2.1-2.3四边形同步测试(含答案解析)

文档属性

名称 2.1-2.3四边形同步测试(含答案解析)
格式 zip
文件大小 200.0KB
资源类型 教案
版本资源 湘教版
科目 数学
更新时间 2016-09-02 22:26:48

图片预览

文档简介

第2章《四边形》(2.1~2.3)同步测试与解析
 
一.选择题(共10小题)
1.若凸n边形的内角和为1260°,则从一个顶点出发引的对角线条数是(  )
A.6
B.8
C.18
D.27
 
2.如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP分别平分∠EDC、∠BCD,则∠P的度数是(  )
A.60°
B.65°
C.55°
D.50°
 
3.如图,在 ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB=5,则AE的长为(  )
A.4
B.6
C.8
D.10
 
4.平行四边形的一条边长是12cm,那么它的两条对角线的长可能是(  )
A.8cm和16cm
B.10cm和16cm
C.8cm和14cm
D.8cm和12cm
 
5.如图,在 ABCD中,∠ODA=90°,AC=10cm,BD=6cm,则AD的长为(  )
A.4cm
B.5cm
C.6cm
D.8cm
 
6.已知在四边形ABCD中,AB∥CD,添加下列一个条件后,一定能判定四边形ABCD是平行四边形的是(  )
A.AD=BC
B.AC=BD
C.∠A=∠C
D.∠A=∠B
 
7.点P、Q、R是平面内不在同一条直线上的三个定点,点M是平面内任意一点,若P、Q、R、M四点恰能构成一个平行四边形,则在平面内符合这样条件的点M有(  )
A.1个
B.2个
C.3个
D.4个
 
8.下列说法不正确的是(  )
A.平行四边形对边平行
B.两组对边平行的四边形是平行四边形
C.平行四边形对角相等
D.一组对角相等的四边形是平行四边形
 
9.下列图形中,是中心对称图形的为(  )
A.
B.
C.
D.
 
10.如图,四边形ABCD是中心对称图形,对称中心为点O,过点O的直线与AD,BC分别交于E,F,则图中相等的线段有(  )
A.3对
B.4对
C.5对
D.6对
 
 
二.填空题(共8小题)
11.已知一个多边形的边数恰好是从一个顶点出发的对角线条数的2倍,则这个多边形的边数是      ,内角和是      .
 
12.一个n边形的内角和为1080°,则n=      .
 
13.如图,在 ABCD中,BE平分∠ABC,BC=6,DE=2,则 ABCD的周长等于      .
 
14.若平行四边形中两个内角的度数比为1:2,则其中较大的内角是      度.
 
15.在四边形ABCD中,若AB=CD,请你补充一个条件,使四边形ABCD是平行四边形.则你补充的条件是      .(只需填一个你认为正确的条件即可).
 
16.如图, ABCD中,AB、BC长分别为12和24,边AD与BC之间的距离为5,则AB与CD间的距离为      .
 
17.如图,是一个中心对称图形,A为对称中心,若∠C=90°,∠B=30°,AC=1,则BB′的长为      .
 
18.用长为4cm的n根火柴可以拼成如图1所示的x个边长都为4cm的平行四边形,还可以拼成如图2所示的2y个边长都为4cm的平行四边形,那么用含x的代数式表示y,得到      .
 
 
三.解答题(共6小题)
19.在 ABCD中,∠BCD的平分线与BA的延长线相交于点E,BH⊥EC于点H,求证:CH=EH.
 
20.嘉淇同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图1的四边形ABCD,并写出了如下不完整的已知和求证.
已知:如图1,在四边形ABCD中,BC=AD,AB=      
求证:四边形ABCD是      四边形.
(1)在方框中填空,以补全已知和求证;
(2)按嘉淇的想法写出证明;
(3)用文字叙述所证命题的逆命题为      .
 
21.如图,将 ABCD沿过点A的直线l折叠,使点D落到AB边上的点D′处,折痕l交CD边于点E,连接BE.
(1)求证:四边形BCED′是平行四边形;
(2)若BE平分∠ABC,求证:AB2=AE2+BE2.
 
22.如图,四边形ABCD中,∠A=∠ABC=90°,AD=1,BC=3,E是边CD的中点,连接BE并延长与AD的延长线相交于点F.
(1)求证:四边形BDFC是平行四边形;
(2)若△BCD是等腰三角形,求四边形BDFC的面积.
 
23.如图,在 ABCD中,点E,F分别在AB,DC上,且ED⊥DB,FB⊥BD.
(1)求证:△AED≌△CFB;
(2)若∠A=30°,∠DEB=45°,求证:DA=DF.
 
