2016年人教版九年级数学上册同步测试:24.1
圆的有关性质
一、选择题(共9小题)
1.如图是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB宽为8cm,水面最深地方的高度为2cm,则该输水管的半径为( )
A.3cm
B.4cm
C.5cm
D.6cm
2.(绍兴是著名的桥乡,如图,石拱桥的桥顶到水面的距离CD为8m,桥拱半径OC为5m,则水面宽AB为( )
A.4m
B.5m
C.6m
D.8m
3.将一盛有不足半杯水的圆柱形玻璃水杯拧紧杯盖后放倒,水平放置在桌面上,水杯的底面如图所示,已知水杯内径(图中小圆的直径)是8cm,水的最大深度是2cm,则杯底有水部分的面积是( )
A.(π﹣4)cm2
B.(π﹣8)cm2
C.(π﹣4)cm2
D.(π﹣2)cm2
4.如图,一条公路的转变处是一段圆弧(即图中弧CD,点O是弧CD的圆心),其中CD=600米,E为弧CD上一点,且OE⊥CD,垂足为F,OF=米,则这段弯路的长度为( )
A.200π米
B.100π米
C.400π米
D.300π米
5.在直径为200cm的圆柱形油槽内装入一些油以后,截面如图.若油面的宽AB=160cm,则油的最大深度为( )
A.40cm
B.60cm
C.80cm
D.100cm
6.在半径为13的⊙O中,弦AB∥CD,弦AB和CD的距离为7,若AB=24,则CD的长为( )
A.10
B.4
C.10或4
D.10或2
7.如图,AB是⊙O的直径,CD为弦,CD⊥AB于E,则下列结论中不成立的是( )
A.∠A=∠D
B.CE=DE
C.∠ACB=90°
D.CE=BD
8.如图,⊙O的直径AB=12,CD是⊙O的弦,CD⊥AB,垂足为P,且BP:AP=1:5,则CD的长为( )
A.4
B.8
C.2
D.4
9.如图,⊙O的半径是3,点P是弦AB延长线上的一点,连接OP,若OP=4,∠APO=30°,则弦AB的长为( )
A.2
B.
C.2
D.
二、填空题(共15小题)
10.如图,水平放置的圆柱形排水管道的截面直径是1m,其中水面的宽AB为0.8m,则排水管内水的深度为 m.
11.赵州桥是我国建筑史上的一大创举,它距今约1400年,历经无数次洪水冲击和8次地震却安然无恙.如图,若桥跨度AB约为40米,主拱高CD约10米,则桥弧AB所在圆的半径R= 米.
12.如图是一个古代车轮的碎片,小明为求其外圆半径,连接外圆上的两点A、B,并使AB与车轮内圆相切于点D,半径为OC⊥AB交外圆于点C.测得CD=10cm,AB=60cm,则这个车轮的外圆半径是 .
13.一条排水管的截面如图所示,已知排水管的半径OA=1m,水面宽AB=1.2m,某天下雨后,水管水面上升了0.2m,则此时排水管水面宽CD等于 m.
14.如图,小丽荡秋千,秋千链子的长OA为2.5米,秋千向两边摆动的角度相同,摆动的水平距离AB为3米,则秋千摆至最高位置时与最低价位置时的高度之差(即CD)为 米.
15.如图,水平放置的圆柱形排水管道的截面直径是1m,其中水面的宽AB为0.8m,则排水管内水的深度为
m.
16.把球放在长方体纸盒内,球的一部分露出盒外,其主视图如图.⊙O与矩形ABCD的边BC,AD分别相切和相交(E,F是交点),已知EF=CD=8,则⊙O的半径为 .
17.如图,AB为⊙O的直径,弦CD⊥AB于点E,若CD=6,且AE:BE=1:3,则AB= .
18.如图是一个古代车轮的碎片,小明为求其外圆半径,连结外圆上的两点A、B,并使AB与车轮内圆相切于点D,做CD⊥AB交外圆于点C.测得CD=10cm,AB=60cm,则这个车轮的外圆半径为 cm.
19.如图是一圆形水管的截面图,已知⊙O的半径OA=13,水面宽AB=24,则水的深度CD是 .
20.平面内有四个点A、O、B、C,其中∠AOB=120°,∠ACB=60°,AO=BO=2,则满足题意的OC长度为整数的值可以是 .
21.如图,AB是⊙O的弦,OC⊥AB于点C,连接OA、OB.点P是半径OB上任意一点,连接AP.若OA=5cm,OC=3cm,则AP的长度可能是 cm(写出一个符合条件的数值即可)
22.如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为 cm.
23.如图,在平面直角坐标系中,点O为坐标原点,点P在第一象限,⊙P与x轴交于O,A两点,点A的坐标为(6,0),⊙P的半径为,则点P的坐标为 .
