百分闯关·2016秋九年级上册数学(人教版)第21章 一元二次方程 教案+导学案+课件+检测题 (22份打包)

文档属性

名称 百分闯关·2016秋九年级上册数学(人教版)第21章 一元二次方程 教案+导学案+课件+检测题 (22份打包)
格式 zip
文件大小 3.9MB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2016-09-02 10:45:42

文档简介


第二十一章 一元二次方程
21.1 一元二次方程
1. 了解一元二次方程的概念,应用一元二次方程概念解决一些简单问题.
2.掌握一元二次方程的一般形式ax2+bx+c=0(a≠0)及有关概念.
3.会进行简单的一元二次方程的试解;理解方程解的概念.
重点:一元二次方程的概念及其一般形式;一元二次方程解的探索.
难点:由实际问题列出一元二次方程;准确认识一元二次方程的二次项和系数以及一次项和系数及常数项.
一、自学指导.(10分钟)
问题1:
如图,有一块矩形铁皮,长100 cm,宽50 cm,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积为3600 cm2,那么铁皮各角应切去多大的正方形?
分析:设切去的正方形的边长为x cm,则盒底的长为__(100-2x)cm__,宽为__(50-2x)cm__.列方程__(100-2x)·(50-2x)=3600__,化简整理,得__x2-75x+350=0__.①
问题2:要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?
分析:全部比赛的场数为__4×7=28__.
设应邀请x个队参赛,每个队要与其他__(x-1)__个队各赛1场,所以全部比赛共__场.列方程__=28__,化简整理,得__x2-x-56=0__.②
探究:
(1)方程①②中未知数的个数各是多少?__1个__.
(2)它们最高次数分别是几次?__2次__.
归纳:方程①②的共同特点是:这些方程的两边都是__整式__,只含有__一个__未知数(一元),并且未知数的最高次数是__2__的方程.
1.一元二次方程的定义
等号两边都是__整式__ ,只含有__一__个未知数(一元),并且未知数的最高次数是__2__(二次)的方程,叫做一元二次方程.
2.一元二次方程的一般形式
一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式:
ax2+bx+c=0(a≠0).
这种形式叫做一元二次方程的一般形式.其中__ax2__是二次项,__a__是二次项系数,__bx__是一次项,__b__是一次项系数,__c__是常数项.
点拨精讲:二次项系数、一次项系数、常数项都要包含它前面的符号.二次项系数a≠0是一个重要条件,不能漏掉.
二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(6分钟)
1.判断下列方程,哪些是一元二次方程?
(1)x3-2x2+5=0;    (2)x2=1;
(3)5x2-2x-=x2-2x+;
(4)2(x+1)2=3(x+1);
(5)x2-2x=x2+1; (6)ax2+bx+c=0.
解:(2)(3)(4).
点拨精讲:有些含字母系数的方程,尽管分母中含有字母,但只要分母中不含有未知数,这样的方程仍然是整式方程.
2.将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.
解:去括号,得3x2-3x=5x+10.移项,合并同类项,得3x2-8x-10=0.其中二次项系数是3,一次项系数是-8,常数项是-10.
点拨精讲:将一元二次方程化成一般形式时,通常要将首项化负为正,化分为整.
一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)
1.求证:关于x的方程(m2-8m+17)x2+2mx+1=0,无论m取何值,该方程都是一元二次方程.
证明:m2-8m+17=(m-4)2+1,
∵(m-4)2≥0,
∴(m-4)2+1>0,即(m-4)2+1≠0.
∴无论m取何值,该方程都是一元二次方程.
点拨精讲:要证明无论m取何值,该方程都是一元二次方程,只要证明m2-8m+17≠0即可.
2.下面哪些数是方程2x2+10x+12=0的根?
-4,-3,-2,-1,0,1,2,3,4.
解:将上面的这些数代入后,只有-2和-3满足等式,所以x=-2或x=-3是一元二次方程2x2+10x+12=0的两根.
点拨精讲:要判定一个数是否是方程的根,只要把这个数代入等式,看等式两边是否相等即可.
二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(9分钟)
1.判断下列方程是否为一元二次方程.
(1)1-x2=0; (2)2(x2-1)=3y;
(3)2x2-3x-1=0; (4)-=0;
(5)(x+3)2=(x-3)2; (6)9x2=5-4x.
解:(1)是;(2)不是;(3)是;
(4)不是;(5)不是;(6)是.
2.若x=2是方程ax2+4x-5=0的一个根,求a的值.
解:∵x=2是方程ax2+4x-5=0的一个根,
 ∴4a+8-5=0,
 解得a=-.
3.根据下列问题,列出关于x的方程,并将其化成一元二次方程的一般形式:
(1)4个完全相同的正方形的面积之和是25,求正方形的边长x;
(2)一个长方形的长比宽多2,面积是100,求长方形的长x.
解:(1)4x2=25,4x2-25=0;(2)x(x-2)=100,x2-2x-100=0.
学生总结本堂课的收获与困惑.(2分钟)
1.一元二次方程的概念以及怎样利用概念判断一元二次方程.
2.一元二次方程的一般形式ax2+bx+c=0(a≠0),特别强调a≠0.
3.要会判断一个数是否是一元二次方程的根.
学习至此,请使用本课时对应训练部分.(10分钟)
21.2 解一元二次方程
21.2.1 配方法(1)
1. 使学生会用直接开平方法解一元二次方程.
2. 渗透转化思想,掌握一些转化的技能.
重点:运用开平方法解形如(x+m)2=n(n≥0)的方程;领会降次——转化的数学思想.
难点:通过根据平方根的意义解形如x2=n(n≥0)的方程,知识迁移到根据平方根的意义解形如(x+m)2=n(n≥0)的方程.
一、自学指导.(10分钟)
问题1:一桶某种油漆可刷的面积为1500 dm2,小李用这桶油漆恰好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?