24.已知在四边形ABCD中,∠A=x,∠C=y,(0°<x<180°,0°<y<180°).
(1)∠ABC+∠ADC=      (用含x、y的代数式表示);
(2)如图1,若x=y=90°,DE平分∠ADC,BF平分与∠ABC相邻的外角,请写出DE

BF
的位置关系,并说明理由.
(3)如图2,∠DFB为四边形ABCD的∠ABC、∠ADC相邻的外角平分线所在直线构成的锐角,
①当x<y时,若x+y=140°,∠DFB=30°试求x、y.
②小明在作图时,发现∠DFB不一定存在,请直接指出x、y满足什么条件时,∠DFB不存在.
 
 
试题解析参考:
 
一.选择题(共10小题)
1.若凸n边形的内角和为1260°,则从一个顶点出发引的对角线条数是(  )
A.6
B.8
C.18
D.27
解:∵凸n边形的内角和为1260°,
∴(n﹣2)×180°=1260°,
解得n=9,
∴9﹣3=6.
故选:A.
 
2.如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP分别平分∠EDC、∠BCD,则∠P的度数是(  )
A.60°
B.65°
C.55°
D.50°
解:∵五边形的内角和等于540°,∠A+∠B+∠E=300°,
∴∠BCD+∠CDE=540°﹣300°=240°,
∵∠BCD、∠CDE的平分线在五边形内相交于点O,
∴∠PDC+∠PCD=(∠BCD+∠CDE)=120°,
∴∠P=180°﹣120°=60°.
故选:A.
 
3.如图,在 ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB=5,则AE的长为(  )
A.4
B.6
C.8
D.10
解:连结EF,AE与BF交于点O,如图,
∵AB=AF,AO平分∠BAD,
∴AO⊥BF,BO=FO=BF=3,
∵四边形ABCD为平行四边形,
∴AF∥BE,
∴∠1=∠3,
∴∠2=∠3,
∴AB=EB,
而BO⊥AE,
∴AO=OE,
在Rt△AOB中,AO===4,
∴AE=2AO=8.
故选C.
 
4.平行四边形的一条边长是12cm,那么它的两条对角线的长可能是(  )
A.8cm和16cm
B.10cm和16cm
C.8cm和14cm
D.8cm和12cm
解:A、4+8=12,不能构成三角形,不满足条件,故A选项错误;
B、5+8>12,能构成三角形,满足条件,故B选项正确.
C、4+7<12,不能构成三角形,不满足条件,故C选项错误;
D、4+6<12,不能构成三角形,不满足条件,故D选项错误.
故选:B.
 
5.如图,在 ABCD中,∠ODA=90°,AC=10cm,BD=6cm,则AD的长为(  )
A.4cm
B.5cm
C.6cm
D.8cm
解:∵四边形ABCD是平行四边形,AC=10cm,BD=6cm
∴OA=OC=AC=5cm,OB=OD=BD=3cm,
∵∠ODA=90°,
∴AD==4cm.
故选A.
 
6.已知在四边形ABCD中,AB∥CD,添加下列一个条件后,一定能判定四边形ABCD是平行四边形的是(  )
A.AD=BC
B.AC=BD
C.∠A=∠C
D.∠A=∠B
解:如图所示:∵AB∥CD,
∴∠B+∠C=180°,
当∠A=∠C时,则∠A+∠B=180°,
故AD∥BC,
则四边形ABCD是平行四边形.
故选:C.
 
7.点P、Q、R是平面内不在同一条直线上的三个定点,点M是平面内任意一点,若P、Q、R、M四点恰能构成一个平行四边形,则在平面内符合这样条件的点M有(  )
A.1个
B.2个
C.3个
D.4个
解:如图,连接PQ、QR、PR,分别过P、Q、R三点作直线l∥QR、m∥PR、n∥PQ,分别交于点D、E、F,
∵DP∥QR,DQ∥PR,
∴四边形PDQR为平行四边形,
同理可知四边形PQRF、四边形PQER也为平行四边形,
故D、E、F三点为满足条件的M点,
故选C.
 
8.下列说法不正确的是(  )
A.平行四边形对边平行
B.两组对边平行的四边形是平行四边形
C.平行四边形对角相等
D.一组对角相等的四边形是平行四边形
解:A、正确;
B、正确;
C、正确;
D、一组对角相等而另一组对角不相等的四边形不是平行四边形,故命题错误.
故选D.
 
9.下列图形中,是中心对称图形的为(  )
A.
B.
C.
D.
解:A、是轴对称图形,不是中心对称图形.故A错误;
B、不是轴对称图形,是中心对称图形.故B正确;
C、是轴对称图形,不是中心对称图形.故C错误;
D、是轴对称图形,不是中心对称图形.故D错误.
故选:B.
 
