2.5 一元二次方程的应用专项练习
一.选择题(共10小题)
1.某校准备修建一个面积为180平方米的矩形活动场地,它的长比宽多11米,设场地的宽为x米,则可列方程为( )
A.x(x﹣11)=180 B.2x+2(x﹣11)=180
C.x(x+11)=180 D. 2x+2(x+11)=180
2.今年来某县加大了对教育经费的投入,2013年投入2500万元,2015年投入3500万元.假设该县投入教育经费的年平均增长率为x,根据题意列方程,则下列方程正确的是( )
A.2500x2=3500 B. 2500(1+x)2=3500
C.2500(1+x%)2=3500 D. 2500(1+x)+2500(1+x)2=3500
3.股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一只股票某天跌停,之后两天时间又涨回到原价.若这两天此股票股价的平均增长率为x,则x满足的方程是( )
A.(1+x)2= B.(1+x)2= C. 1+2x= D. 1+2x=
4.沅江市近年来大力发展芦笋产业,某芦笋生产企业在两年内的销售额从20万元增加到80万元.设这两年的销售额的年平均增长率为x,根据题意可列方程为( )
A.20(1+2x)=80 B.2×20(1+x)=80 C.20(1+x2)=80 D.20(1+x)2=80
5.绿苑小区在规划设计时,准备在两幢楼房之间,设置一块面积为900平方米的矩形绿地,并且长比宽多10米.设绿地的宽为x米,根据题意,可列方程为( )
A.x(x﹣10)=900 B.x(x+10)=900
C.10(x+10)=900 D. 2[x+(x+10)]=900
6.今年我市计划扩大城区绿地面积,现有一块长方形绿地,它的短边长为60m,若将短边增大到与长边相等(长边不变),使扩大后的绿地的形状是正方形,则扩大后的绿地面积比原来增加1600m2.设扩大后的正方形绿地边长为x m,下面所列方程正确的是( )
A.x(x﹣60)=1600 B.x(x+60)=1600
C.60(x+60)=1600 D.60(x﹣60)=1600
7.我省2013年的快递业务量为1.4亿件,受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展,2014年增速位居全国第一.若2015年的快递业务量达到4.5亿件,设2014年与2013年这两年的平均增长率为x,则下列方程正确的是( )
A.1.4(1+x)=4.5 B. 1.4(1+2x)=4.5
C.1.4(1+x)2=4.5 D. 1.4(1+x)+1.4(1+x)2=4.5
8.某种品牌运动服经过两次降价,每件件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是( )
A.560(1+x)2=315 B. 560(1﹣x)2=315
C.560(1﹣2x)2=315 D.560(1﹣x2)=315
9.如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为60米2,两块绿地之间及周边留有宽度相等的人行通道.若设人行道的宽度为x米,则可以列出关于x的方程是( )
A.x2+9x﹣8=0 B. x2﹣9x﹣8=0 C. x2﹣9x+8=0 D. 2x2﹣9x+8=0
10.将一块正方形铁皮的四角各剪去一个边长为3cm的小正方形,做成一个无盖的盒子,已知盒子的容积为300cm3,则原铁皮的边长为( )
A.10cm B. 13cm C. 14cm D. 16cm
二.填空题(共8小题)
11.新世纪百货大楼“宝乐”牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”儿童节,商场决定采取适当的降价措施.经调査,如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,则每件童装应降价多少元?设每件童裝应降价x元,可列方程为 .
12.某楼盘2013年房价为每平方米8100元,经过两年连续降价后,2015年房价为7600元.设该楼盘这两年房价平均降低率为x,根据题意可列方程为 .
13.某校要组织一次乒乓球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排2天,每天安排5场比赛.设比赛组织者应邀请x个队参赛,则x满足的方程为 .
14. 2015年1月20日遵义市政府工作报告公布:2013年全市生产总值约为1585亿元,经过连续两年增长后,预计2015年将达到2180亿元.设平均每年增长的百分率为x,可列方程为 .
15.一个容器盛满纯药液40L,第一次倒出若干升后,用水加满;第二次又倒出同样体积的溶液,这时容器里只剩下纯药液10L,则每次倒出的液体是 L.