设正方体的棱长为x dm,则一个正方体的表面积为__6x2__dm2,根据一桶油漆可刷的面积列出方程:
__10×6x2=1500__,
由此可得__x2=25__,
根据平方根的意义,得x=__±5__,
即x1=__5__,x2=__-5__.
可以验证__5__和-5都是方程的根,但棱长不能为负值,所以正方体的棱长为__5__dm.
探究:对照问题1解方程的过程,你认为应该怎样解方程(2x-1)2=5及方程x2+6x+9=4?
方程(2x-1)2=5左边是一个整式的平方,右边是一个非负数,根据平方根的意义,可将方程变形为__2x-1=±__,即将方程变为__2x-1=和__2x-1=-__两个一元一次方程,从而得到方程(2x-1)2=5的两个解为x1=__,x2=____.
在解上述方程的过程中,实质上是把一个一元二次方程“降次”,转化为两个一元一次方程,这样问题就容易解决了.
方程x2+6x+9=4的左边是完全平方式,这个方程可以化成(x+__3__)2=4,进行降次,得到 __x+3=±2__ ,方程的根为x1= __-1__,x2=__-5__.
归纳:在解一元二次方程时通常通过“降次”把它转化为两个一元一次方程.如果方程能化成x2=p(p≥0)或(mx+n)2=p(p≥0)的形式,那么可得x=±或mx+n=±.
二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(6分钟)
解下列方程:
(1)2y2=8;       (2)2(x-8)2=50;
(3)(2x-1)2+4=0; (4)4x2-4x+1=0.
解:(1)2y2=8,      (2)2(x-8)2=50,
 y2=4,        (x-8)2=25,
 y=±2,        x-8=±5,
 ∴y1=2,y2=-2;  x-8=5或x-8=-5,
          ∴x1=13,x2=3;
(3)(2x-1)2+4=0,   (4)4x2-4x+1=0,
  (2x-1)2=-4<0,   (2x-1)2=0,
  ∴原方程无解;      2x-1=0,
           ∴x1=x2=.
点拨精讲:观察以上各个方程能否化成x2=p(p≥0)或(mx+n)2=p(p≥0)的形式,若能,则可运用直接开平方法解.
一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)
1.用直接开平方法解下列方程:
(1)(3x+1)2=7; (2)y2+2y+1=24;
(3)9n2-24n+16=11.
解:(1);(2)-1±2;(3).
点拨精讲:运用开平方法解形如(mx+n)2=p(p≥0)的方程时,最容易出错的是漏掉负根.
2.已知关于x的方程x2+(a2+1)x-3=0的一个根是1,求a的值.
解:±1.
二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(9分钟)
用直接开平方法解下列方程:
(1)3(x-1)2-6=0 ; (2)x2-4x+4=5;
(3)9x2+6x+1=4; (4)36x2-1=0;
(5)4x2=81; (6)(x+5)2=25;
(7)x2+2x+1=4.
解:(1)x1=1+,x2=1-;
 (2)x1=2+,x2=2-;
 (3)x1=-1,x2=;
 (4)x1=,x2=-;
 (5)x1=,x2=-;
 (6)x1=0,x2=-10;
 (7)x1=1,x2=-3.
学生总结本堂课的收获与困惑.(2分钟)
1.用直接开平方法解一元二次方程.
2.理解“降次”思想.
3.理解x2=p(p≥0)或(mx+n)2=p(p≥0)中,为什么p≥0?
学习至此,请使用本课时对应训练部分.(10分钟)
21.2.1 配方法(2)
1.会用配方法解数字系数的一元二次方程.
2.掌握配方法和推导过程,能使用配方法解一元二次方程.
重点:掌握配方法解一元二次方程.
难点:把一元二次方程转化为形如(x-a)2=b的过程.
(2分钟)
1.填空:
(1)x2-8x+__16__=(x-__4__)2;
(2)9x2+12x+__4__=(3x+__2__)2;
(3)x2+px+__()2__=(x+____)2.
2.若4x2-mx+9是一个完全平方式,那么m的值是__±12__.
一、自学指导.(10分钟)
问题1:要使一块矩形场地的长比宽多6 m,并且面积为16 m2,场地的长和宽分别是多少米?
设场地的宽为x m,则长为__(x+6)__m,根据矩形面积为16 m2,得到方程__x(x+6)=16__,整理得到__x2+6x-16=0__.
探究:怎样解方程x2+6x-16=0?
对比这个方程与前面讨论过的方程x2+6x+9=4,可以发现方程x2+6x+9=4的左边是含有x的完全平方形式,右边是非负数,可以直接降次解方程;而方程x2+6x-16=0不具有上述形式,直接降次有困难,能设法把这个方程化为具有上述形式的方程吗?
解:移项,得x2+6x=16,
两边都加上__9__即__()2__,使左边配成x2+bx+()2的形式,得
__x2__+6__x__+9=16+__9__,
左边写成平方形式,得
__(x+3)2=25__,
开平方,得
__x+3=±5__,  (降次)
即 __x+3=5__或__x+3=-5__,
解一次方程,得x1=__2__,x2=__-8__.
归纳:通过配成完全平方式的形式解一元二次方程的方法,叫做配方法;配方的目的是为了降次,把一元二次方程转化为两个一元一次方程.
问题2:解下列方程:
(1)3x2-1=5;   (2)4(x-1)2-9=0;
(3)4x2+16x+16=9.
解:(1)x=±;(2)x1=-,x2=;
(3)x1=-,x2=-.
归纳:利用配方法解方程时应该遵循的步骤:
(1)把方程化为一般形式ax2+bx+c=0;
(2)把方程的常数项通过移项移到方程的右边;
(3)方程两边同时除以二次项系数a;
(4)方程两边同时加上一次项系数一半的平方;
(5)此时方程的左边是一个完全平方式,然后利用平方根的定义把一元二次方程化为两个一元一次方程来解.