10.如图,四边形ABCD是中心对称图形,对称中心为点O,过点O的直线与AD,BC分别交于E,F,则图中相等的线段有(  )
A.3对
B.4对
C.5对
D.6对
解:如图,连接OA、OB、OC、OD,
∵四边形ABCD是中心对称图形,对称中心为点O,
∴OA=OC,OB=OD,
∴四边形ABCD是平行四边形,
∴AB=CD,BC=AD,OE=OF,AE=CF,BF=DE,
相等的线段共有5对.
故选C.
 
二.填空题(共8小题)
11.已知一个多边形的边数恰好是从一个顶点出发的对角线条数的2倍,则这个多边形的边数是 6 ,内角和是 720° .
解:设此多边形有n条边,由题意,得
n=2(n﹣3),
解得n=6,
(6﹣2)×180°=720°,
故答案为:6,720°.
 
12.一个n边形的内角和为1080°,则n= 8 .
解:(n﹣2) 180°=1080°,
解得n=8.
 
13.如图,在 ABCD中,BE平分∠ABC,BC=6,DE=2,则 ABCD的周长等于 20 .
解:∵四边形ABCD为平行四边形,
∴AE∥BC,AD=BC,AD=BC,
∴∠AEB=∠EBC,
∵BE平分∠ABC,
∴∠ABE=∠EBC,
∴∠ABE=∠AEB,
∴AB=AE,
∴AE+DE=AD=BC=6,
∴AE+2=6,
∴AE=4,
∴AB=CD=4,
∴ ABCD的周长=4+4+6+6=20,
故答案为:20.
 
14.若平行四边形中两个内角的度数比为1:2,则其中较大的内角是 120 度.
解:∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠B+∠C=180°,
∵∠B:∠C=1:2,
∴∠C=×180°=120°,
故答案为:120.
 
15.在四边形ABCD中,若AB=CD,请你补充一个条件,使四边形ABCD是平行四边形.则你补充的条件是 AB∥CD .(只需填一个你认为正确的条件即可).
解:补充条件:AB∥CD;理由如下:
∵AB=CD,AB∥CD,
∴四边形ABCD是平行四边形(一组对边平行且相等的四边形是平行四边形);
故答案为:AB∥CD.
 
16.如图, ABCD中,AB、BC长分别为12和24,边AD与BC之间的距离为5,则AB与CD间的距离为 10 .
解:如图,过点A作AE⊥BC于点E、AF⊥CD于点F.
由题意得,S四边形ABCD=AE×BC=CD×AF,
∴24×5=12×AF,
∴AF=10,即AB与CD间的距离为10.
故答案是:10.
 
17.如图,是一个中心对称图形,A为对称中心,若∠C=90°,∠B=30°,AC=1,则BB′的长为 4 .
解:∵在Rt△ABC中,∠B=30°,AC=1,
∴AB=2AC=2,
根据中心对称的性质得到BB′=2AB=4.
故答案为:4.
 
18.用长为4cm的n根火柴可以拼成如图1所示的x个边长都为4cm的平行四边形,还可以拼成如图2所示的2y个边长都为4cm的平行四边形,那么用含x的代数式表示y,得到  .
解:依题意,由图1可知:一个平行四边形有4条边,两个平行四边形有4+3条边,
∴m=1+3x,
由图2可知:一组图形有7条边,两组图形有7+5条边,
∴m=2+5y,
得1+3x=3y+2(y+1),
整理,得y=x﹣,
故答案为:y=x﹣.
 
三.解答题(共6小题)
19.在 ABCD中,∠BCD的平分线与BA的延长线相交于点E,BH⊥EC于点H,求证:CH=EH.
证明:∵在□ABCD中,BE∥CD,
∴∠E=∠2,
∵CE平分∠BCD,
∴∠1=∠2,
∴∠1=∠E,
∴BE=BC,
又∵BH⊥BC,
∴CH=EH(三线合一).
20.嘉淇同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图1的四边形ABCD,并写出了如下不完整的已知和求证.
已知:如图1,在四边形ABCD中,BC=AD,AB= CD 
求证:四边形ABCD是 平行 四边形.
(1)在方框中填空,以补全已知和求证;
(2)按嘉淇的想法写出证明;
(3)用文字叙述所证命题的逆命题为 平行四边形两组对边分别相等 .
解:(1)已知:如图1,在四边形ABCD中,BC=AD,AB=CD
求证:四边形ABCD是平行四边形.
(2)证明:连接BD,
在△ABD和△CDB中,

∴△ABD≌△CDB(SSS),
∴∠ADB=∠DBC,∠ABD=∠CDB,
∴AB∥CD,AD∥CB,
∴四边形ABCD是平行四边形;
(2)用文字叙述所证命题的逆命题为:平行四边形两组对边分别相等.
 