24.如图,已知⊙O的直径AB=6,E、F为AB的三等分点,M、N为上两点,且∠MEB=∠NFB=60°,则EM+FN= .
三、解答题(共6小题)
25.如图所示,该小组发现8米高旗杆DE的影子EF落在了包含一圆弧型小桥在内的路上,于是他们开展了测算小桥所在圆的半径的活动.小刚身高1.6米,测得其影长为2.4米,同时测得EG的长为3米,HF的长为1米,测得拱高(弧GH的中点到弦GH的距离,即MN的长)为2米,求小桥所在圆的半径.
26.如图所示,某窗户由矩形和弓形组成,已知弓形的跨度AB=3m,弓形的高EF=1m,现计划安装玻璃,请帮工程师求出所在圆O的半径r.
27.在⊙O中,AB为直径,点C为圆上一点,将劣弧沿弦AC翻折交AB于点D,连结CD.
(1)如图1,若点D与圆心O重合,AC=2,求⊙O的半径r;
(2)如图2,若点D与圆心O不重合,∠BAC=25°,请直接写出∠DCA的度数.
28.如图,已知△ABC是⊙O的内接三角形,AB=AC,点P是的中点,连接PA,PB,PC.
(1)如图①,若∠BPC=60°.求证:AC=AP;
(2)如图②,若sin∠BPC=,求tan∠PAB的值.
29.)如图,CD为⊙O的直径,CD⊥AB,垂足为点F,AO⊥BC,垂足为点E,AO=1.
(1)求∠C的大小;
(2)求阴影部分的面积.
30.如图,AB是⊙O的直径,弦CD交AB于点E,OF⊥AC于点F,
(1)请探索OF和BC的关系并说明理由;
(2)若∠D=30°,BC=1时,求圆中阴影部分的面积.(结果保留π)
2016年人教版九年级数学上册同步测试:24.1
圆的有关性质
参考答案与试题解析
一、选择题(共9小题)
1.如图是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB宽为8cm,水面最深地方的高度为2cm,则该输水管的半径为( )
A.3cm
B.4cm
C.5cm
D.6cm
【考点】垂径定理的应用;勾股定理.
【分析】过点O作OD⊥AB于点D,连接OA,由垂径定理可知AD=AB,设OA=r,则OD=r﹣2,在Rt△AOD中,利用勾股定理即可求r的值.
【解答】解:如图所示:过点O作OD⊥AB于点D,连接OA,
∵OD⊥AB,
∴AD=AB=×8=4cm,
设OA=r,则OD=r﹣2,
在Rt△AOD中,OA2=OD2+AD2,即r2=(r﹣2)2+42,
解得r=5cm.
故选C.
【点评】本题考查的是垂径定理的应用及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
2.绍兴是著名的桥乡,如图,石拱桥的桥顶到水面的距离CD为8m,桥拱半径OC为5m,则水面宽AB为( )
A.4m
B.5m
C.6m
D.8m
【考点】垂径定理的应用;勾股定理.
【分析】连接OA,根据桥拱半径OC为5m,求出OA=5m,根据CD=8m,求出OD=3m,根据AD=求出AD,最后根据AB=2AD即可得出答案.
【解答】解:连接OA,
∵桥拱半径OC为5m,
∴OA=5m,
∵CD=8m,
∴OD=8﹣5=3m,
∴AD===4m,
∴AB=2AD=2×4=8(m);
故选;D.
【点评】此题考查了垂径定理的应用,关键是根据题意做出辅助线,用到的知识点是垂径定理、勾股定理.
3.将一盛有不足半杯水的圆柱形玻璃水杯拧紧杯盖后放倒,水平放置在桌面上,水杯的底面如图所示,已知水杯内径(图中小圆的直径)是8cm,水的最大深度是2cm,则杯底有水部分的面积是( )
A.(π﹣4)cm2
B.(π﹣8)cm2
C.(π﹣4)cm2
D.(π﹣2)cm2
【考点】垂径定理的应用;扇形面积的计算.
【分析】作OD⊥AB于C,交小⊙O于D,则CD=2,由垂径定理可知AC=CB,利用正弦函数求得∠OAC=30°,进而求得∠AOC=120°,利用勾股定理即可求出AB的值,从而利用S扇形﹣S△AOB求得杯底有水部分的面积.
【解答】解:作OD⊥AB于C,交小⊙O于D,则CD=2,AC=BC,
∵OA=OD=4,CD=2,
∴OC=2,
在RT△AOC中,sin∠OAC==,
∴∠OAC=30°,
∴∠AOB=120°,
AC==2,
∴AB=4,
∴杯底有水部分的面积=S扇形﹣S△AOB=﹣××2=(π﹣4)cm2
故选A.
