妹妹吗?本题考查be动词。主语that是指示代词单数,be用is,位于句首,首字母大写,故选C。
4.C
【详解】句意:你好吗?本题考查be动词。由句子结构可知横线处填be动词,主语是you,be用are,故选C。
5.B
【详解】句意:一些家庭很大。本题考查可数名词及其单复数。由are可知横线处填family的复数families,故选B。
6.B
【详解】句意:—很高兴认识你。 —也很高兴认识你。本题考查交际用语,A谢谢。B也很高兴认识你。C 嗨!根据英语交际习惯,当对方说“很高兴认识你。”时,需用“也很高兴认识你。”回应,故选B。
7.B
【详解】句意:这是我的朋友迈克·布莱克。本题考查专有名词。根据常识可知人名的首字母要大写,B符合题意,故选B。
8.B
【详解】句意:很高兴认识你,吴斌斌。本题考查动词的形式,(主语+be)+形容词+to do sth.做某事怎样。故选B。
9.B
【详解】句意:—那是你的姐姐/妹妹吗?—是的。本题考查一般疑问句的答语。is引导的一般疑问句,主语是that,肯定回答是Yes, it is. 故选B。
10.C
【详解】句意:这是我的堂弟。本题考查形容词性物主代词的用法。A我,B你,C我的,横线处填形容词性物主代词my我的,修饰名词,故选C。
11.
【详解】本题考查句子结构。father爸爸,this这,your你的,is是,根据所给问号,可知句子是疑问句,根据词义连成句子:这是你爸爸吗?故答案为。
12.
【详解】本题考查句子结构。small小的,are是,families家庭,some一些,根据所给句号和单词,可知句子是陈述句,根据词义连成句子:一些家庭很小。故答案为。
13.We can share.
【详解】本题考查句子结构。share分享,we我们,can可以,根据所给句号和单词,可知句子是陈述句,根据词义连成句子:我们可以分享。故答案为We can share.
14.Nice to meet you.
【详解】本题考查句子结构。to动词不定式的标志,meet结识,nice高兴的,you你,根据所给句号和单词,可知句子是省略句,根据词义连成句子:很高兴认识你。故答案为Nice to meet you.
15.I am a good friend.
【详解】本题考查句子结构。friend朋友,good好的,I我,am是,a一个,根据所给句号和单词,可知句子是陈述句,根据词义连成句子:我是一个好朋友。故答案为I am a good friend.
16.E 17.B 18.A 19.C 20.D
【解析】16.图片是萨姆的爸爸,选项E“这是我的爸爸。”句图匹配,故选E。
17.图片是萨姆的妈妈,选项B“这是我的妈妈。”句图匹配,故选B。
18.图片是萨姆的妹妹,选项A“这是我的妹妹。”句图匹配,故选A。
19.图片是萨姆的奶奶,选项C“这是我的奶奶。”句图匹配,故选C。
20.图片是萨姆的爷爷,选项D“这是我的爷爷。”句图匹配,故选D。
21.从上至下、从左至右依次为:
22. F F T
【导语】本文主要介绍了莉莉家的家谱。
21.A妈妈,B爸爸,C奶奶,D爷爷,E姐妹,F表兄弟(姐妹),G兄弟,H婶婶,I叔叔。me我(已给出),与我同辈的是G兄弟、E姐妹;我的上面是A妈妈、B爸爸;与爸爸妈妈同辈的是I叔叔、H婶婶;叔叔婶婶的下面是F表兄弟(姐妹);最上面是D爷爷(已给出),C奶奶。故答案为。
22.(1)题干句意:莉莉有两个兄弟。根据家谱可知莉莉有一个兄弟,题干与家谱不符,故答案为F。
(2)题干句意:莉莉有两个表兄弟(姐妹)。根据家谱可知莉莉有一个表兄弟(姐妹),题干与家谱不符,故答案为F。
(3)题干句意:莉莉有一个大家庭。根据家谱可知莉莉有一个大家庭,题干与家谱相符,故答案为T。
23. 24. F T T
【导语】本文主要介绍了三位小朋友在聊天中讨论如何与新朋友分享礼物并一起玩耍。
23.根据“ I have some new books. I can give them to our new friends.”可知 要分享新书;
根据“Hello, Diandian. I can share my food with our new friends.”可知要分享食物;
根据“I can share my new toys with them.” 可知 要分享新玩具;故答案为 。
24.(1)句意:Mengmeng可以帮助他们的新朋友学习。根据“I can help them study (学习) too.”可知Tiantian可以帮助新朋友学习,故答案为F。
(2)句意:好朋友可以一起分享、帮助和玩耍。根据“Good friends can share and help.”和“Let’s play with them.”可知好朋友可以一起分享、帮助和玩耍,故答案为T。
(3)句意:他们对朋友很好。根据“You are nice friends.你们真是好朋友。”可推知他们对朋友的态度友好,故答案为T。
3.2 函数的基本性质--函数的单调性和最大(小)值 常见题型总结练 2025-2026学年数学高一年级人教A版(2019)必修第一册
一:图象法求单调区间
1.如图是函数的图象,则函数的单调递减区间为( )
A. B. C. D.
2.函数的单调递增区间是( )
A. B. C. D.
3.已知函数的图象如图所示,则该函数的减区间为( )

A. B.
C. D.
4.定义在上的函数的单调递减区间是 .