21.如图,将 ABCD沿过点A的直线l折叠,使点D落到AB边上的点D′处,折痕l交CD边于点E,连接BE.
(1)求证:四边形BCED′是平行四边形;
(2)若BE平分∠ABC,求证:AB2=AE2+BE2.
证明:(1)∵将 ABCD沿过点A的直线l折叠,使点D落到AB边上的点D′处,
∴∠DAE=∠D′AE,∠DEA=∠D′EA,∠D=∠AD′E,
∵DE∥AD′,
∴∠DEA=∠EAD′,
∴∠DAE=∠EAD′=∠DEA=∠D′EA,
∴∠DAD′=∠DED′,
∴四边形DAD′E是平行四边形,
∴DE=AD′,
∵四边形ABCD是平行四边形,
∴ABDC,
∴CED′B,
∴四边形BCED′是平行四边形;
(2)∵BE平分∠ABC,
∴∠CBE=∠EBA,
∵AD∥BC,
∴∠DAB+∠CBA=180°,
∵∠DAE=∠BAE,
∴∠EAB+∠EBA=90°,
∴∠AEB=90°,
∴AB2=AE2+BE2.
 
22.如图,四边形ABCD中,∠A=∠ABC=90°,AD=1,BC=3,E是边CD的中点,连接BE并延长与AD的延长线相交于点F.
(1)求证:四边形BDFC是平行四边形;
(2)若△BCD是等腰三角形,求四边形BDFC的面积.
(1)证明:∵∠A=∠ABC=90°,
∴BC∥AD,
∴∠CBE=∠DFE,
在△BEC与△FED中,

∴△BEC≌△FED,
∴BE=FE,
又∵E是边CD的中点,
∴CE=DE,
∴四边形BDFC是平行四边形;
(2)①BC=BD=3时,由勾股定理得,AB===2,
所以,四边形BDFC的面积=3×2=6;
②BC=CD=3时,过点C作CG⊥AF于G,则四边形AGCB是矩形,
所以,AG=BC=3,
所以,DG=AG﹣AD=3﹣1=2,
由勾股定理得,CG===,
所以,四边形BDFC的面积=3×=3;
③BD=CD时,BC边上的中线应该与BC垂直,从而得到BC=2AD=2,矛盾,此时不成立;
综上所述,四边形BDFC的面积是6或3.
 
23.如图,在 ABCD中,点E,F分别在AB,DC上,且ED⊥DB,FB⊥BD.
(1)求证:△AED≌△CFB;
(2)若∠A=30°,∠DEB=45°,求证:DA=DF.
证明:(1)∵平行四边形ABCD,
∴AD=CB,∠A=∠C,AD∥CB,
∴∠ADB=∠CBD,
∵ED⊥DB,FB⊥BD,
∴∠EDB=∠FBD=90°,
∴∠ADE=∠CBF,
在△AED和△CFB中,

∴△AED≌△CFB(ASA);
(2)作DH⊥AB,垂足为H,
在Rt△ADH中,∠A=30°,
∴AD=2DH,
在Rt△DEB中,∠DEB=45°,
∴EB=2DH,
∴四边形EBFD为平行四边形,
∴FD=EB,
∴DA=DF.
 
24.已知在四边形ABCD中,∠A=x,∠C=y,(0°<x<180°,0°<y<180°).
(1)∠ABC+∠ADC= 360°﹣x﹣y (用含x、y的代数式表示);
(2)如图1,若x=y=90°,DE平分∠ADC,BF平分与∠ABC相邻的外角,请写出DE

BF
的位置关系,并说明理由.
(3)如图2,∠DFB为四边形ABCD的∠ABC、∠ADC相邻的外角平分线所在直线构成的锐角,
①当x<y时,若x+y=140°,∠DFB=30°试求x、y.
②小明在作图时,发现∠DFB不一定存在,请直接指出x、y满足什么条件时,∠DFB不存在.
解:(1)∠ABC+∠ADC=360°﹣x﹣y;
故答案为:360°﹣x﹣y;
(2)如图1,延长DE交BF于G
∵DE平分∠ADC,BF平分∠MBC,
∴∠CDE=∠ADC,∠CBF=∠CBM,
又∵∠CBM=180°﹣∠ABC=180°﹣(180°﹣∠ADC)=∠ADC,
∴∠CDE=∠CBF,
又∵∠BED=∠CDE+∠C=∠CBF+∠BGE,
∴∠BGE=∠C=90°,
∴DG⊥BF(即DE⊥BF);
(3)①由(1)得:∠CDN+∠CBM=x+y,
∵BF、DF分别平分∠CBM、∠CDN,
∴∠CDF+∠CBF=(x+y),
如图2,连接DB,则∠CBD+∠CDB=180°﹣y,
得∠FBD+∠FDB=180°﹣y+(x+y)=180°﹣y+x,
∴∠DFB=y﹣x=30°,
解方程组:,
解得:;
②当x=y时,DC∥BF,此时∠DFB=0,故x、y满足x=y时,∠DFB不存在.