【点评】本题考查的是垂径定理的应用及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
4.如图,一条公路的转变处是一段圆弧(即图中弧CD,点O是弧CD的圆心),其中CD=600米,E为弧CD上一点,且OE⊥CD,垂足为F,OF=米,则这段弯路的长度为( )
A.200π米
B.100π米
C.400π米
D.300π米
【考点】垂径定理的应用;勾股定理;弧长的计算.
【分析】设这段弯路的半径为R米,OF=米,由垂径定理得CF=CD=×600=300.由勾股定理可得OC2=CF2+OF2,解得R的值,进而得出这段弧所对圆心角,求出弧长即可.
【解答】解:设这段弯路的半径为R米
OF=米,
∵OE⊥CD
∴CF=CD=×600=300
根据勾股定理,得OC2=CF2+OF2
即R2=3002+(300)2
解之,得R=600,
∴sin∠COF==,
∴∠COF=30°,
∴这段弯路的长度为:
=200π(m).
故选:A.
【点评】此题主要考查了垂径定理的应用,根据已知得出圆的半径以及圆心角是解题关键.
5.在直径为200cm的圆柱形油槽内装入一些油以后,截面如图.若油面的宽AB=160cm,则油的最大深度为( )
A.40cm
B.60cm
C.80cm
D.100cm
【考点】垂径定理的应用;勾股定理.
【分析】连接OA,过点O作OE⊥AB,交AB于点M,由垂径定理求出AM的长,再根据勾股定理求出OM的长,进而可得出ME的长.
【解答】解:连接OA,过点O作OE⊥AB,交AB于点M,
∵直径为200cm,AB=160cm,
∴OA=OE=100cm,AM=80cm,
∴OM===60cm,
∴ME=OE﹣OM=100﹣60=40cm.
故选:A.
【点评】本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
6.在半径为13的⊙O中,弦AB∥CD,弦AB和CD的距离为7,若AB=24,则CD的长为( )
A.10
B.4
C.10或4
D.10或2
【考点】垂径定理;勾股定理.
【专题】分类讨论.
【分析】根据题意画出图形,由于AB和CD的位置不能确定,故应分AB与CD在圆心O的同侧和AB与CD在圆心O的异侧两种情况进行讨论.
【解答】解:当AB与CD在圆心O的同侧时,如图1所示:
过点O作OF⊥CD于点F,交AB于点E,连接OA,OC,
∵AB∥CD,OF⊥CD,
∴OE⊥AB,
∴AE=AB=×24=12,
在Rt△AOE中,
OE===5,
∴OF=OE+EF=5+7=12,
在Rt△OCF中,CF===5,
∴CD=2CF=2×5=10;
当AB与CD在圆心O的异侧时,如图2所示:
过点O作OF⊥CD于点F,反向延长交AB于点E,连接OA,OC,
∵AB∥CD,OF⊥CD,
∴OE⊥AB,
∴AE=AB=×24=12,
在Rt△AOE中,
OE===5,
∴OF=EF﹣OE=7﹣5=2,
在Rt△OCF中,CF===,
∴CD=2CF=2×=2.
故CD的长为10或2.
故选D.
【点评】本题考查的是垂径定理,在解答此类题目时要注意进行分类讨论,不要漏解.
7.如图,AB是⊙O的直径,CD为弦,CD⊥AB于E,则下列结论中不成立的是( )
A.∠A=∠D
B.CE=DE
C.∠ACB=90°
D.CE=BD
【考点】垂径定理.
【专题】压轴题.
【分析】根据垂径定理,直径所对的角是直角,以及同弧所对的圆周角相等,即可判断.
【解答】解:∵AB是⊙O的直径,CD为弦,CD⊥AB于E.∴CE=DE.故B成立;
A、根据同弧所对的圆周角相等,得到∠A=∠D,故该选项正确;
C、根据直径所对的圆周角是直角即可得到,故该选项正确;
D、CE=DE,而△BED是直角三角形,则DE<BD,则该项不成立.
故选D.
【点评】本题主要考查了垂径定理的基本内容,以及直径所对的圆周角是直角.
8.如图,⊙O的直径AB=12,CD是⊙O的弦,CD⊥AB,垂足为P,且BP:AP=1:5,则CD的长为( )
A.4
B.8
C.2
D.4
【考点】垂径定理;勾股定理.
【专题】探究型.
【分析】先根据⊙O的直径AB=12求出OB的长,再由BP:AP=1:5求出BP的长,故可得出OP的长,连接OC,在Rt△OPC中利用勾股定理可求出PC的长,再根据垂径定理即可得出结论.
【解答】解:∵⊙O的直径AB=12,
∴OB=AB=6,
∵BP:AP=1:5,
∴BP=AB=×12=2,
∴OP=OB﹣BP=6﹣2=4,
∵CD⊥AB,
∴CD=2PC.
如图,连接OC,在Rt△OPC中,
∵OC=6,OP=4,
∴PC===2,
∴CD=2PC=2×2=4.
故选D.
