海南省国科园实验学校高中数学选修2-3课件:1.2 排列与组合 (5份打包)

文档属性

名称 海南省国科园实验学校高中数学选修2-3课件:1.2 排列与组合 (5份打包)
格式 zip
文件大小 870.4KB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2016-08-27 13:29:31

文档简介

课件16张PPT。1.2.1排列(一)创设情境,引出排列问题探究
在1.1节的例9中我们看到,用分步乘法计数原理解决这个问题时,因做了一些重复性工作而显得繁琐,能否对这一类计数问题给出一种简捷的方法呢?探究:问题1:从甲、乙、丙3名同学中选出2名参加一项活动,其中1名同学参加上午的活动,另名同学参加下午的活动,有多少种不同的选法?问题2:从1,2,3,4这4个数中,每次取出3个排成一个三位数,共可得到多少个不同的三位数?上面两个问题有什么共同特征?可以用怎样的数学模型来刻画?探究:问题1:从甲、乙、丙3名同学中选出2名参加一项活动,其中1名同学参加上午的活动,另名同学参加下午的活动,有多少种不同的选法?分析:把题目转化为从甲、乙、丙3名同学中选2名,按照参加上午的活动在前,参加下午的活动在后的顺序排列,求一共有多少种不同的排法? 第一步:确定参加上午活动的同学即从3名中任 选1名,有3种选法.第二步:确定参加下午活动的同学,有2种方法根据分步计数原理:3×2=6 即共6种方法。把上面问题中被取的对象叫做元素,于是问题1就可以叙述为: 从3个不同的元素a,b,c中任取2个,然后按照一定的顺序排成一列,一共有多少种不同的排列方法?ab, ac, ba, bc, ca, cb问题2:从1,2,3,4这4个数中,每次取出3个排成一个三位数,共可得到多少个不同的三位数? 从4个不同的元素a,b,c,d 中任取3个,然后按照一定的顺序排成一列,共有多少种不同的排列方法?abc,abd,acb,acd,adb,adc; bac,bad,bca,bcd,bda,bdc;
cab,cad,cba,cbd,cda,cdb; dab,dac,dba,dbc,dca,dcb.有此可写出所有的三位数:
123,124,132,134,142,143; 213,214,231,234,241,243,
312,314,321,324,341,342; 412,413,421,423,431,432。基本概念1、排列:一般地,从n个不同中取出m (m n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。说明:1、元素不能重复。n个中不能重复,m个中也不能重复。2、“按一定顺序”就是与位置有关,这是判断一个问题是否是排列问题的关键。3、两个排列相同,当且仅当这两个排列中的元素完全相同,而且元素的排列顺序也完全相同。4、m<n时的排列叫选排列,m=n时的排列叫全排列。5、为了使写出的所有排列情况既不重复也不遗漏,最好采用“树形图”。例1、下列问题中哪些是排列问题?(1)10名学生中抽2名学生开会(2)10名学生中选2名做正、副组长(3)从2,3,5,7,11中任取两个数相乘(4)从2,3,5,7,11中任取两个数相除(5)20位同学互通一次电话(6)20位同学互通一封信(7)以圆上的10个点为端点作弦(8)以圆上的10个点中的某一点为起点,作过另一个点的射线2、排列数: 从n个不同的元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同的元素中取出m个元素的排列数。用符号 表示。“排列”和“排列数”有什么区别和联系?问题1中是求从3个不同元素中取出2个元素的排列数,记为 ,已经算得问题2中是求从4个不同元素中取出3个元素的排列数,记为  ,已经算出探究:从n个不同元素中取出2个元素的排列数 是多少?呢?呢?(1)排列数公式(1):当m=n时,正整数1到n的连乘积,叫做n的阶乘,用 表示。n个不同元素的全排列公式:(2)排列数公式(2):说明:1、排列数公式的第一个常用来计算,第二个常用来证明。为了使当m=n时上面的公式也成立,规定:2、对于 这个条件要留意,往往是解方程时的隐含条件。例2、解方程:例3、求证:例5、求 的值.1.计算:(1)(2)课堂练习2.从4种蔬菜品种中选出3种,分别种植在不同土质的3块土地