二:函数单调性的判断
1.已知四个函数的图象如图所示,其中在定义域内具有单调性的函数是( )
A. B.
C. D.
2.(多选题)在区间上为减函数的是( )
A. B. C. D.
3.(多选题)下列函数中,在R上是增函数的是( )
A.y=|x| B.y=x
C.y=x2 D.y=
4.下列函数中,在上单调递增的是( )
A. B. C. D.
三:证明或判断函数的单调性
1.下列函数中,满足“对任意,,当时,都有”的是( )
A. B. C. D.
2.函数在上的最小值为( )
A.1 B. C. D.
3.下列函数中,在区间上为增函数的是( )
A. B. C. D.
4.已知函数的定义域为,则下列说法中正确的是( )
A.若满足,则在区间内单调递增
B.若满足,则在区间内单调递减
C.若在区间内单调递增,在区间内单调递增,则在区间内单调递增
D.若在区间内单调递增,在区间内单调递增,则在区间内单调递增
四:求函数的单调区间
1.函数的单调增区间为( )
A. B. C.和 D.
2.函数的单调递增区间是( )
A.(,1] B.[1,) C.[1,4] D.[2,1]
3.已知,则函数的单调增区间是 .
4.(24-25高一上·全国·课堂例题)已知函数,,根据图象写出它的单调区间..
五:函数单调性的应用
1.已知函数在区间上是减函数,则整数a的取值可以为( )
A. B. C.0 D.1
2.若函数在区间上单调递减,则实数的取值范围是( )
A. B. C. D.
3.若函数(为实数)是R上的减函数,则( )
A. B. C. D.
4.若在上为减函数,则实数的取值范围为( )
A. B. C. D.
六:利用单调性比较大小或解不等式
1.若函数在上单调递增,且,则实数的取值范围是( )
A. B. C. D.
2.已知函数f(x)的定义域为R,且对任意的x1,x2且x1≠x2都有[f(x1)﹣f(x2)](x1﹣x2)>0成立,若f(x2+1)>f(m2﹣m﹣1)对x∈R恒成立,则实数m的取值范围是(  )
A.(﹣1,2) B.[﹣1,2]
C.(﹣∞,﹣1)∪(2,+∞) D.(﹣∞,﹣1]∪[2,+∞)
3.设函数在区间上有意义,任意两个不相等的实数,下列各式中,能够确定函数在区间上单调递增的是( )
A. B.
C. D.
4.(多选题)设函数在上为减函数,则( )
A.
B.
C.
D.
E.
函数的最大(小)值
一:利用图象求函数最值
1.定义在R上的偶函数在[0,7]上是增函数,在[7,+∞)上是减函数,又f(7)=6,则f(x)(  )
A.在[-7,0]上是增函数,且最大值是6
B.在[-7,0]上是减函数,且最大值是6
C.在[-7,0]上是增函数,且最小值是6
D.在[-7,0]上是减函数,且最小值是6
2.函数y=f(x)在[-2,2]上的图象如图所示,则此函数的最小值、最大值分别是(  ).
A.f(-2),0 B.0,2 C.f(-2),2 D.f(2),2
3.若函数,它的最大值为,则实数的取值范围是( )
A. B. C. D.
4.函数在区间上的值域为
二:利用单调性求函数最值
1.函数y=在[2,3]上的最小值为( )
A.2 B.
C. D.-
2.已知函数在区间上的最大值为A,最小值为B,则A-B等于( )
A. B. C.1 D.-1
3.函数在区间上的最小值为( )
A. B.1 C. D.2
4.若函数y=在区间[2,4]上的最小值为5,则k的值为(  )
A.5 B.8
C.20 D.无法确定
三:求二次函数的最值
1.已知函数在区间上有最大值5,最小值1,则的值等于( )
A. B.1 C.2 D.3
2.定义域为R的函数满足,且当时,,则当时,的最小值为(  )
A. B. C. D.
3.(多选题)关于函数()在上最小值的说法不正确的是( )
A.4 B.