【点评】本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
9.如图,⊙O的半径是3,点P是弦AB延长线上的一点,连接OP,若OP=4,∠APO=30°,则弦AB的长为( )
A.2
B.
C.2
D.
【考点】垂径定理;含30度角的直角三角形;勾股定理.
【专题】压轴题.
【分析】先过O作OC⊥AP,连结OB,根据OP=4,∠APO=30°,求出OC的值,在Rt△BCO中,根据勾股定理求出BC的值,即可求出AB的值.
【解答】解:过O作OC⊥AP于点C,连结OB,
∵OP=4,∠APO=30°,
∴OC=sin30°×4=2,
∵OB=3,
∴BC===,
∴AB=2;
故选A.
【点评】此题考查了垂经定理,用到的知识点是垂经定理、含30度角的直角三角形、勾股定理,解题的关键是作出辅助线,构造直角三角形.
二、填空题(共15小题)
10.如图,水平放置的圆柱形排水管道的截面直径是1m,其中水面的宽AB为0.8m,则排水管内水的深度为 0.8 m.
【考点】垂径定理的应用;勾股定理.
【分析】过O点作OC⊥AB,C为垂足,交⊙O于D,连OA,根据垂径定理得到AC=BC=0.5m,再在Rt△AOC中,利用勾股定理可求出OC,即可得到CD的值,即水的深度.
【解答】解:如图,过O点作OC⊥AB,C为垂足,交⊙O于D、E,连OA,
OA=0.5m,AB=0.8m,
∵OC⊥AB,
∴AC=BC=0.4m,
在Rt△AOC中,OA2=AC2+OC2,
∴OC=0.3m,
则CE=0.3+0.5=0.8m,
故答案为:0.8.
【点评】本题考查了垂径定理的应用,掌握垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧是解题的关键,注意勾股定理的运用.
11.赵州桥是我国建筑史上的一大创举,它距今约1400年,历经无数次洪水冲击和8次地震却安然无恙.如图,若桥跨度AB约为40米,主拱高CD约10米,则桥弧AB所在圆的半径R= 25 米.
【考点】垂径定理的应用;勾股定理.
【分析】根据垂径定理和勾股定理求解即可.
【解答】解:根据垂径定理,得AD=AB=20米.
设圆的半径是r,根据勾股定理,
得R2=202+(R﹣10)2,
解得R=25(米).
故答案为25.
【点评】此题综合运用了勾股定理以及垂径定理.注意构造由半径、半弦、弦心距组成的直角三角形进行有关的计算.
12.如图是一个古代车轮的碎片,小明为求其外圆半径,连接外圆上的两点A、B,并使AB与车轮内圆相切于点D,半径为OC⊥AB交外圆于点C.测得CD=10cm,AB=60cm,则这个车轮的外圆半径是 50cm .
【考点】垂径定理的应用;勾股定理;切线的性质.
【分析】根据垂径定理求得AD=30cm,然后根据勾股定理即可求得半径.
【解答】解:如图,连接OA,
∵CD=10cm,AB=60cm,
∵CD⊥AB,
∴OC⊥AB,
∴AD=AB=30cm,
∴设半径为r,则OD=r﹣10,
根据题意得:r2=(r﹣10)2+302,
解得:r=50.
∴这个车轮的外圆半径长为50cm.
故答案为:50cm.
【点评】本题考查了垂径定理的应用以及勾股定理的应用,作出辅助线构建直角三角形是本题的关键.
13.一条排水管的截面如图所示,已知排水管的半径OA=1m,水面宽AB=1.2m,某天下雨后,水管水面上升了0.2m,则此时排水管水面宽CD等于 1.6 m.
【考点】垂径定理的应用;勾股定理.
【分析】先根据勾股定理求出OE的长,再根据垂径定理求出CF的长,即可得出结论.
【解答】解:如图:
∵AB=1.2m,OE⊥AB,OA=1m,
∴OE=0.8m,
∵水管水面上升了0.2m,
∴OF=0.8﹣0.2=0.6m,
∴CF=m,
∴CD=1.6m.
故答案为:1.6.
【点评】本题考查的是垂径定理的应用,熟知平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解答此题的关键.
14.如图,小丽荡秋千,秋千链子的长OA为2.5米,秋千向两边摆动的角度相同,摆动的水平距离AB为3米,则秋千摆至最高位置时与最低价位置时的高度之差(即CD)为 0.5 米.
【考点】垂径定理的应用;勾股定理.
【分析】由题意知,秋千摆至最低点时,点C为弧AB的中点,由垂径定理知AB⊥OC,AD=BD=AB=1.5米.再根据勾股定理求得OD即可.
【解答】解:∵点C为弧AB的中点,O为圆心
由垂径定理知:AB⊥OC,AD=BD=AB=1.5米,
在Rt△OAD中,根据勾股定理,OD==2(米),
∴CD=OC﹣OD=2.5﹣2=0.5(米);
故答案为0.5.