上进行试验,有  种不同的种植方法?4.信号兵用3种不同颜色的旗子各一面,每次打出3面,最多能
打出不同的信号有(   )3.从参加乒乓球团体比赛的5名运动员中选出3名进行某场比赛,
并排定他们的出场顺序,有  种不同的方法? 排列问题,是取出m个元素后,还要按一定的顺序排成一列,取出同样的m个元素,只要排列顺序不同,就视为完成这件事的两种不同的方法(两个不同的排列).小结 由排列的定义可知,排列与元素的顺序有关,也就是说与位置有关的问题才能归结为排列问题.当元素较少时,可以根据排列的意义写出所有的排列. 思考题 三张卡片的正反面分别写着数字2和3,4和5,7和8,若将这三张卡片的正面或反面并列组成一个三位数,可以得到多少个不同的三位数?课件6张PPT。1.2.1排列(三)复习巩固1.对有约束条件的排列问题,应注意如下类型:
⑴某些元素不能在或必须排列在某一位置;⑵某些元素要求连排(即必须相邻);⑶某些元素要求分离(即不能相邻);2.基本的解题方法:
(1)有特殊元素或特殊位置的排列问题,通常是先排特殊元素或特殊位置,称为优先处理特殊元素(位置)法(优先法);
特殊元素,特殊位置优先安排策略方法总结(2)某些元素要求必须相邻时,可以先将这些元素看作一个元素,与其他元素排列后,再考虑相邻元素的内部排列,这种方法称为“捆绑法”;相邻问题捆绑处理的策略(3)某些元素不相邻排列时,可以先排其他元素,再将这些不相邻元素插入空挡,这种方法称为“插空法”;不相邻问题插空处理的策略例1:一天要排语、数、英、体、班会六节课,要求上午的四节课中,第一节不排体育课,数学排在上午;下午两节中有一节排班会课,问共有多少种不同的排法?例2:有4个男生和3个女生排成一排,按下列要求各有多少种不同排法:(3)甲、乙两同学必须相邻,而且丙不能站在排头和排尾? (4)若甲、乙两名女生相邻,且不与第三名女生相邻?(1)7位同学站成一排,甲、乙只能站在两端?(2)7位同学站成一排,甲、乙不能站在两端?(5)甲、乙、丙3名同学必须相邻,而且要求乙、丙分别站
在甲的两边?引申练习1、4名男生和4名女生站成一排,若要求男女相间,则不同的排法数有( )
A.2880 B.1152 C.48 D.1442、今有10幅画将要被展出,其中1幅水彩画,4幅油画,5幅国画,现将它们排成一排,要求同一品种的画必须连在一起,并且水彩画不放在两端。则不同的排列方式有 种。3、一排长椅上共有10个座位,现有4人就座,恰有五个连续空位的坐法种数为 。(用数字作答)5760B480变式:若直线Ax+By+C=0的系数A、B可以从0,1,2,3,6,7这六个数字中取不同的数值,则这些方程所表示的直线条数是( )
A.18 B.20 C.12 D.22A课件12张PPT。1.2.1排列(二)复习巩固 从n个不同元素中,任取m( )个元素(m个元素不可重复取)按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列. 1、排列的定义:2.排列数的定义:从n个不同元素中,任取m( )个元素的
所有排列的个数叫做从n个元素中取出m个元
素的排列数(3)全排列数公式:4.有关公式:(2)排列数公式:1.计算:(1)(2)课堂练习2.从4种蔬菜品种中选出3种,分别种植在不同土质的3块土地
上进行试验,有  种不同的种植方法?4.信号兵用3种不同颜色的旗子各一面,每次打出3面,最多能
打出不同的信号有(   )3.从参加乒乓球团体比赛的5名运动员中选出3名进行某场比赛,
并排定他们的出场顺序,有  种不同的方法?例1、某年全国足球甲级A组联赛共有14个队参加,每队要与其余各队在主、客场分别比赛一次,共进行多少场比赛?解:14个队中任意两队进行1次主场比赛与1次客场比赛,对应于从14个元素中任取2个元素的一个排列,因此,
比赛的总场次是例2:(1)有5本不同的书,从中选3本送给3名同学,每人各1本,共有多少种不同的送法?