二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(8分钟)
1.填空:
(1)x2+6x+__9__=(x+__3__)2;
(2)x2-x+____=(x-____)2;
(3)4x2+4x+__1__=(2x+__1__)2.
2.解下列方程:
(1)x2+6x+5=0; (2)2x2+6x+2=0;
(3)(1+x)2+2(1+x)-4=0.
解:(1)移项,得x2+6x=-5,
配方得x2+6x+32=-5+32,(x+3)2=4,
由此可得x+3=±2,即x1=-1,x2=-5.
(2)移项,得2x2+6x=-2,
二次项系数化为1,得x2+3x=-1,
配方得x2+3x+()2=(x+)2=,
由此可得x+=±,即x1=-,
x2=--.
(3)去括号,整理得x2+4x-1=0,
  移项得x2+4x=1,
  配方得(x+2)2=5,
x+2=±,即x1=-2,x2=--2.
点拨精讲:解这些方程可以用配方法来完成,即配一个含有x的完全平方式.
一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(5分钟)
如图,在Rt△ABC中,∠C=90°,AC=8 m,CB=6 m,点P,Q同时由A,B两点出发分别沿AC,BC方向向点C匀速移动,它们的速度都是1 m/s,几秒后△PCQ的面积为Rt△ABC面积的一半?
解:设x秒后△PCQ的面积为Rt△ABC面积的一半.根据题意可列方程:
(8-x)(6-x)=××8×6,
即x2-14x+24=0,
(x-7)2=25,
x-7=±5,
∴x1=12,x2=2,
x1=12,x2=2都是原方程的根,但x1=12不合题意,舍去.
答:2秒后△PCQ的面积为Rt△ABC面积的一半.
点拨精讲:设x秒后△PCQ的面积为Rt△ABC面积的一半,△PCQ也是直角三角形.根据已知条件列出等式.
二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟)
1.用配方法解下列关于x的方程:
(1)2x2-4x-8=0;    (2)x2-4x+2=0;
(3)x2-x-1=0 ; (4)2x2+2=5.
解:(1)x1=1+,x2=1-;
(2)x1=2+,x2=2-;
(3)x1=+,x2=-;
(4)x1=,x2=-.
2.如果x2-4x+y2+6y++13=0,求(xy)z的值.
解:由已知方程得x2-4x+4+y2+6y+9+=0,即(x-2)2+(y+3)2+=0,∴x=2,y=-3,z=-2.
∴(xy)z=[2×(-3)]-2=.
学生总结本堂课的收获与困惑.(2分钟)
1.用配方法解一元二次方程的步骤.
2.用配方法解一元二次方程的注意事项.
学习至此,请使用本课时对应训练部分.(10分钟)
21.2.2 公式法
1. 理解一元二次方程求根公式的推导过程,了解公式法的概念.
2. 会熟练应用公式法解一元二次方程.
重点:求根公式的推导和公式法的应用.
难点:一元二次方程求根公式的推导.
(2分钟)
用配方法解方程:
(1)x2+3x+2=0;    (2)2x2-3x+5=0.
解:(1)x1=-2,x2=-1; (2)无解.
一、自学指导.(8分钟)
问题:如果这个一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步骤求出它们的两根?
问题:已知ax2+bx+c=0(a≠0),试推导它的两个根x1=,x2=.
分析:因为前面具体数字已做得很多,现在不妨把a,b,c也当成一个具体数字,根据上面的解题步骤就可以一直推下去.
探究:一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a,b,c而定,因此:
(1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b2-4ac≥0时,将a,b,c代入式子x=就得到方程的根,当b2-4ac<0时,方程没有实数根.
(2)x=叫做一元二次方程ax2+bx+c=0(a≠0)的求根公式.
(3)利用求根公式解一元二次方程的方法叫做公式法.
(4)由求根公式可知,一元二次方程最多有__2个实数根,也可能有__1__个实根或者__没有__实根.
(5)一般地,式子b2-4ac叫做方程ax2+bx+c=0(a≠0)的根的判别式,通常用希腊字母Δ表示,即Δ=b2-4ac.
二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)
 用公式法解下列方程,根据方程根的情况你有什么结论?
(1)2x2-3x=0;    (2)3x2-2x+1=0;
(3)4x2+x+1=0.
解:(1)x1=0,x2=;有两个不相等的实数根;
 (2)x1=x2=;有两个相等的实数根;
 (3)无实数根.
点拨精讲:Δ>0时,有两个不相等的实数根;Δ=0时,有两个相等的实数根;Δ<0时,没有实数根.
一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)
1.方程x2-4x+4=0的根的情况是( B )
A.有两个不相等的实数根
B.有两个相等的实数根
C.有一个实数根
D.没有实数根
2.当m为何值时,方程(m+1)x2-(2m-3)x+m+1=0,
(1)有两个不相等的实数根?
(2)有两个相等的实数根?
(3)没有实数根?
解:(1)m<; (2)m=; (3)m >.
3. 已知x2+2x=m-1没有实数根,求证:x2+mx=1-2m必有两个不相等的实数根.
证明:∵x2+2x-m+1=0没有实数根,
∴4-4(1-m)<0,∴m<0.
对于方程x2+mx=1-2m,即x2+mx+2m-1=0,
Δ=m2-8m+4,∵m<0,∴Δ>0,
∴x2+mx=1-2m必有两个不相等的实数根.
二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟)
1.利用判别式判定下列方程的根的情况:
(1)2x2-3x-=0; (2)16x2-24x+9=0;
(3)x2-4x+9=0 ; (4)3x2+10x=2x2+8x.
解:(1)有两个不相等的实数根;
 (2)有两个相等的实数根;
 (3)无实数根;
 (4)有两个不相等的实数根.
2.用公式法解下列方程:
(1)x2+x-12=0 ;  (2)x2-x-=0;
(3)x2+4x+8=2x+11;  (4)x(x-4)=2-8x;
(5)x2+2x=0 ;  (6)x2+2x+10=0.