C.与的取值有关 D.不存在
4.(多选题)已知在区间上的最小值为,则可能的取值为( )
A. B.3 C. D.1
四:判断二次函数的单调性和求解单调区间
1.函数在区间上递增,则实数的取值范围是(  )
A. B. C. D.
2.若函数在上是减函数,则实数m的取值范围是( )
A. B. C. D.
3.若函数在上是减函数,则实数m的取值范围是( )
A. B. C. D.
4.(多选题)已知函数的定义域为,值域为,则的可能的取值是( )
A.1 B.2 C.3 D.4
五:函数最值的实际应用
1.如图所示是函数的图象,图中曲线与直线无限接近但是永不相交,则以下描述正确的是( )
A.函数的定义域为
B.函数的值域为
C.此函数在定义域中不单调
D.对于任意的,都有唯一的自变量x与之对应
2.若是偶函数,且对任意∈且,都有,则下列关系式中成立的是( )
A. B.
C. D.
3.向一个圆台形的容器(如图所示)中倒水,且任意相等的时间间隔内所倒的水体积相等,记容器内水面的高度y随时间t变化的函数为,则以下函数图象中,可能是的图象的是(  ).
A. B.
C. D.
4.(23-24高一上·全国·课后作业)一水池有2个进水口,1个出水口,进出水速度如图甲、乙所示.某天0点到6点,该水池的蓄水量如图丙所示(至少打开一个水口).

给出以下4个论断,其中正确的是(  )
A.0点到3点只进水不出水
B.3点到4点不进水只出水
C.3点到4点只有一个进水口进水
D.4点到6点不进水也不出水
答案
一:图象法求单调区间
根据题意,结合函数图象可得函数的单调递减区间为:.
故选:.
函数的定义域需要满足,解得定义域为,
因为在上单调递增,所以在上单调递增,
故选:D.
函数的图象在区间和是下降的,在区间和是上升的,
故该函数的减区间为.
故选:C.
,取
如图所示:
单调递减区间是
故答案为
二:函数单调性的判断
对于A,函数分别在及上单调递增,
但存在,使,故A不符合题意;
对于C,函数分别在及上单调递增,
但存在,使,故C不符合题意;
对于D,函数分别在及上单调递减,
但存在,,使,故D不符合题意;
只有B完全符合增函数的定义,具有单调性.
故选:B.
解:函数是上的减函数,
函数在区间上单调递减,
函数在区间单调递减.
函数在区间单调递增,
所以A,B,C符合要求;D项不符合要求.
故选:ABC.
解:选项A,,当x<0时单调递减,不符合题意;
选项B,显然在R上是增函数,符合题意;
选项C,y=x2,当x<0时单调递减,不符合题意;
选项D,作出草图如下,实线部分,观察图象可得函数在R上为增函数,符合题意.

故选:BD
对于A中,函数在上单调递减,所以A不符合题意;
对于B中,函数在上单调递减,单调递增,所以B符合题意;
对于C中,函数在上单调递减,所以C不符合题意;
对于D中,时函数在上单调递减,所以D符合题意.
故选:D.
三:证明或判断函数的单调性
因为对任意,,当时,都有,所以在上为增函数,
A选项,在上为增函数,不符合题意.
B选项,在上为减函数,不符合题意.
C选项,在上为增函数,符合题意.
D选项,在上为增函数,不符合题意.
故选:C.
因为在上单调递增,且恒成立,
可知函数在上单调递减,
当时,,所以函数在上的最小值为.
故选:B.
选项A:,开口向下,对称轴为,所以函数在区间上为减函数,故选项A错误;
选项B:,所以函数在区间上为增函数,故选项B正确;
选项C:可以看作由函数向左平移一个单位得到,所以函数在区间上为减函数,故选项C错误;
选项D:,开口向下,对称轴为,所以函数在区间上为减函数,故选项D错误.
故选:B.
对于AB:函数满足,或,特值并不具有任意性,
所以区间端点值的大小关系并不能确定函数在区间上的单调性,故A,B错误;
对于C:区间和有交集,故函数在区间内单调递增,故C正确,
对于D:区间和没有交集,故不能确定函数在区间内的单调性.
例如在和上递增,但,故D错误.
故选:C.
四:求函数的单调区间
由可得且,
因为开口向下,其对称轴为,
所以的减区间为和
所以的单调增区间为和
故选:C
由,得,解得,
令,则,
因为在上递增,在上递减,而在上递增,
所以在上递增,在上递减,
所以的单调递增区间是,
故选:D
解:因为,对称轴为 ,又开口向下,
又,∴函数的单调递增区间为.
故答案为:

函数图象如图所示.
由图象可知,函数的单调递增区间为,单调递减区间为.
五:函数单调性的应用
解:由题意可得,解得,
∴整数a的取值可以为.
