15.2 画轴对称的图形(1)
【学习目标】
1.能画出简单平面图形(点、线段、三角形)关于给定对称轴的对称图形;掌握作轴对称图形的方法。
2.在绘制图形的过程中,体会转化思想和数形结合思想在图形变换中的应用。
【学习重点】能画出简单平面图形关于给定对称轴的对称图形
【学习难点】掌握作轴对称图形的方法
【学习过程】
(一)复习引入
利用轴对称的定义,并结合轴对称的性质,可以画出与已知图形关于某条直线对称的图形,并进一步解决有关的问题.
(二)合作探究
思考 已知一个图形和一条直线,如何画出与这个图形关于这条直线对称的图形呢 
几何图形都可以看作由 组成.对于一些规则的几何图形,与画平移后的图形类似,只要画出图形中的一些 点(如线段端点)的 点,连接这些 点,就可以得到与原图形成轴对称的图形.
(三)典例分析
例1 如图,已知△ABC和直线l,画出与△ABC关于直线l对称的图形.
(四)巩固练习
1.如图,把各图形补成关于直线l对称的图形.
2.用纸片剪一个三角形,分别沿它一边的中线、高及其对角的平分线对折,看看哪些部分能够重合,哪些部分不能重合.
3.某公路急转弯处设立了一面圆形大镜子,从镜子中看到的汽车车牌的部分号码如图所示,则该车牌的部分号码为( )
A.E9362 B.E9365 C.E6395 D.E6392
4. 如图,已知点 A,B,C,请你再找一个点D,使A,B,C,D四点构成一个轴对称图形,这样的点D有几个 
(五)归纳总结
15.2 画轴对称的图形(2)
【学习目标】
1.理解在平面直角坐标系中,已知点关于x轴或y轴对称的点的坐标的变化规律。
2.掌握在平面直角坐标系中作出一个图形的轴对称图形的方法。
【学习重点】理解在平面直角坐标系中,已知点关于坐标轴对称的点的坐标变化规律。
【学习难点】熟练应用已知点关于坐标轴对称的点的坐标变化规律解决问题
【学习过程】
(一)复习引入
1.一个平面图形和与它成轴对称的另一个图形之间有什么关系?
2.画轴对称图形的一般方法是什么?依据是什么?
类似于平移,下面我们在平面直角坐标系中研究轴对称,研究关于坐标轴对称的图形的对称点坐标之间的关系.
(二)合作探究
探究 在如图的平面直角坐标系中,画出下列已知点及其关于坐标轴的对称点,并把它们的坐标填入表格中,看一看每对对称点的坐标有怎样的规律,再和同学讨论一下.
归纳 点(x,y)关于x轴对称的点的坐标为 ;点(x,y)关于y轴对称的点的坐标为 .
(三)典例分析
例2如图,四边形ABCD的四个顶点的坐标分别为A(-5,1),B(-2,1),C(-2,5),D(-5,4),画出与四边形ABCD关于y轴对称的图形.
追问: 类似地,请你在图中画出与四边形ABCD关于x轴对称的图形.
(四)巩固练习
1.在平面直角坐标系中,点A与点关于轴对称,点A与点关于轴对称.已知点,则点的坐标是( )
A. B. C. D.
2.在平面直角坐标系中,若点P(a-3,1)与点Q(2,b+1)关于x轴对称,则a+b的值是( )
A.1 B.2 C.3 D.4
3.填空:
(1)点 ( 2,1)关于 轴对称的点的坐标是______,关于 轴的对称的点的坐标是______。
(2)点 ( , 2)与点 (3, )关于 轴对称,则 =______。
(3)点 (3,4)向下平移两个单位,再向左平移1个单位,得到点 ′, ′关于 轴的对称的点的坐标是______。
(五)归纳总结