【点评】本题考查了垂径定理的应用,勾股定理的应用,将实际问题抽象为几何问题是解题的关键.
15.如图,水平放置的圆柱形排水管道的截面直径是1m,其中水面的宽AB为0.8m,则排水管内水的深度为 0.2
m.
【考点】垂径定理的应用;勾股定理.
【分析】过O作OC垂直于AB,利用垂径定理得到C为AB的中点,在直角三角形AOC中,由水面高度与半径求出OC的长,即可得出排水管内水的深度.
【解答】解:过O作OC⊥AB,交AB于点C,可得出AC=BC=AB=0.4m,
由直径是1m,可知半径为0.5m,
在Rt△AOC中,根据勾股定理得:OC===0.3(m),
则排水管内水的深度为:0.5﹣0.3=0.2(m).
故答案为:0.2.
【点评】此题考查了垂径定理的应用,以及勾股定理,熟练掌握定理是解本题的关键.
16.把球放在长方体纸盒内,球的一部分露出盒外,其主视图如图.⊙O与矩形ABCD的边BC,AD分别相切和相交(E,F是交点),已知EF=CD=8,则⊙O的半径为 5 .
【考点】垂径定理的应用;勾股定理;切线的性质.
【专题】几何图形问题.
【分析】首先由题意,⊙O与BC相切,记切点为G,作直线OG,分别交AD、劣弧于点H、I,再连接OF,易求得FH的长,然后设求半径为r,则OH=8﹣r,然后在Rt△OFH中,r2﹣(16﹣r)2=82,解此方程即可求得答案.
【解答】解:由题意,⊙O与BC相切,记切点为G,作直线OG,分别交AD、劣弧于点H、I,再连接OF,
在矩形ABCD中,AD∥BC,而IG⊥BC,
∴IG⊥AD,
∴在⊙O中,FH=EF=4,
设求半径为r,则OH=8﹣r,
在Rt△OFH中,r2﹣(8﹣r)2=42,
解得r=5,
故答案为:5.
【点评】此题考查了切线的性质、垂径定理以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意掌握方程思想与数形结合思想的应用.
17.如图,AB为⊙O的直径,弦CD⊥AB于点E,若CD=6,且AE:BE=1:3,则AB= 4 .
【考点】垂径定理;勾股定理.
【专题】计算题.
【分析】根据AE与BE比值,设出AE为x与BE为3x,由AE+BE表示出AB,进而表示出OA与OB,由OA﹣AE表示出OE,连接OC,根据AB与CD垂直,利用垂径定理得到E为CD中点,求出CE的长,在直角三角形OCE中,利用勾股定理列出方程,求出方程的解得到x的值,即可确定出AB的长.
【解答】解:连接OC,
根据题意设AE=x,则BE=3x,AB=AE+EB=4x,
∴OC=OA=OB=2x,OE=OA﹣AE=x,
∵AB⊥CD,∴E为CD中点,即CE=DE=CD=3,
在Rt△CEO中,利用勾股定理得:(2x)2=32+x2,
解得:x=,
则AB=4x=4.
故答案为:4
【点评】此题考查了垂径定理,以及勾股定理,熟练掌握定理是解本题的关键.
18.如图是一个古代车轮的碎片,小明为求其外圆半径,连结外圆上的两点A、B,并使AB与车轮内圆相切于点D,做CD⊥AB交外圆于点C.测得CD=10cm,AB=60cm,则这个车轮的外圆半径为 50 cm.
【考点】垂径定理的应用;勾股定理;切线的性质.
【专题】几何图形问题.
【分析】设点O为外圆的圆心,连接OA和OC,根据CD=10cm,AB=60cm,设半径为r,则OD=r﹣10,根据垂径定理得:r2=(r﹣10)2+302,求得r的值即可.
【解答】解:如图,设点O为外圆的圆心,连接OA和OC,
∵CD=10cm,AB=60cm,
∴设半径为r,则OD=r﹣10,
根据题意得:r2=(r﹣10)2+302,
解得:r=50,
故答案为:50.
【点评】本题考查了垂径定理的应用,解题的关键是正确构造直角三角形.
19.如图是一圆形水管的截面图,已知⊙O的半径OA=13,水面宽AB=24,则水的深度CD是 8 .
【考点】垂径定理的应用;勾股定理.
【分析】先根据垂径定理求出AC的长,再根据勾股定理求出OC的长,根据CD=OD﹣OC即可得出结论.
【解答】解:∵⊙O的半径OA=13,水面宽AB=24,OD⊥AB,
∴OD=OA=13,AC=AB=12,
在Rt△AOC中,OC===5,
∴CD=OD﹣OC=13﹣5=8.
故答案为:8.
【点评】本题考查的是垂径定理的应用,解答此类问题时往往是找出直角三角形,利用勾股定理求解.