解:(1)x1=3,x2=-4;
 (2)x1=,x2=;
 (3)x1=1,x2=-3;
 (4)x1=-2+,x2=-2-;
 (5)x1=0,x2=-2; (6)无实数根.
点拨精讲:(1)一元二次方程ax2+bx+c=0(a≠0)的根是由一元二次方程的系数a,b,c确定的;
(2)在解一元二次方程时,可先把方程化为一般形式,然后在b2-4ac≥0的前提下,把a,b,c的值代入x=(b2-4ac≥0)中,可求得方程的两个根;
(3)由求根公式可以知道一元二次方程最多有两个实数根.
学生总结本堂课的收获与困惑.(2分钟)
1.求根公式的推导过程.
2.用公式法解一元二次方程的一般步骤:先确定a,b,c的值,再算出b2-4ac的值、最后代入求根公式求解.
3.用判别式判定一元二次方程根的情况.
学习至此,请使用本课时对应训练部分.(10分钟)
21.2.3 因式分解法
1. 会用因式分解法(提公因式法、公式法)解某些简单的数字系数的一元二次方程.
2. 能根据具体的一元二次方程的特征,灵活选择方程的解法,体会解决问题方法的多样性.
重点:用因式分解法解一元二次方程.
难点:理解因式分解法解一元二次方程的基本思想.
(2分钟)
将下列各题因式分解:
(1)am+bm+cm=(__a+b+c__)m;
(2)a2-b2=__(a+b)(a-b)__;
(3)a2±2ab+b2=__(a±b)2__.
一、自学指导.(8分钟)
问题:根据物理学规律,如果把一个物体从地面以10 m/s的速度竖直上抛,那么经过x s物体离地的高度(单位:m)为10x-4.9x2.你能根据上述规律求出物体经过多少秒落回地面吗?(精确到0.01s)
设物体经过x s落回地面,这时它离地面的高度为0,即10x-4.9x2=0,  ①
思考:除配方法或公式法以外,能否找到更简单的方法解方程①?
分析:方程①的右边为0,左边可以因式分解得:
x(10-4.9x)=0,
于是得x=0或10-4.9x=0,  ②
∴x1=__0__,x2≈2.04.
上述解中,x2≈2.04表示物体约在2.04 s时落回地面,而x1=0表示物体被上抛离开地面的时刻,即0 s时物体被抛出,此刻物体的高度是0 m.
点拨精讲: (1)对于一元二次方程,先将方程右边化为0,然后对方程左边进行因式分解,使方程化为两个一次式的乘积的形式,再使这两个一次因式分别等于零,从而实现降次,这种解法叫做因式分解法.
(2)如果a·b=0,那么a=0或b=0,这是因式分解法的根据.如:如果(x+1)(x-1)=0,那么__x+1=0或__x-1=0__,即__x=-1__或__x=1.
二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)
1.说出下列方程的根:
(1)x(x-8)=0;   (2)(3x+1)(2x-5)=0.
解:(1)x1=0,x2=8; (2)x1=-,x2=.
2.用因式分解法解下列方程:
(1)x2-4x=0; (2)4x2-49=0;
(3)5x2-20x+20=0.
解:(1)x1=0,x2=4; (2)x1=,x2=-;
(3)x1=x2=2.
一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)
1.用因式分解法解下列方程:
(1)5x2-4x=0;   (2)3x(2x+1)=4x+2;
(3)(x+5)2=3x+15.
解:(1)x1=0,x2=;
(2)x1=,x2=-;
(3)x1=-5,x2=-2.
点拨精讲:用因式分解法解一元二次方程的要点是方程的一边是0,另一边可以分解因式.
2.用因式分解法解下列方程:
(1)4x2-144=0;
(2)(2x-1)2=(3-x)2;
(3)5x2-2x-=x2-2x+;
(4)3x2-12x=-12.
解:(1)x1=6,x2=-6;
(2)x1=,x2=-2;
(3)x1=,x2=-;
(4)x1=x2=2.
点拨精讲:注意本例中的方程可以试用多种方法.
二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟)
1.用因式分解法解下列方程:
(1)x2+x=0; (2)x2-2x=0;
(3)3x2-6x=-3; (4)4x2-121=0;
(5)(x-4)2=(5-2x)2.
解:(1)x1=0,x2=-1;
(2)x1=0,x2=2;
(3)x1=x2=1;
(4)x1=,x2=-;
(5)x1=3,x2=1.
点拨精讲:因式分解法解一元二次方程的一般步骤:
(1)将方程右边化为__0__;
(2)将方程左边分解成两个一次式的__乘积__;
(3)令每个因式分别为__0__,得到两个一元一次方程;
(4)解这两个一元一次方程,它们的解就是原方程的解.
2.把小圆形场地的半径增加5 m得到大圆形场地,场地面积增加了一倍,求小圆形场地的半径.
解:设小圆形场地的半径为x m.
则可列方程2πx2=π(x+5)2.
解得x1=5+5,x2=5-5(舍去).
答:小圆形场地的半径为(5+5) m.
学生总结本堂课的收获与困惑.(2分钟)
1.用因式分解法解方程的根据由ab=0得 a=0或b=0,即“二次降为一次”.
2.正确的因式分解是解题的关键.
学习至此,请使用本课时对应训练部分.(10分钟)
21.2.4 一元二次方程的根与系数的关系
1. 理解并掌握根与系数的关系:x1+x2=-,x1x2=.
2. 会用根的判别式及根与系数的关系解题.
重点:一元二次方程的根与系数的关系及运用.
难点:一元二次方程的根与系数的关系及运用.
一、自学指导.(10分钟)
自学1:完成下表:
方程
x1
x2
x1+x2
x1x2
x2-5x+6=0
2
3
5
6
x2+3x-10=0
2
-5
-3
-10
问题:你发现什么规律?