故选:A
函数的对称轴为,
由题意可知,解得,
所以实数的取值范围是.
故选:B.
由题意知,解得
故选:D
为上的减函数, 时, 递减,即,①, 时, 递减,即,②且 ,③ 联立①②③解得, .
故选:C.
六:利用单调性比较大小或解不等式
在上单调递增,,,解得:,
实数的取值范围为.
故选:C.
解:由题意,可知:
∵对任意的x1,x2且x1≠x2都有[f(x1)﹣f(x2)](x1﹣x2)>0成立,
∴函数f(x)在定义域R上为增函数.
又∵f(x2+1)>f(m2﹣m﹣1)对x∈R恒成立,
∴x2+1>m2﹣m﹣1,
∴m2﹣m﹣1<1,
即:m2﹣m﹣2<0.
解得﹣1<m<2.
故选:A.
解:函数在区间上单调递增,则任意两个不相等的实数,与应该同号,所以,
故选:C.
由题意,函数在上为减函数.
当时,,,,
则,,,故ACD错误;
对于B,因为,所以,
所以,故B正确;
对于E,因为,所以,故E正确.
故选:BE.
函数的最大(小)值
一:利用图象求函数最值
∵函数是偶函数,而且在[0,7]上为增函数,
∴函数在[-7,0]上是减函数.
又∵函数在x=7和x=-7的左边是增函数,右边是减函数,且f(7)=f(-7),
∴最大值为f(7)=f(-7)=6.
故选B.
试题分析:由图观察可知函数在和上单调递增,在上单调递减.
所以函数在处取的最大值为.
又由图观察可知,所以函数的最小值为.故C正确.
由题意,函数表示开口向上,且对称轴为的抛物线,
要使得当,函数的最大值为,则满足且,
解得,所以实数的取值范围是.
故选D.
由题:,函数在单调递减,在单调递减,
可以看成函数向右平移1个单位,再向上平移1个单位,作出图象:
所以函数在递减,在递减,,,
所以函数的值域为.
故答案为:
二:利用单调性求函数最值
y=在[2,3]上单调递减,所以x=3时取最小值为,
故选:B.
函数在区间是减函数,
所以时有最大值为1,即A=1,
时有最小值,即B=,
则,
故选:A.
由知,在上是增函数,所以在上递增,所以.
故选:C
∴或∴k=20.选C.
三:求二次函数的最值
由题意,函数,
可得函数在区间上单调递增,在区间上单调递减,
当时,则函数在区间上单调递增,其最小值为,
显然不合题意;
当时,则函数在区间上单调递增,在区间上单调递减,
故函数的最大值为,
因为,令,即,即,
解得或,
又因为,所以.
故选: D.
设,则,则,又,∴,∴当时,取到最小值为.
由题意得:二次函数()的对称轴为,且函数图象开口向上,
则该函数在上单调递减,
所以,
故选:BCD.
解:因为函数,函数的对称轴为,开口向上,
又在区间上的最小值为,
所以当时,,解得(舍去)或;
当,即时,,解得(舍去)或;
当,即时,.
综上,的取值集合为.
故选:BC.
四:判断二次函数的单调性和求解单调区间
函数,二次函数图像开口向上,
若在区间上递增,
则对称轴x=-a,
即a
故选D.
函数的对称轴为,
由于在上是减函数,所以.
故选:B
函数的对称轴为,
由于在上是减函数,所以.
故选:B
因为函数在区间上单调递减,在上单调递增,
所以在R上的最小值为,且,
(1)当时,由的值域为,可知必有
所以且,解得,此时
(2)当时,由的值域为,可知必有
所以且,解得,此时
综上可知,
所以的可能的取值为
故选:BCD
五:函数最值的实际应用
1 由图知:的定义域为,值域为,A、B错;
显然在分别递增,但在定义域上不单调,C对;
显然,对应自变量x不唯一,D错.
故选:C
∵对任意的x1,x2∈(0,+∞),都有,
∴函数f(x)在(0,+∞)上单调递减,
又∵,
∴,
又∵f(x)是偶函数,∴f(﹣)=f().
∴.
故选:A.
由容器的形状可知,在相同的变化时间内,高度的增加量越来越小,
故函数的图象越来越平缓,
故选:D.
由甲,乙图得进水速度为1,出水速度为2,
对A,由题意可知在0点到3点这段时间,每小时进水量为2,即2个进水口同时进水且不出水,所以A正确;
对BC,从丙图可知3点到4点水量减少了1,所以应该是有一个进水口进水,同时出水口也出水,故B错误C正确;
对D,当两个进水口同时进水,出水口也同时出水时,水量保持不变;也可由题干中的“至少打开一个水口”知D错,故D错误.
故选:AC
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)
同课章节目录