2.5 一元二次方程 应用题归类练习(含答案)

文档属性

名称 2.5 一元二次方程 应用题归类练习(含答案)
格式 zip
文件大小 143.6KB
资源类型 教案
版本资源 湘教版
科目 数学
更新时间 2016-09-01 12:07:58

图片预览

文档简介

2.5一元二次方程 应用题归类练习
前言:(新)湘教版九年级数学上册一元二次方程的应用主要讲了三种类型的应用题:①增长率问题,引例(动脑筋)和例1。②销售、利润问题,例2。③几何图形的面积与动点移动形成的几何图形的面积,引例(动脑筋)例3,例4。复习题中还出现了数字方面的应用题。无论哪一种题型都离不开教材第50页的议一议,要建立好一元二次方程的模型,才能去很好的解一元二次方程。在这里把(新)湘教版九年级数学上册一元二次方程的应用归一下类,供大家参考!
增长率问题:
1、某楼盘2013年房价为每平方米8100元,经过两年连续降价后,2015年房价为7600元.设该楼盘这两年房价平均降低率为x,根据题意可列方程为     .
2、2015年1月20日遵义市政府工作报告公布:2013年全市生产总值约为1585亿元,经过连续两年增长后,预计2015年将达到2180亿元.设平均每年增长的百分率为x,可列方程为      .
 
3、某机械厂七月份生产零件50万个,第三季度生产零件196万个,如果每月的平均增长率相同,则下列方程正确的是( )
A. B.
C. D.
4、满洲里市某楼盘准备以每平方米5000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售.
(1)求平均每次下调的百分率;
(2)某人准备以开盘均价购买一套100平方米的房子.开发商还给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元,请问哪种方案更优惠?
 
5、全民健身和医疗保健是社会普遍关注的问题,2014年,某社区共投入30万元用于购买健身器材和药品.
(1)若2014年社区购买健身器材的费用不超过总投入的,问2014年最低投入多少万元购买药品?
(2)2015年,该社区购买健身器材的费用比上一年增加50%,购买药品的费用比上一年减少,但社区在这两方面的总投入仍与2014年相同.
①求2014年社区购买药品的总费用;
②据统计,2014年该社区积极健身的家庭达到200户,社区用于这些家庭的药品费用明显减少,只占当年购买药品总费用的,与2014年相比,如果2015年社区内健身家庭户数增加的百分比与平均每户健身家庭的药品费用降低的百分比相同,那么,2015年该社区用于健身家庭的药品费用就是当年购买健身器材费用的,求2015年该社区健身家庭的户数.
销售、利润问题:
6、新世纪百货大楼“宝乐”牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”儿童节,商场决定采取适当的降价措施.经调査,如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,则每件童装应降价多少元?设每件童裝应降价x元,可列方程为      .
7、 百货大楼服装柜销售中发现:“宝乐”牌童装平均每天可售出20件,每件盈利40元.为了迎接“十?一”国庆节,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件,要使平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?
请先填空后再列方程求解:设每件童装降价    元,那么平均每天就可多售出      件,现在一天可售出      件,每件盈利      元.
8、水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤,为保证每天至少售出260斤,张阿姨决定降价销售.
(1)若将这种水果每斤的售价降低x元,则每天的销售量是      斤(用含x的代数式表示);
(2)销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?
 
9、某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,增加利润,尽量减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件;
(1)若商场平均每天要赢利1200元,每件衬衫应降价多少元?
(2)每件衬衫降价多少元时,商场平均每天赢利最多?
10、 某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.
(1)不妨设该种品牌玩具的销售单价为x元(x>40),请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润w元,并把化简后的结果填写在表格中:
销售单价(元)
x
销售量y(件)
      
销售玩具获得利润w(元)
      
(2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x应定为多少元.
11、随着柴静纪录片《穹顶之下》的播出,全社会对空气污染问题越来越重视,空气净化器的销量也大增,商社电器从厂家购进了A,B两种型号的空气净化器,已知一台A型空气净化器的进价比一台B型空气净化器的进价多300元,用7500元购进A型空气净化器和用6000元购进B型空气净化器的台数相同.
(1)求一台A型空气净化器和一台B型空气净化器的进价各为多少元?
(2)在销售过程中,A型空气净化器因为净化能力强,噪音小而更受消费者的欢迎.为了增大B型空气净化器的销量,商社电器决定对B型空气净化器进行降价销售,经市场调查,当B型空气净化器的售价为1800元时,每天可卖出4台,在此基础上,售价每降低50元,每天将多售出1台,如果每天商社电器销售B型空气净化器的利润为3200元,请问商社电器应将B型空气净化器的售价定为多少元?
 