(2)有5种不同的书,买3本送给3名同学,每人各1本,共有多少种不同的送法?例3:某信号兵用红,黄,蓝3面旗从上到下挂在竖直的旗杆上表示信号,每次可以任挂1面、2面或3面,并且不同的顺序表示不同的信号,一共可以表示多少种不同的信号?例4:用0到9这10个数字,可以组成多少个没有重复数字的三位数?解法一:对排列方法分步思考。从位置出发解法二:对排列方法分类思考。符合条件的三位数可分为两类:根据加法原理从元素出发分析解法三:间接法.从0到9这十个数字中任取三个数字的排列数为 ,∴ 所求的三位数的个数是其中以0为排头的排列数为 . 逆向思维法例5:由数字1、2、3、4、5组成没有重复数字的五位数,其中小于50000的偶数共有多少个?有约束条件的排列问题例5:由数字1、2、3、4、5组成没有重复数字的五位数,其中小于50000的偶数共有多少个?有约束条件的排列问题有约束条件的排列问题例6:6个人站成前后两排照相,要求前排2人,后排4人,那么不同的排法共有( )
A.30种 B. 360种 C. 720种 D. 1440种 C例7:有4个男生和3个女生排成一排,按下列要求各有多少种不同排法:
(1)男甲排在正中间;
(2)男甲不在排头,女乙不在排尾;
(3)三个女生排在一起;
(4)三个女生两两都不相邻;
(5)全体站成一排,甲、乙、丙三人自左向右顺序不变;
(6)若甲必须在乙的右边(可以相邻,也可以不相邻),有多少种站法?对于相邻问题,常用“捆绑法”对于不相邻问题,常用 “插空法”小结:
1.对有约束条件的排列问题,应注意如下类型:
⑴某些元素不能在或必须排列在某一位置;
⑵某些元素要求连排(即必须相邻);
⑶某些元素要求分离(即不能相邻);2.基本的解题方法:
(1)有特殊元素或特殊位置的排列问题,通常是先排特殊元素或特殊位置,称为优先处理特殊元素(位置)法(优先法);
特殊元素,特殊位置优先安排策略(2)某些元素要求必须相邻时,可以先将这些元素看作一个元素,与其他元素排列后,再考虑相邻元素的内部排列,这种方法称为“捆绑法”;相邻问题捆绑处理的策略(3)某些元素不相邻排列时,可以先排其他元素,再将这些不相邻元素插入空挡,这种方法称为“插空法”;
不相邻问题插空处理的策略课件18张PPT。1.2.2 组合(一)问题一:从甲、乙、丙3名同学中选出2名去参加某天的一项活动,其中1名同学参加上午的活动,1名同学参加下午的活动,有多少种不同的选法?问题二:从甲、乙、丙3名同学中选出2名去参加某天一项活动,有多少种不同的选法?甲、乙;甲、丙;乙、丙 3情境创设有

序无

序 一般地,从n个不同元素中取出m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合. 排列与组合的概念有什么共同点与不同点? 概念讲解组合定义:组合定义: 一般地,从n个不同元素中取出m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合.排列定义: 一般地,从n个不同元素中取出m (m≤n) 个元素,按照一定的顺序排成一列,叫做从 n 个不同元素中取出 m 个元素的一个排列.共同点: 都要“从n个不同元素中任取m个元素” 不同点: 排列与元素的顺序有关,
而组合则与元素的顺序无关.概念讲解思考一:ab与ba是相同的排列还是相同的组合?为什么?思考二:两个相同的排列有什么特点?两个相同的组合呢?概念理解 构造排列分成两步完成,先取后排;而构造组合就是其中一个步骤.思考三:组合与排列有联系吗?判断下列问题是组合问题还是排列问题? (1)设集合A={a,b,c,d,e},则集合A的含有3个元素的子集有多少个?(2)某铁路线上有5个车站,则这条铁路线上共需准备多少种车票? 有多少种不同的火车票价?组合问题排列问题(3)10名同学分成人数相同的数学和英语两个学习小组,共有多少种分法?组合问题(4)10人聚会,见面后每两人之间要握手相互问候,共需握手多少次?组合问题(5)从4个风景点中选出2个游览,有多少种不同的方法?组合问题(6)从4个风景点中选出2个,并确定这2个风景点的游览顺序,有多少种不同的方法?排列问题组合问题组合是选择的结果,排列
是选择后再排序的结果.1.从 a , b , c三个不同的元素中取出两个元素的所有组合分别是:ab , ac , bc 2.已知4个元素a , b , c , d ,写出每次取出两个元素的所有组合. ab , ac , ad , bc , bd , cd(3个)(6个)概念理解 从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号 表示.如:从 a , b , c三个不同的元素中取出两个元素的所有组合个数是:如:已知4个元素a 、b 、 c 、 d ,写出每次取出两个