16.如图,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2m,另一边减少了3m,剩余一块面积为20m2的矩形空地,则原正方形空地的边长是
17.学校课外生物小组的试验园地是长35米、宽20米的矩形,为便于管理,现要在中间开辟一横两纵三条等宽的小道(如图),要使种植面积为600平方米,求小道的宽.若设小道的宽为x米,则可列方程为 .
18.为了美化环境,某市加大对绿化的投资,2013年用于绿化的投资20万元,2015年用于绿化的投资是25万元,求这两年绿化投资的平均增长率,设这两年绿化投资的平均增长率为x,根据题意所列的方程为 .
三.解答题(共8小题)
19.某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,增加利润,尽量减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件;
(1)若商场平均每天要赢利1200元,每件衬衫应降价多少元?
(2)每件衬衫降价多少元时,商场平均每天赢利最多?
20.某农场要建一个长方形的养鸡场,鸡场的一边靠墙,(墙长25m)另外三边用木栏围成,木栏长40m.
(1)若养鸡场面积为200m2,求鸡场靠墙的一边长.
(2)养鸡场面积能达到250m2吗?如果能,请给出设计方案;如果不能,请说明理由.
21.据某市车管部门统计,2012年底全市汽车拥有量为150万辆,而截止到2014年底,全市的汽车拥有量已达216万辆,假定汽车拥有量年平均增长率保持不变.
(1)求2013年底该市汽车拥有量;
(2)如果不加控制,该市2016年底汽车拥有量将达多少万辆?
22.受房贷收紧、对政策预期不确定等因素影响,今年前两个月,全国商品住宅市场销售出现销售量和销售价齐跌态势,数据显示,2014年前两个月,某房地产开发公司的销售面积一共8300平方米,其中2月份比1月份少销售300平方米.
(1)求2014年1、2月份各销售了多少平方米;
(2)该公司2月份每平方米的售价为8000元,3月份开始,决定以降价促销的方式应对当前的形势,据调查,与2月份相比较,每平方米销售单价下调a%,则销售面积将增加(a+10)%,结果3月份总销售额为3456万元,求a的值.
23.某商店将成本为30元的文化衫标价50元出售.
(1)为了搞促销活动经过两次降价调至每件40.5元,若两次降价的百分率相同,求每次降价的百分率;
(2)经调查,该文化衫每降5元,每月可多售出100件,若该品牌文化衫按原标价出售,每月可销售200件,那么销售价定为多少元,可以使该商品获得最大的利润?最大的利润是多少?
24.某公司生产的商品的市场指导价为每件150元,公司的实际销售价格可以浮动x个百分点(即销售价格=150(1+x%)),经过市场调研发现,这种商品的日销售量y(件)与销售价格浮动的百分点x之间的函数关系为y=﹣2x+24.若该公司按浮动﹣12个百分点的价格出售,每件商品仍可获利10%.
(1)求该公司生产销售每件商品的成本为多少元?
(2)当实际销售价格定为多少元时,日销售利润为660元?(说明:日销售利润=(销售价格一成本)×日销售量)
(3)该公司决定每销售一件商品就捐赠a元利润(a≥1)给希望工程,公司通过销售记录发现,当价格浮动的百分点大于﹣2时,扣除捐赠后的日销售利润随x增大而减小,直接写出a的取值范围.
25.淮北市某中学七年级一位同学不幸得了重病,牵动了全校师生的心,该校开展了“献爱心”捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.
(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;
(2)按照(1)中收到捐款的增长速度,第四天该校能收到多少捐款?
26.为丰富学生的学习生活,某校九年级1班组织学生参加春游活动,所联系的旅行社收费标准如下:
如果人数超过25人,每增加1人,人均活动费用降低2元,但人均活动费用不得低于75元.
如果人数不超过25人,人均活动费用为100元.
春游活动结束后,该班共支付给该旅行社活动费用2800元,请问该班共有多少人参加这次春游活动?
2.5 一元二次方程的应用专项练习
参考答案:
一.选择题(共10小题)
1.C 2.B 3.B 4.D 5.B 6.A 7.C 8.B 9.C 10.D
二.填空题(共8小题)
11. (40﹣x)(20+2x)=1200 .
12. 8100×(1﹣x)2=7600 .