12、某公司生产的商品的市场指导价为每件150元,公司的实际销售价格可以浮动x个百分点(即销售价格=150(1+x%)),经过市场调研发现,这种商品的日销售量y(件)与销售价格浮动的百分点x之间的函数关系为y=﹣2x+24.若该公司按浮动﹣12个百分点的价格出售,每件商品仍可获利10%.
(1)求该公司生产销售每件商品的成本为多少元?
(2)当实际销售价格定为多少元时,日销售利润为660元?(说明:日销售利润=(销售价格一成本)×日销售量)
(3)该公司决定每销售一件商品就捐赠a元利润(a≥1)给希望工程,公司通过销售记录发现,当价格浮动的百分点大于﹣2时,扣除捐赠后的日销售利润随x增大而减小,直接写出a的取值范围.
 
面积、动点问题:
13、在一幅长8分米,宽6分米的矩形风景画(如图①)的四周镶上宽度相同的金色纸边,制成一幅矩形挂图(如图②),使整个挂图的面积是80平方分米,设金色纸边宽为x分米,可列方程为      .
 
14、在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示.如果要使整个挂图的面积是5 400cm2,设金色纸边的宽为xcm,则可列方程      .
15、 如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?
16、 如图,长方形ABCD(长方形的对边相等,每个角都是90°),AB=6cm,AD=2cm,动点P、Q分别从点A、C同时出发,点P以2厘米/秒的速度向终点B移动,点Q以1厘米/秒的速度向D移动,当有一点到达终点时,另一点也停止运动.设运动的时间为t,问:
(1)当t=1秒时,四边形BCQP面积是多少?
(2)当t为何值时,点P和点Q距离是3cm?
(3)当t=       以点P、Q、D为顶点的三角形是等腰三角形.(直接写出答案)
 
17、已知:如图,△ABC是边长为3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动,设点P的运动时间t(s),解答下列各问题:
(1)经过秒时,求△PBQ的面积;
(2)当t为何值时,△PBQ是直角三角形?
(3)是否存在某一时刻t,使四边形APQC的面积是△ABC面积的三分之二?如果存在,求出t的值;不存在请说明理由.
 
18、如图所示,在△ABC中∠B=90°,AB=6cm,BC=8cm,点P从点A开始沿AB边向点B以1cm/s的速度运动,点Q从点B开始沿BC边向点C以2cm/s的速度运动.
(1)如果P、Q分别从A、B同时出发3秒,则四边形APQC的面积是      .
(2)如果P、Q分别从A、B同时出发,经过几秒钟,使S△PBQ=8cm2.
(3)如果P、Q分别从A、B同时出发,经过几秒钟后,以 P、Q、B三点为顶点的△与△ABC相似?
 