20.平面内有四个点A、O、B、C,其中∠AOB=120°,∠ACB=60°,AO=BO=2,则满足题意的OC长度为整数的值可以是 2,3,4 .
【考点】垂径定理;等边三角形的判定与性质.
【专题】压轴题.
【分析】分类讨论:如图1,根据圆周角定理可以推出点C在以点O为圆心的圆上;
如图2,根据已知条件可知对角∠AOB+∠ACB=180°,则四个点A、O、B、C共圆.分类讨论:如图1,如图2,在不同的四边形中,利用垂径定理、等边△MAO的性质来求OC的长度.
【解答】解:如图1,∵∠AOB=120°,∠ACB=60°,
∴∠ACB=∠AOB=60°,
∴点C在以点O为圆心的圆上,且在优弧AB上.
∴OC=AO=BO=2;
如图2,∵∠AOB=120°,∠ACB=60°,
∴∠AOB+∠ACB=180°,
∴四个点A、O、B、C共圆.
设这四点都在⊙M上.点C在优弧AB上运动.
连接OM、AM、AB、MB.
∵∠ACB=60°,
∴∠AMB=2∠ACB=120°.
∵AO=BO=2,
∴∠AMO=∠BMO=60°.
又∵MA=MO,
∴△AMO是等边三角形,
∴MA=AO=2,
∴MA<OC≤2MA,即2<OC≤4,
∴OC可以取整数3和4.
综上所述,OC可以取整数2,3,4.
故答案是:2,3,4.
【点评】本题考查了垂径定理、等边三角形的判定与性质.此题需要分类讨论,以防漏解.在解题时,还利用了圆周角定理,圆周角、弧、弦间的关系.
21.如图,AB是⊙O的弦,OC⊥AB于点C,连接OA、OB.点P是半径OB上任意一点,连接AP.若OA=5cm,OC=3cm,则AP的长度可能是 6 cm(写出一个符合条件的数值即可)
【考点】垂径定理;勾股定理.
【专题】开放型.
【分析】根据勾股定理求出AC,根据垂径定理求出AB,即可得出AP的范围是大于等于5cm且小于等于8cm,举出即可.
【解答】解:∵OC⊥AB,
∴∠ACO=90°,
∵OA=5cm,OC=3cm,
∴由勾股定理得:AC==4cm,
∴由垂径定理得:AB=2AC=8cm,
只要举出的数大于等于5且小于等于8cm即可,如6cm,
故答案为:6.
【点评】本题考查了勾股定理和垂径定理的应用,关键是求出AP的范围.
22.如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为 2 cm.
【考点】垂径定理;勾股定理.
【专题】压轴题.
【分析】通过作辅助线,过点O作OD⊥AB交AB于点D,根据折叠的性质可知OA=2OD,根据勾股定理可将AD的长求出,通过垂径定理可求出AB的长.
【解答】解:过点O作OD⊥AB交AB于点D,连接OA,
∵OA=2OD=2cm,
∴AD===cm,
∵OD⊥AB,
∴AB=2AD=cm.
故答案为:2.
【点评】本题综合考查垂径定理和勾股定理的运用.
23.如图,在平面直角坐标系中,点O为坐标原点,点P在第一象限,⊙P与x轴交于O,A两点,点A的坐标为(6,0),⊙P的半径为,则点P的坐标为 (3,2) .
【考点】垂径定理;坐标与图形性质;勾股定理.
【专题】压轴题;探究型.
【分析】过点P作PD⊥x轴于点D,连接OP,先由垂径定理求出OD的长,再根据勾股定理求出PD的长,故可得出答案.
【解答】解:过点P作PD⊥x轴于点D,连接OP,
∵A(6,0),PD⊥OA,
∴OD=OA=3,
在Rt△OPD中,
∵OP=,OD=3,
∴PD===2,
∴P(3,2).
故答案为:(3,2).
【点评】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
24.如图,已知⊙O的直径AB=6,E、F为AB的三等分点,M、N为上两点,且∠MEB=∠NFB=60°,则EM+FN= .
【考点】垂径定理;含30度角的直角三角形;勾股定理.
【专题】压轴题.
【分析】延长ME交⊙O于G,根据圆的中心对称性可得FN=EG,过点O作OH⊥MG于H,连接MO,根据圆的直径求出OE,OM,再解直角三角形求出OH,然后利用勾股定理列式求出MH,再根据垂径定理可得MG=2MH,从而得解.
【解答】解:如图,延长ME交⊙O于G,
∵E、F为AB的三等分点,∠MEB=∠NFB=60°,
∴FN=EG,
过点O作OH⊥MG于H,连接MO,
∵⊙O的直径AB=6,
∴OE=OA﹣AE=×6﹣×6=3﹣2=1,
OM=×6=3,
∵∠MEB=60°,
∴OH=OE sin60°=1×=,
在Rt△MOH中,MH===,
根据垂径定理,MG=2MH=2×=,
即EM+FN=.