①用语言叙述你发现的规律;
答:两根之和为一次项系数的相反数;两根之积为常数项.
②x2+px+q=0的两根x1,x2用式子表示你发现的规律.
答:x1+x2=-p,x1x2=q.
自学2:完成下表:
方程
x1
x2
x1+x2
x1x2
2x2-3x-2=0
2
-

-1
3x2-4x+1=0

1


问题:上面发现的结论在这里成立吗?(不成立)
请完善规律:
①用语言叙述发现的规律;
答:两根之和为一次项系数与二次项系数之比的相反数,两根之积为常数项与二次项系数之比.
②ax2+bx+c=0的两根x1,x2用式子表示你发现的规律.
答:x1+x2=-,x1x2=.
自学3:利用求根公式推导根与系数的关系.(韦达定理)
ax2+bx+c=0的两根x1=____,x2=____.
x1+x2=-,x1x2=.
二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)
根据一元二次方程的根与系数的关系,求下列方程的两根之和与两根之积.
(1)x2-3x-1=0 ;  (2)2x2+3x-5=0;
(3)x2-2x=0.
解:(1)x1+x2=3,x1x2=-1;
(2)x1+x2=-,x1x2=-;
(3)x1+x2=6,x1x2=0.
一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)
1.不解方程,求下列方程的两根之和与两根之积.
(1)x2-6x-15=0; (2)3x2+7x-9=0;
(3)5x-1=4x2.
解:(1)x1+x2=6,x1x2=-15;
(2)x1+x2=-,x1x2=-3;
(3)x1+x2=,x1x2=.
点拨精讲:先将方程化为一般形式,找对a,b,c.
2.已知方程2x2+kx-9=0的一个根是-3,求另一根及k的值.
解:另一根为,k=3.
点拨精讲:本题有两种解法,一种是根据根的定义,将x=-3代入方程先求k,再求另一个根;一种是利用根与系数的关系解答.
3.已知α,β是方程x2-3x-5=0的两根,不解方程,求下列代数式的值.
(1)+;  (2)α2+β2;  (3)α-β.
解:(1)-;(2)19;(3)或-.
二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟)
1.不解方程,求下列方程的两根和与两根积:
(1)x2-3x=15; (2)5x2-1=4x2;
(3)x2-3x+2=10; (4)4x2-144=0.
解:(1)x1+x2=3,x1x2=-15;
(2)x1+x2=0,x1x2=-1;
(3)x1+x2=3,x1x2=-8;
(4)x1+x2=0,x1x2=-36.
2.两根均为负数的一元二次方程是( C )
A.7x2-12x+5=0 B.6x2-13x-5=0
C.4x2+21x+5=0 D.x2+15x-8=0
点拨精讲:两根均为负数的一元二次方程根与系数的关系满足两根之和为负数,两根之积为正数.
学生总结本堂课的收获与困惑.(2分钟)
不解方程,根据一元二次方程根与系数的关系和已知条件结合,可求得一些代数式的值;求得方程的另一根和方程中的待定系数的值.
1.先化成一般形式,再确定a,b,c.
2.当且仅当b2-4ac≥0时,才能应用根与系数的关系.
3.要注意比的符号:x1+x2=-(比前面有负号),x1x2=(比前面没有负号).
学习至此,请使用本课时对应训练部分.(10分钟)
21.3 实际问题与一元二次方程(1)
1.会根据具体问题(按一定传播速度传播的问题、数字问题等)中的数量关系列一元二次方程并求解.
2.能根据问题的实际意义,检验所得结果是否合理.
3.进一步掌握列方程解应用题的步骤和关键.
重点:列一元二次方程解决实际问题.
难点:找出实际问题中的等量关系.
一、自学指导.(12分钟)
问题1:有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?
分析:
①设每轮传染中平均一个人传染了x个人,那么患流感的这一个人在第一轮中传染了__x__人,第一轮后共有__(x+1)__人患了流感;
②第二轮传染中,这些人中的每个人又传染了__x__人,第二轮后共有__(x+1)(x+1)__人患了流感.
则列方程:
__(x+1)2=121__,
解得__x=10或x=-12(舍)__,
即平均一个人传染了__10__个人.
再思考:如果按照这样的传染速度,三轮后有多少人患流感?
问题2:一个两位数,它的两个数字之和为6,把这两个数字交换位置后所得的两位数与原两位数的积是1008,求原来的两位数.
分析:设原来的两位数的个位数字为__x__,则十位数字为__(6-x)__,则原两位数为__10(6-x)+x,新两位数为__10x+(6-x)__.依题意可列方程:[10(6-x)+x][10x+(6-x)]=1008__,
解得 x1=__2__,x2=__4__,∴原来的两位数为24或42.
二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)
某初中毕业班的每一个同学都将自己的相片向全班其他同学各送一张表示留念,全班共送了2550张相片,如果全班有x名学生,根据题意,列出方程为(  )
A.x(x+1)=2550
B.x(x-1)=2550
C.2x(x+1)=2550
D.x(x-1)=2550×2
分析:由题意,每一个同学都将向全班其他同学各送一张相片,则每人送出(x-1)张相片,全班共送出x(x-1)张相片,可列方程为x(x-1)=2550. 故选B.
一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)
1.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,求每个支干长出多少小分支?
解:设每个支干长出x个小分支,则有1+x+x2=91,
即x2+x-90=0,
解得x1=9,x2=-10(舍去),
故每个支干长出9个小分支.
点拨精讲:本例与传染问题的区别.
2.一个两位数,个位上的数字比十位上的数字小4,且个位数字与十位数字的平方和比这个两位数小4,设个位数字为x,则列方程为:__x2+(x+4)2=10(x+4)+x-4__.