19、如图,在边长为12cm的等边三角形ABC中,点P从点A开始沿AB边向点B以每秒钟1cm的速度移动,点Q从点B开始沿BC边向点C以每秒钟2cm的速度移动.若P、Q分别从A、B同时出发,其中任意一点到达目的地后,两点同时停止运动,求:
(1)经过6秒后,BP=       6cm,BQ=      12cm;
(2)经过几秒后,△BPQ是直角三角形?
(3)经过几秒△BPQ的面积等于10cm2?
(4)经过几秒时△BPQ的面积达到最大?并求出这个最大值.
数字问题:
20、 某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了1640张相片.如果全班有x名学生,根据题意,列出方程为      .
21、根据题意,列出方程:
已知某两位数,个位数字与十位数字之和为12,个位数字与十位数字之积为32,求这个两位数;
行程问题:
22、“铁路建设助推经济发展”,近年来我国政府十分重视铁路建设.渝利铁路通车后,从重庆到上海比原铁路全程缩短了320千米,列车设计运行时速比原铁路设计运行时速提高了l20千米/小时,全程设计运行时间只需8小时,比原铁路设计运行时间少用16小时.
(1)渝利铁路通车后,重庆到上海的列车设计运行里程是多少千米?
(2)专家建议:从安全的角度考虑,实际运行时速要比设计时速减少m%,以便于有充分时间应对突发事件,这样,从重庆到上海的实际运行时间将增加m小时,求m的值.
2.5一元二次方程 应用题归类练习
参考答案:
1、8100×(1﹣x)2=7600 . 2、 1585(1+x)2=2180 . 3、C
4、 解:(1)设平均每次降价的百分率是x,根据题意列方程得,
5000(1﹣x)2=4050,
解得:x1=10%,x2=1.9(不合题意,舍去);
答:平均每次降价的百分率为10%.
(2)方案一的房款是:4050×100×0.98+3600=400500(元);
方案二的房款是:4050×100﹣1.5×100×12×2=401400(元)
∵400500元<401400元.
5、解:(1)设2014年购买药品的费用为x万元,
根据题意得:30﹣x≤×30,
解得:x≥10,
则2014年最低投入10万元购买药品;
(2)①设2014年社区购买药品的费用为y万元,则购买健身器材的费用为(30﹣y)万元,
2015年购买健身器材的费用为(1+50%)(30﹣y)万元,购买药品的费用为(1﹣)y万元,
根据题意得:(1+50%)(30﹣y)+(1﹣)y=30,
解得:y=16,30﹣y=14,
则2014年购买药品的总费用为16万元;
②设这个相同的百分数为m,则2015年健身家庭的户数为200(1+m),
2015年平均每户健身家庭的药品费用为(1﹣m)万元,
依题意得:200(1+m)?(1﹣m)=(1+50%)×14×,
解得:m=±,
∵m>0,∴m==50%,
∴200(1+m)=300(户),
则2015年该社区健身家庭的户数为300户.
6、 (40﹣x)(20+2x)=1200 .
7、请先填空后再列方程求解:设每件童装降价 x 元,那么平均每天就可多售出 2x 件,现在一天可售出 20+2x 件,每件盈利 40﹣x 元.
解:设每件童装降价x元,则
(40﹣x)(20+2x)=1200
即:x2﹣30x+200=0
解得:x1=10,x2=20
∵要扩大销售量,减少库存
∴舍去x1=10
答:每件童装应降价20元.
8、(1) 100+200x (用含x的代数式表示);
(2)根据题意得:(4﹣2﹣x)(100+200x)=300,
解得:x=或x=1,
∵每天至少售出260斤,
∴x=1.
答:张阿姨需将每斤的售价降低1元.
9、 解:(1)设每件衬衫应降价x元,
根据题意得(40﹣x)(20+2x)=1200,
整理得2x2﹣60x+400=0
解得x1=20,x2=10.
因为要尽量减少库存,在获利相同的条件下,降价越多,销售越快,