故答案为:.
【点评】本题考查了垂径定理,勾股定理的应用,以及解直角三角形,作辅助线并根据圆的中心对称性得到FN=EG是解题的关键,也是本题的难点.
三、解答题(共6小题)
25.如图所示,该小组发现8米高旗杆DE的影子EF落在了包含一圆弧型小桥在内的路上,于是他们开展了测算小桥所在圆的半径的活动.小刚身高1.6米,测得其影长为2.4米,同时测得EG的长为3米,HF的长为1米,测得拱高(弧GH的中点到弦GH的距离,即MN的长)为2米,求小桥所在圆的半径.
【考点】垂径定理的应用;勾股定理;相似三角形的应用.
【分析】根据已知得出旗杆高度,进而得出GM=MH,再利用勾股定理求出半径即可.
【解答】解:∵小刚身高1.6米,测得其影长为2.4米,
∴8米高旗杆DE的影子为:12m,
∵测得EG的长为3米,HF的长为1米,
∴GH=12﹣3﹣1=8(m),
∴GM=MH=4m.
如图,设小桥的圆心为O,连接OM、OG.
设小桥所在圆的半径为r,
∵MN=2m,
∴OM=(r﹣2)m.
在Rt△OGM中,由勾股定理得:
∴OG2=OM2+42,
∴r2=(r﹣2)2+16,
解得:r=5,
答:小桥所在圆的半径为5m.
【点评】此题主要考查了垂径定理以及勾股定理的应用,根据已知得出关于r的等式是解题关键.
26.如图所示,某窗户由矩形和弓形组成,已知弓形的跨度AB=3m,弓形的高EF=1m,现计划安装玻璃,请帮工程师求出所在圆O的半径r.
【考点】垂径定理的应用;勾股定理.
【分析】根据垂径定理可得AF=AB,再表示出AO、OF,然后利用勾股定理列式进行计算即可得解.
【解答】解:∵弓形的跨度AB=3m,EF为弓形的高,
∴OE⊥AB于F,
∴AF=AB=m,
∵所在圆O的半径为r,弓形的高EF=1m,
∴AO=r,OF=r﹣1,
在Rt△AOF中,由勾股定理可知:AO2=AF2+OF2,
即r2=()2+(r﹣1)2,
解得r=(m).
答:所在圆O的半径为m.
【点评】本题考查了垂径定理的应用,勾股定理的应用,此类题目通常采用把半弦,弦心距,半径三者放到同一个直角三角形中,利用勾股定理解答.
27.在⊙O中,AB为直径,点C为圆上一点,将劣弧沿弦AC翻折交AB于点D,连结CD.
(1)如图1,若点D与圆心O重合,AC=2,求⊙O的半径r;
(2)如图2,若点D与圆心O不重合,∠BAC=25°,请直接写出∠DCA的度数.
【考点】垂径定理;含30度角的直角三角形;圆周角定理;翻折变换(折叠问题).
【分析】(1)过点O作OE⊥AC于E,根据垂径定理可得AE=AC,再根据翻折的性质可得OE=r,然后在Rt△AOE中,利用勾股定理列式计算即可得解;
(2)连接BC,根据直径所对的圆周角是直角求出∠ACB,根据直角三角形两锐角互余求出∠B,再根据翻折的性质得到所对的圆周角,然后根据∠ACD等于所对的圆周角减去所对的圆周角,计算即可得解.
【解答】解:(1)如图,过点O作OE⊥AC于E,
则AE=AC=×2=1,
∵翻折后点D与圆心O重合,
∴OE=r,
在Rt△AOE中,AO2=AE2+OE2,
即r2=12+(r)2,
解得r=;
(2)连接BC,
∵AB是直径,
∴∠ACB=90°,
∵∠BAC=25°,
∴∠B=90°﹣∠BAC=90°﹣25°=65°,
根据翻折的性质,所对的圆周角为∠B,所对的圆周角为∠ADC,
∴∠ADC+∠B=180°,
∴∠B=∠CDB=65°,
∴∠DCA=∠CDB﹣∠A=65°﹣25°=40°.
【点评】本题考查了垂径定理,勾股定理的应用,翻折的变换的性质,以及圆周角定理,(1)作辅助线构造出半径、半弦、弦心距为边的直角三角形是解题的关键,(2)根据同弧所对的圆周角相等求解是解题的关键.
28.如图,已知△ABC是⊙O的内接三角形,AB=AC,点P是的中点,连接PA,PB,PC.
(1)如图①,若∠BPC=60°.求证:AC=AP;
(2)如图②,若sin∠BPC=,求tan∠PAB的值.
【考点】垂径定理;勾股定理;圆周角定理;解直角三角形.
【专题】探究型.