二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(7分钟)
1.两个正数的差是2,它们的平方和是52,则这两个数是( C )
A.2和4  B.6和8  C.4和6  D.8和10
2.教材P21第2题、第3题
学生总结本堂课的收获与困惑.(3分钟)
1.列一元二次方程解应用题的一般步骤:
(1)“审”:即审题,读懂题意弄清题中的已知量和未知量;
(2)“设”:即设__未知数__,设未知数的方法有直接设和间接设未知数两种;
(3)“列”:即根据题中__等量__关系列方程;
(4)“解”:即求出所列方程的__根__;
(5)“检验”:即验证根是否符合题意;
(6)“答”:即回答题目中要解决的问题.
2. 对于数字问题应注意数字的位置.
学习至此,请使用本课时对应训练部分.(10分钟)
21.3 实际问题与一元二次方程(2)
1. 会根据具体问题(增长率、降低率问题和利润率问题)中的数量关系列一元二次方程并求解.
2.能根据问题的实际意义,检验所得结果是否合理.
3.进一步掌握列方程解应用题的步骤和关键.
重点:如何解决增长率与降低率问题.
难点:理解增长率与降低率问题的公式a(1±x)n=b,其中a是原有量,x为增长(或降低)率,n为增长(或降低)的次数,b为增长(或降低)后的量.
一、自学指导.(10分钟)
自学:两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?(精确到0.01)
绝对量:甲种药品成本的年平均下降额为(5000-3000)÷2=1000(元),乙种药品成本的年平均下降额为(6000-3600)÷2=1200(元),显然,乙种药品成本的年平均下降额较大.
相对量:从上面的绝对量的大小能否说明相对量的大小呢?也就是能否说明乙种药品成本的年平均下降率大呢?下面我们通过计算来说明这个问题.
分析:
①设甲种药品成本的年平均下降率为x,则一年后甲种药品成本为__5000(1-x)__元,两年后甲种药品成本为__5000(1-x)2__元.
依题意,得__5000(1-x)2=3000__.
解得__x1≈0.23,x2≈1.77__.
根据实际意义,甲种药品成本的年平均下降率约为__0.23__.
②设乙种药品成本的年平均下降率为y.则,
列方程:__6000(1-y)2=3600__.
解得__y1≈0.23,y2≈1.77(舍)__.
答:两种药品成本的年平均下降率__相同__.
点拨精讲:经过计算,成本下降额较大的药品,它的成本下降率不一定较大,应比较降前及降后的价格.
二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(8分钟)
某商店10月份的营业额为5000元,12月份上升到7200元,平均每月增长百分率是多少?
【分析】如果设平均每月增长的百分率为x,则
11月份的营业额为__5000(1+x)__元,
12月份的营业额为__5000(1+x)(1+x)__元,即__5000(1+x)2__元.
由此就可列方程:__5000(1+x)2=7200__.
点拨精讲:此例是增长率问题,如题目无特别说明,一般都指平均增长率,增长率是增长数与基准数的比.
增长率=增长数∶基准数
设基准数为a,增长率为x,
则一月(或一年)后产量为a(1+x);
二月(或二年)后产量为a(1+x)2;
n月(或n年)后产量为a(1+x)n;
如果已知n月(n年)后产量为M,则有下面等式:M=a(1+x)n.
解这类问题一般多采用上面的等量关系列方程.
一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)
某人将2000元人民币按一年定期存入银行,到期后支取1000元用于购物,剩下的1000元及应得利息又全部按一年定期存入银行,若存款的利率不变,到期后本金和利息共1320元,求这种存款方式的年利率.(利息税20%)
分析:设这种存款方式的年利率为x,第一次存2000元取1000元,剩下的本金和利息是1000+2000x·80%;第二次存,本金就变为1000+2000x·80%,其他依此类推.
解:设这种存款方式的年利率为x,
则1000+2000x·80%+(1000+2000x·80%)x·80%=1320,
整理,得1280x2+800x+1600x=320,即8x2+15x-2=0,
解得x1=-2(不符,舍去),x2=0.125=12.5%.
答:所求的年利率是12.5%.
二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(6分钟)
青山村种的水稻2011年平均每公顷产7200 kg,2013年平均每公顷产8460 kg,求水稻每公顷产量的年平均增长率.
解:设年平均增长率为x,
则有7200(1+x)2=8460,
解得x1=0.08,x2=-2.08(舍).
即年平均增长率为8%.
答:水稻每公顷产量的年平均增长率为8%.
点拨精讲:传播或传染以及增长率问题的方程适合用直接开平方法来解.
学生总结本堂课的收获与困惑.(3分钟)
1. 列一元二次方程解应用题的步骤:审、设、找、列、解、答.最后要检验根是否符合实际意义.
2. 若平均增长(降低)率为x,增长(或降低)前的基数是a,增长(或降低)n次后的量是b,则有:a(1±x)n=b(常见n=2).
学习至此,请使用本课时对应训练部分.(10分钟)
21.3 实际问题与一元二次方程(3)
1. 能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型.并能根据具体问题的实际意义,检验结果是否合理.
2. 列一元二次方程解有关特殊图形问题的应用题.
重点:根据面积与面积之间的等量关系建立一元二次方程的数学模型并运用它解决实际问题.
难点:根据面积与面积之间的等量关系建立一元二次方程的数学模型.
一、自学指导.(10分钟)
问题:如图,要设计一本书的封面,封面长27 cm,宽21 cm,正中央是一个与整个封面长宽比例相同的矩形.如果要使四周的阴影边衬所占面积
是封面面积的四分之一,上、下边衬等宽,左、右边衬等宽,应如何设计四周边衬的宽度?(精确到0.1 cm)
分析:封面的长宽之比是27∶21=__9∶7,中央的长方形的长宽之比也应是__9∶7__,若设中央的长方形的长和宽分别是__9a_cm__和__7a_cm__,由此得上下边衬与左右边衬的宽度之比是__(27-9a)∶(21-7a)=9∶7__.