故每件衬衫应降20元.
答:每件衬衫应降价20元.
(2)设商场平均每天赢利y元,则
y=(20+2x)(40﹣x)=﹣2x2+60x+800
=﹣2(x2﹣30x﹣400)=﹣2[(x﹣15)2﹣625]
=﹣2(x﹣15)2+1250.
∴当x=15时,y取最大值,最大值为1250.
答:每件衬衫降价15元时,商场平均每天赢利最多,最大利润为1250元.
10、 解:(1)
销售单价(元)
x
销售量y(件)
1000﹣10x
销售玩具获得利润w(元)
﹣10x2+1300x﹣30000
(2)﹣10x2+1300x﹣30000=10000,
解之得:x1=50 x2=80,
答:玩具销售单价为50元或80元时,可获得10000元销售利润.
11、解:(1)设每台B型空气净化器为x元,A型净化器为(x+300)元,
由题意得,=,
解得:x=1200,
经检验x=1200是原方程的根,
则x+300=1500,
答:每B型空气净化器、每台A型空气净化器的进价分别为1200元,1500元;
(2)设B型空气净化器的售价为x元,根据题意得;(x﹣1200)(4+)=3200,
解得:x=1600,
答:如果每天商社电器销售B型空气净化器的利润为3200元,请问商社电器应将B型空气净化器的售价定为1600元.
12、解:(1)设该公司生产销售每件商品的成本为z元,
依题意得:150(1﹣12%)=(1+10%)z,
解得:z=120,
答:该公司生产销售每件商品的成本为120元;
(2)由题意得(﹣2x+24)[150(1+x%)﹣120]=660,
整理得:x2+8x﹣20=0,
解得:x1=2,x2=﹣10,
此时,商品定价为每件135元或153元,日销售利润为660元;
(3)根据题意得:1≤a≤6.
13、 (2x+6)(2x+8)=80 . 14、 (80+2x)(50+2x)=5400 .
15、解:设矩形猪舍垂直于住房墙一边长为xm可以得出平行于墙的一边的长为(25﹣2x+1)m,由题意得
x(25﹣2x+1)=80,
化简,得x2﹣13x+40=0,
解得:x1=5,x2=8,
当x=5时,26﹣2x=16>12(舍去),当x=8时,26﹣2x=10<12,
答:所围矩形猪舍的长为10m、宽为8m.
16、解:(1)如图1,∵四边形ABCD是矩形,
∴AB=CD=6,AD=BC=2,∠A=∠B=∠C=∠D=90°.
∵CQ=1cm,AP=2cm,
∴AB=6﹣2=4cm.
∴S==5cm2.
答:四边形BCQP面积是5cm2;
(2)如图1,作QE⊥AB于E,
∴∠PEQ=90°,
∵∠B=∠C=90°,
∴四边形BCQE是矩形,
∴QE=BC=2cm,BE=CQ=t.
∵AP=2t,
∴PE=6﹣2t﹣t=6﹣3t.
在Rt△PQE中,由勾股定理,得
(6﹣3t)2+4=9,
解得:t=.
如图2,作PE⊥CD于E,
∴∠PEQ=90°.
∵∠B=∠C=90°,
∴四边形BCQE是矩形,
∴PE=BC=2cm,BP=CE=6﹣2t.
∵CQ=t,
∴QE=t﹣(6﹣2t)=3t﹣6
在Rt△PEQ中,由勾股定理,得
(3t﹣6)2+4=9,
解得:t=.
综上所述:t=或;
(3)如图3,当PQ=DQ时,作QE⊥AB于E,
∴∠PEQ=90°,
∵∠B=∠C=90°,
∴四边形BCQE是矩形,
∴QE=BC=2cm,BE=CQ=t.
∵AP=2t,
∴PE=6﹣2t﹣t=6﹣3t.DQ=6﹣t.
∵PQ=DQ,
∴PQ=6﹣t.
在Rt△PQE中,由勾股定理,得
(6﹣3t)2+4=(6﹣t)2,
解得:t=.
如图4,当PD=PQ时,
作PE⊥DQ于E,
∴DE=QE=DQ,∠PED=90°.
∵∠B=∠C=90°,
∴四边形BCQE是矩形,
∴PE=BC=2cm.
∵DQ=6﹣t,
∴DE=.
∴2t=,
解得:t=;
如图5,当PD=QD时,
∵AP=2t,CQ=t,