13. x(x﹣1)=2×5 .
14. 1585(1+x)2=2180 .
15. 20 L.
16. 7 .
17. (35﹣2x)(20﹣x)=600(或2x2﹣75x+100=0) .
18. 20×(1+x)2=25 .
三.解答题(共8小题)
19.解:(1)设每件衬衫应降价x元,
根据题意得(40﹣x)(20+2x)=1200,
整理得2x2﹣60x+400=0
解得x1=20,x2=10.
因为要尽量减少库存,在获利相同的条件下,降价越多,销售越快,
故每件衬衫应降20元.
答:每件衬衫应降价20元.
(2)设商场平均每天赢利y元,则
y=(20+2x)(40﹣x)
=﹣2x2+60x+800
=﹣2(x2﹣30x﹣400)=﹣2[(x﹣15)2﹣625]
=﹣2(x﹣15)2+1250.
∴当x=15时,y取最大值,最大值为1250.
答:每件衬衫降价15元时,商场平均每天赢利最多,最大利润为1250元.
20.解:(1)设宽为x米,长(40﹣2x)米,根据题意得:
x(40﹣2x)=200,
﹣2x2+40x﹣200=0,
解得:x1=x2=10,
则鸡场靠墙的一边长为:40﹣2x=20(米),
答:鸡场靠墙的一边长20米.
(2)根据题意得:x(40﹣2x)=250,
∴﹣2x2+40x﹣250=0,
∵b2﹣4ac=402﹣4×(﹣2)×(﹣250)<0,
∴方程无实数根,
∴不能使鸡场的面积能达到250m2.
21.解:(1)设该市汽车拥有量的年平均增长率为x.
根据题意,得150(1+x)2=216.
解得x1=0.2,x2=﹣2.2(不合题意,舍去).
150(1+20%)=180(万辆).
答:2009年底该市汽车拥有量为180万辆.
(2)216(1+20%)2=311.04(万辆).
答:如果不加控制,该市2012年底汽车拥有量将达311.04万辆.
22.解:(1)设1月份的销售面积为xm2,则
x+(x﹣300)=8300,
解得:x=4300,
∴x﹣300=4000m2,
答:2014年度月销售4300m2,2月份销售4000m2.
(2)由题意可得:8000(1﹣a%)×4000[1+(a+10)%]=34560000
令t=a%,则整理为:50t2+5t﹣1=0,
解得:t=0.1或t=﹣0.2
故a=10或a=﹣20(不符合题意,舍去)
答:a的值为10.
23.解:(1)设每次降价率为n,则
50(1﹣n)2=40.5,
解得:n1=0.1=10%,n2=1.9(不合,舍去).
故每次降价的百分率为10%;
(2)设销售定价为每件x元,每月利润为y元,则
y=(x﹣30)(200+×10)=﹣20(x﹣45)2+4500
∵a=﹣20<0,
∴当x=45时,y取最大值为4500元.
24.解:(1)设该公司生产销售每件商品的成本为z元,
依题意得:150(1﹣12%)=(1+10%)z,
解得:z=120,
答:该公司生产销售每件商品的成本为120元;
(2)由题意得(﹣2x+24)[150(1+x%)﹣120]=660,
整理得:x2+8x﹣20=0,
解得:x1=2,x2=﹣10,
此时,商品定价为每件135元或153元,日销售利润为660元;
(3)根据题意得:1≤a≤6.
25.解:(1)捐款增长率为x,根据题意得:
10000(1+x)2=12100,
解得:x1=0.1,x2=﹣2.1(舍去).
则x=0.1=10%.
答:捐款的增长率为10%.
(2)根据题意得:12100×(1+10%)=13310(元),
答:第四天该校能收到的捐款是13310元.
26.解:∵25人的费用为2500元<2800元,
∴参加这次春游活动的人数超过25人,
设该班参加这次春游活动的人数为x名.
根据题意,得[100﹣2(x﹣25)]x=2800,
整理,得x2﹣75x+1400=0,
解得:x1=40,x2=35,
x1=40时,100﹣2(x﹣25)=70<75,不合题意,舍去;
x2=35时,100﹣2(x﹣25)=80>75,
答:该班共有35人参加这次春游活动.