探究:怎样设未知数可以更简单的解决上面的问题?请试一试.
二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)
在一幅长8分米,宽6分米的矩形风景画(如图①)的四周镶宽度相同的金色纸边,制成一幅矩形挂图(如图②).如果要使整个挂图的面积是80平方分米,求金色纸边的宽.
 解:设金色纸边的宽为x分米,根据题意,得(2x+6)(2x+8)=80.
 解得x1=1,x2=-8(不合题意,舍去).
 答:金色纸边的宽为1分米.
点拨精讲:本题和上题一样,利用矩形的面积公式做为相等关系列方程.
一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)
如图,某小区规划在一个长为40 m、宽为26 m的矩形场地ABCD上修建三条同样宽度的马路,使其中两条与AB平行,另一条与AD平行,其余部分种草.若使每一块草坪的面积都是144 m2,求马路的宽.
解:假设三条马路修在如图所示位置.
设马路宽为x,则有
(40-2x)(26-x)=144×6,
化简,得x2-46x+88=0,
解得x1=2,x2=44,
由题意:40-2x>0,26-x>0, 则x<20.
故x2=44不合题意,应舍去,∴x=2.
答:马路的宽为2 m.
点拨精讲:这类修路问题,通常采用平移方法,使剩余部分为一完整矩形.
二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟)
1.如图,要设计一幅宽20 cm、长30 cm的图案,其中有两横两竖的彩条(图中阴影部分),横、竖彩条的宽度比为3∶2,如果要使彩条所占面积是图案面积的四分之一,应如何设计彩条的宽度.(精确到0.1 cm)
解:设横彩条的宽度为3x cm,则竖彩条的宽度为2x cm.
根据题意,得(30-4x)(20-6x)=(1-)×20×30.
解得x1≈0.6,x2≈10.2(不合题意,舍去).
故3x=1.8,2x=1.2.
答:横彩条宽为1.8 cm,竖彩条宽为1.2 cm.
2.用一根长40 cm的铁丝围成一个长方形,要求长方形的面积为75 cm2.
(1)求此长方形的宽是多少?
(2)能围成一个面积为101 cm2的长方形吗?若能,说明围法.
(3)若设围成一个长方形的面积为S(cm2),长方形的宽为x(cm),求S与x的函数关系式,并求出当x为何值时,S的值最大?最大面积为多少?
解:(1)设此长方形的宽为x cm,则长为(20-x) cm.
根据题意,得x(20-x)=75,
解得x1=5,x2=15(舍去).
答:此长方形的宽是5 cm.
(2)不能.由x(20-x)=101,即x2-20x+101=0,知Δ=202-4×101=-4<0,方程无解,故不能围成一个面积为101 cm2的长方形.
(3)S=x(20-x)=-x2+20x.
由S=-x2+20x=-(x-10)2+100知,当x=10时,S的值最大,最大面积为100 cm2.
点拨精讲:注意一元二次方程根的判别式和配方法在第(2)(3)问中的应用.
学生总结本堂课的收获与困惑.(2分钟)
用一元二次方程解决特殊图形问题时,通常要先画出图形,利用图形的面积找相等关系列方程.
学习至此,请使用本课时对应训练部分.(10分钟)
                      
(这是边文,请据需要手工删加)
(这是边文,请据需要手工删加)
(这是边文,请据需要手工删加)
九年级数学(上)(配人教地区使用)(这是边文,请据需要手工删加)
第二十一章 一元二次方程
21.1 一元二次方程
1.通过类比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a≠0),分清二次项及其系数、一次项及其系数与常数项等概念.
2.了解一元二次方程的解的概念,会检验一个数是不是一元二次方程的解.
重点
通过类比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a≠0)和一元二次方程的解等概念,并能用这些概念解决简单问题.
难点
一元二次方程及其二次项系数、一次项系数和常数项的识别.
活动1 复习旧知
1.什么是方程?你能举一个方程的例子吗?
2.下列哪些方程是一元一次方程?并给出一元一次方程的概念和一般形式.
(1)2x-1 (2)mx+n=0 (3)+1=0 (4)x2=1
3.下列哪个实数是方程2x-1=3的解?并给出方程的解的概念.
A.0    B.1    C.2    D.3
活动2 探究新知
根据题意列方程.
1.教材第2页 问题1.
提出问题:
(1)正方形的大小由什么量决定?本题应该设哪个量为未知数?
(2)本题中有什么数量关系?能利用这个数量关系列方程吗?怎么列方程?
(3)这个方程能整理为比较简单的形式吗?请说出整理之后的方程.
2.教材第2页 问题2.
提出问题:
(1)本题中有哪些量?由这些量可以得到什么?
(2)比赛队伍的数量与比赛的场次有什么关系?如果有5个队参赛,每个队比赛几场?一共有20场比赛吗?如果不是20场比赛,那么究竟比赛多少场?
(3)如果有x个队参赛,一共比赛多少场呢?
3.一个数比另一个数大3,且两个数之积为0,求这两个数.
提出问题:
本题需要设两个未知数吗?如果可以设一个未知数,那么方程应该怎么列?
4.一个正方形的面积的2倍等于25,这个正方形的边长是多少?
活动3 归纳概念
提出问题:
(1)上述方程与一元一次方程有什么相同点和不同点?
(2)类比一元一次方程,我们可以给这一类方程取一个什么名字?
(3)归纳一元二次方程的概念.
1.一元二次方程:只含有________个未知数,并且未知数的最高次数是________,这样的________方程,叫做一元二次方程.
2.一元二次方程的一般形式是ax2+bx+c=0(a≠0),其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.
提出问题:
(1)一元二次方程的一般形式有什么特点?等号的左、右分别是什么?
(2)为什么要限制a≠0,b,c可以为0吗?
(3)2x2-x+1=0的一次项系数是1吗?为什么?
3.一元二次方程的解(根):使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解(根).