【分析】(1)根据圆周角定理得∠BPC=∠BAC=60°,可判断△ABC为等边三角形,∠ACB=∠ABC=60°,再利用圆周角定理得到∠APC=∠ABC=60°,而点P是的中点,则∠ACP=∠ACB=30°,于是∠PAC=90°,然后根据30度的正切可计算出AC=AP;
(2)过A点作AD⊥BC交BC于D,连结OP交AB于E,根据垂径定理的推论得到点O在AD上,连结OB,根据圆周角定理得∠BOD=∠BAC,∠BPC=∠BAC,所以sin∠BOD=sin∠BPC==,设OB=25x,则BD=24x,在Rt△OBD中可计算出OD=7x,再在Rt△ABD计算出AB=40x,由于点P是的中点,根据垂径定理的推论OP垂直平分AB,则AE=AB=20x,
在Rt△AEO中,根据勾股定理计算出OE=15x,所以PE=OP﹣OE=25x﹣15x=10x,最后在Rt△APE中,利用正切的定义求解.
【解答】解:(1)∵∠BPC=60°
∴∠BAC=60°,
∵AB=AC,
∴△ABC为等边三角形,
∴∠ACB=∠ABC=60°,
∴∠APC=∠ABC=60°,
而点P是的中点,
∴∠ACP=∠ACB=30°,
∴∠PAC=90°,
∴tan∠PCA==tan30°=,
∴AC=PA;
(2)过A点作AD⊥BC交BC于D,连结OP交AB于E,如图,
∵AB=AC,
∴AD平分BC,
∴点O在AD上,
连结OB,则∠BOD=∠BAC,
∵∠BPC=∠BAC,
∴sin∠BOD=sin∠BPC==,
设OB=25x,则BD=24x,
∴OD==7x,
在Rt△ABD中,AD=25x+7x=32x,BD=24x,
∴AB==40x,
∵点P是的中点,
∴OP垂直平分AB,
∴AE=AB=20x,∠AEP=∠AEO=90°,
在Rt△AEO中,OE==15x,
∴PE=OP﹣OE=25x﹣15x=10x,
在Rt△APE中,tan∠PAE===,
即tan∠PAB的值为.
【点评】本题考查了垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧.也考查了勾股定理、圆周角定理和解直角三角形.
29.如图,CD为⊙O的直径,CD⊥AB,垂足为点F,AO⊥BC,垂足为点E,AO=1.
(1)求∠C的大小;
(2)求阴影部分的面积.
【考点】垂径定理;圆心角、弧、弦的关系;扇形面积的计算.
【分析】(1)根据垂径定理可得=,∠C=∠AOD,然后在Rt△COE中可求出∠C的度数.
(2)连接OB,根据(1)可求出∠AOB=120°,在Rt△AOF中,求出AF,OF,然后根据S阴影=S扇形OAB﹣S△OAB,即可得出答案.
【解答】解:(1)∵CD是圆O的直径,CD⊥AB,
∴=,
∴∠C=∠AOD,
∵∠AOD=∠COE,
∴∠C=∠COE,
∵AO⊥BC,
∴∠C=30°.
(2)连接OB,
由(1)知,∠C=30°,
∴∠AOD=60°,
∴∠AOB=120°,
在Rt△AOF中,AO=1,∠AOF=60°,
∴AF=,OF=,
∴AB=,
∴S阴影=S扇形OADB﹣S△OAB=﹣××=π﹣.
【点评】本题考查了垂径定理及扇形的面积计算,解答本题的关键是利用解直角三角形的知识求出∠C、∠AOB的度数,难度一般.
30.如图,AB是⊙O的直径,弦CD交AB于点E,OF⊥AC于点F,
(1)请探索OF和BC的关系并说明理由;
(2)若∠D=30°,BC=1时,求圆中阴影部分的面积.(结果保留π)
【考点】垂径定理;三角形中位线定理;圆周角定理;扇形面积的计算.
【分析】(1)先根据垂径定理得出AF=CF,再根据AO=BO得出OF是△ABC的中位线,由三角形的中位线定理即可得出结论;
(2)连接OC,由(1)知OF=,再根据直角三角形的性质得出AB及AC的长,根据扇形的面积公式求出扇形AOC的度数,根据S阴影=S扇形AOC﹣S△AOC即可得出结论.
【解答】解:(1)OF∥BC,OF=BC.
理由:由垂径定理得AF=CF.
∵AO=BO,
∴OF是△ABC的中位线.
∴OF∥BC,OF=BC.
(2)连接OC.由(1)知OF=.
∵AB是⊙O的直径,
∴∠ACB=90°.
∵∠D=30°,
∴∠A=30°.
∴AB=2BC=2.
∴AC=.
∴S△AOC=×AC×OF=.
∵∠AOC=120°,OA=1,
∴S扇形AOC==.
∴S阴影=S扇形AOC﹣S△AOC=﹣.
【点评】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.