∴DQ=6﹣t,
∴PD=6﹣t.
在Rt△APD中,由勾股定理,得
4+4t2=(6﹣t)2,
解得t1=,t2=(舍去).
综上所述:t=,,,.
故答案为:,,,.
17、解:(1)经过秒时,AP=cm,BQ=cm,
∵△ABC是边长为3cm的等边三角形,
∴AB=BC=3cm,∠B=60°,
∴BP=3﹣=cm,
∴△PBQ的面积=BP?BQ?sin∠B=×××=;
(2)设经过t秒△PBQ是直角三角形,
则AP=tcm,BQ=tcm,
△ABC中,AB=BC=3cm,∠B=60°,
∴BP=(3﹣t)cm,
△PBQ中,BP=(3﹣t)cm,BQ=tcm,若△PBQ是直角三角形,则∠BQP=90°或∠BPQ=90°,
当∠BQP=90°时,BQ=BP,
即t=(3﹣t),t=1(秒),
当∠BPQ=90°时,BP=BQ,
3﹣t=t,t=2(秒),
答:当t=1秒或t=2秒时,△PBQ是直角三角形.
(3)过P作PM⊥BC于M,
△BPM中,sin∠B=,
∴PM=PB?sin∠B=(3﹣t),
∴S△PBQ=BQ?PM=?t?(3﹣t),
∴y=S△ABC﹣S△PBQ=×32×﹣×t×(3﹣t)
=t2﹣t+,
∴y与t的关系式为y=t2﹣t+,
假设存在某一时刻t,使得四边形APQC的面积是△ABC面积的,
则S四边形APQC=S△ABC,
∴t2﹣t+=××32×,
∴t2﹣3t+3=0,
∵(﹣3)2﹣4×1×3<0,
∴方程无解,
∴无论t取何值,四边形APQC的面积都不可能是△ABC面积的.
18、 解:(1)如果P、Q分别从A、B同时出发3秒,那么AP=3cm,BQ=6cm,则BP=3cm.
四边形APQC的面积=△ABC的面积﹣△PBQ的面积
=×6×8﹣×6×3
=24﹣9
=15(cm2).
故答案为15cm2;
(2)设经过x秒钟,S△PBQ=8cm2,
BP=6﹣x,BQ=2x,
∵∠B=90°,
∴BP×BQ=8,
∴×(6﹣x)×2x=8,
∴x1=2,x2=4,
答:如果点P、Q分别从A、B同时出发,经过2或4秒钟,S△PBQ=8cm2;
(3)设经过y秒后,以 P、Q、B三点为顶点的三角形与△ABC相似:
①若△PBQ~△ABC,则有=,即=,
解得:y=;
②若△QBP~△ABC,则有=,即=,
解得:y=.
答:经过或秒后,以 P、Q、B三点为顶点的三角形与△ABC相似.
19、 解:(1)由题意,得
AP=6cm,BQ=12cm,
∵△ABC是等边三角形,
∴AB=BC=12cm,
∴BP=12﹣6=6cm.
(2)∵△ABC是等边三角形,
∴AB=BC=12cm,∠A=∠B=∠C=60°,
当∠PQB=90°时,
∴∠BPQ=30°,
∴BP=2BQ.
∵BP=12﹣x,BQ=2x,
∴12﹣x=2×2x,
解得x=,
当∠QPB=90°时,
∴∠PQB=30°,
∴BQ=2PB,
∴2x=2(12﹣x),
解得x=6.
答:6秒或秒时,△BPQ是直角三角形;
(3)作QD⊥AB于D,
∴∠QDB=90°,
∴∠DQB=30°,
∴DB=BQ=x,
在Rt△DBQ中,由勾股定理,得
DQ=x,
∴=10,
解得x1=10,x2=2,
∵x=10时,2x>12,故舍去,
∴x=2.
答:经过2秒△BPQ的面积等于10cm2.;
(4)∵△BPQ的面积==﹣x2+6x,
∴当x==6时,△BPQ的面积最大,此时最大值为﹣×62+6×6=18.
故答案为:6cm、12cm.
20、 x(x﹣1)=1640 .
21、解:设个位数字为x,则十位数字为12﹣x,由题意得: x(12﹣x)=32;
22、解:(1)设原时速为xkm/h,通车后里程为ykm,则有:

解得:,
答:渝利铁路通车后,重庆到上海的列车设计运行里程是1600千米;
(2)由题意可得出:(80+120)(1﹣m%)(8+m)=1600,
解得:m1=20,m2=0(不合题意舍去),
答:m的值为20.