元素的所有组合个数是:概念讲解组合数:注意:
是一个数,应该把它与“组合”区别开来. 1.写出从a,b,c,d 四个元素中任取三个元素的所有组合。abc , abd , acd , bcd .练一练组合排列abc bac cab
acb bca cbaabd bad dab
adb bda dbaacd cad dac
adc cda dcabcd cbd dbc
bdc cdb dcb不写出所有组合,怎样才能知道组合的种数?你发现了什么?组合数公式 排列与组合是有区别的,但它们又有联系.根据分步计数原理,得到:因此: 一般地,求从 个不同元素中取出 个元素的排列数,可以分为以下2步: 第1步,先求出从这 个不同元素中取出 个元素的组合数 . 第2步,求每一个组合中 个元素的全排列数 . 这里 ,且 ,这个公式叫做组合数公式. 概念讲解组合数公式: 从 n 个不同元中取出m个元素的排列数 概念讲解(2)列出所有冠亚军的可能情况.(2)甲乙、甲丙、甲丁、乙丙、乙丁、丙丁
乙甲、丙甲、丁甲、丙乙、丁乙、丁丙(1) 甲乙、甲丙、甲丁、乙丙、乙丁、丙丁解:例题分析(4)求例3例5.(1)凸五边形有多少条对角线?(2)凸n( n>3)边形有多少条对角线?例4.(1)平面内有10个点,以其中每2个点为端 点的线段共有多少条? (2)平面内有10个点,以其中每2个点为端点的有向线段共有多少条?例题分析排列课堂小结课件15张PPT。1.2.2 组合(三)复习巩固:3、组合数公式:一个口袋内装有大小相同的7个白球和1个黑球.
⑴ 从口袋内取出3个球,共有多少种取法?
⑵ 从口袋内取出3个球,使其中含有1个黑球,有多少种取法?
⑶ 从口袋内取出3个球,使其中不含黑球,有多少种取法? ⑵ ⑶ 解:(1) 性质2
我们可以这样解释:从口袋内的8个球中所取出的3个球,可以分为两类:一类含有1个黑球,一类不含有黑球.因此根据分类计数原理,上述等式成立. 我们发现:为什么呢性质2 注:1? 公式特征:下标相同而上标差1的两个组合数之和,等于下标比原下标多1而上标与原组合数上标较大的相同的一个组合数.
2? 此性质的作用:恒等变形,简化运算.在今后学习“二项式定理”时,我们会看到它的主要应用.例1 计算:例2 求证:一、等分组与不等分组问题例3、6本不同的书,按下列条件,各有多少种不同的分法;
(1)分给甲、乙、丙三人,每人两本;
(2)分成三份,每份两本;
(3)分成三份,一份1本,一份2本,一份3本;
(4)分给甲、乙、丙3人,一人1本,一人2本,一人3本;
练习:
(1)今有10件不同奖品,从中选6件分成三份, 二份各1件,另一份4件, 有多少种分法?
(2) 今有10件不同奖品,从中选6件分给甲乙丙三人,每人二件有多少种分法?解: (1)(2)三、混合问题,先“组”后“排”例5 对某种产品的6件不同的正品和4件不同的次品,一一进行测试,至区分出所有次品为止,若所有次品恰好在第5次测试时全部发现,则这样的测试方法有种可能?解:由题意知前5次测试恰有4次测到次品,且第5次测试是次品。故有: 种可能。练习:1、某学习小组有5个男生3个女生,从中选3名男生和1名女生参加三项竞赛活动,每项活动至少有1人参加,则有不同参赛方法______种.解:采用先组后排方法:2、3 名医生和 6 名护士被分配到 3 所学校为学生体检,每校分配 1 名医生和 2 名护士,不同的分配方法共有多少种?解法一:先组队后分校(先分堆后分配)解法二:依次确定到第一、第二、第三所学校去的医生和护士.四、分类组合,隔板处理法例6、 从6个学校中选出30名学生参加数学竞赛,每校至少有1人,这样有几种选法?分析:问题相当于把个30相同球放入6个不同盒子(盒子不能空的)有几种放法?这类问可用“隔板法”处理.
解:采用“隔板法” 得:课堂练习:2、从6位同学中选出4位参加一个座谈会,要求张、王两人中至多有一个人参加,则有不同的选法种数为 。3、要从8名男医生和7名女医生中选5人组成一个医疗队,如果其中至少有2名男医生和至少有2名女医生,则不同的选法种数为( )4、从7人中选出3人分别担任学习委员、宣传委员、体育委员,则甲、乙两人不都入选的不同选法种数共有( )1、把6个学生分到一个工厂的三个车间实习,每个车间2人,若甲必须分到一车间,乙和丙不能分到二车间,则不同的分法有 种 。99CDThank you!