活动4 例题与练习
例1 在下列方程中,属于一元二次方程的是________.
(1)4x2=81;(2)2x2-1=3y;(3)+=2;
(4)2x2-2x(x+7)=0.
总结:判断一个方程是否是一元二次方程的依据:(1)整式方程;(2)只含有一个未知数;(3)含有未知数的项的最高次数是2.注意有些方程化简前含有二次项,但是化简后二次项系数为0,这样的方程不是一元二次方程.
例2 教材第3页 例题.
例3 以-2为根的一元二次方程是(  )
A.x2+2x-1=0 B.x2-x-2=0
C.x2+x+2=0 D.x2+x-2=0
总结:判断一个数是否为方程的解,可以将这个数代入方程,判断方程左、右两边的值是否相等.
练习:
1.若(a-1)x2+3ax-1=0是关于x的一元二次方程,那么a的取值范围是________.
2.将下列一元二次方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项.
(1)4x2=81;(2)(3x-2)(x+1)=8x-3.
3.教材第4页 练习第2题.
4.若-4是关于x的一元二次方程2x2+7x-k=0的一个根,则k的值为________.
答案:1.a≠1;2.略;3.略;4.k=4.
活动5 课堂小结与作业布置
课堂小结
我们学习了一元二次方程的哪些知识?一元二次方程的一般形式是什么?一般形式中有什么限制?你能解一元二次方程吗?
作业布置
教材第4页 习题21.1第1~7题.21.2 解一元二次方程
21.2.1 配方法(3课时)
第1课时 直接开平方法
理解一元二次方程“降次”——转化的数学思想,并能应用它解决一些具体问题.
提出问题,列出缺一次项的一元二次方程ax2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex+f)2+c=0型的一元二次方程.
重点
运用开平方法解形如(x+m)2=n(n≥0)的方程,领会降次——转化的数学思想.
难点
通过根据平方根的意义解形如x2=n的方程,将知识迁移到根据平方根的意义解形如(x+m)2=n(n≥0)的方程.
一、复习引入
学生活动:请同学们完成下列各题.
问题1:填空
(1)x2-8x+________=(x-________)2;(2)9x2+12x+________=(3x+________)2;(3)x2+px+________=(x+________)2.
解:根据完全平方公式可得:(1)16 4;(2)4 2;(3)()2 .
问题2:目前我们都学过哪些方程?二元怎样转化成一元?一元二次方程与一元一次方程有什么不同?二次如何转化成一次?怎样降次?以前学过哪些降次的方法?
二、探索新知
上面我们已经讲了x2=9,根据平方根的意义,直接开平方得x=±3,如果x换元为2t+1,即(2t+1)2=9,能否也用直接开平方的方法求解呢?
(学生分组讨论)
老师点评:回答是肯定的,把2t+1变为上面的x,那么2t+1=±3
即2t+1=3,2t+1=-3
方程的两根为t1=1,t2=-2
例1 解方程:(1)x2+4x+4=1 (2)x2+6x+9=2
分析:(1)x2+4x+4是一个完全平方公式,那么原方程就转化为(x+2)2=1.
(2)由已知,得:(x+3)2=2
直接开平方,得:x+3=±
即x+3=,x+3=-
所以,方程的两根x1=-3+,x2=-3-
解:略.
例2 市政府计划2年内将人均住房面积由现在的10 m2提高到14.4 m2,求每年人均住房面积增长率.
分析:设每年人均住房面积增长率为x,一年后人均住房面积就应该是10+10x=10(1+x);二年后人均住房面积就应该是10(1+x)+10(1+x)x=10(1+x)2
解:设每年人均住房面积增长率为x,
则:10(1+x)2=14.4
(1+x)2=1.44
直接开平方,得1+x=±1.2
即1+x=1.2,1+x=-1.2
所以,方程的两根是x1=0.2=20%,x2=-2.2
因为每年人均住房面积的增长率应为正的,因此,x2=-2.2应舍去.
所以,每年人均住房面积增长率应为20%.
(学生小结)老师引导提问:解一元二次方程,它们的共同特点是什么?
共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.我们把这种思想称为“降次转化思想”.
三、巩固练习
教材第6页 练习.
四、课堂小结
本节课应掌握:由应用直接开平方法解形如x2=p(p≥0)的方程,那么x=±转化为应用直接开平方法解形如(mx+n)2=p(p≥0)的方程,那么mx+n=±,达到降次转化之目的.若p<0则方程无解.
五、作业布置
教材第16页 复习巩固1.第2课时 配方法的基本形式
理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题.
通过复习可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面两种形式的一元二次方程的解题步骤.
重点
讲清直接降次有困难,如x2+6x-16=0的一元二次方程的解题步骤.
难点
将不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧.
一、复习引入
(学生活动)请同学们解下列方程:
(1)3x2-1=5 (2)4(x-1)2-9=0 (3)4x2+16x+16=9 (4)4x2+16x=-7
老师点评:上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得
x=±或mx+n=±(p≥0).
如:4x2+16x+16=(2x+4)2,你能把4x2+16x=-7化成(2x+4)2=9吗?
二、探索新知
列出下面问题的方程并回答:
(1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢?
(2)能否直接用上面前三个方程的解法呢?
问题:要使一块矩形场地的长比宽多6 m,并且面积为16 m2,求场地的长和宽各是多少?
(1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x的完全平方式而后二个不具有此特征.
(2)不能.
既然不能直接降次解方程,那么,我们就应该设法把它转化为可直接降次解方程的方程,下面,我们就来讲如何转化:
x2+6x-16=0移项→x2+6x=16
两边加(6/2)2使左边配成x2+2bx+b2的形式→x2+6x+32=16+9
左边写成平方形式→(x+3)2=25降次→x+3=±5即x+3=5或x+3=-5
解一次方程→x1=2,x2=-8
可以验证:x1=2,x2=-8都是方程的根,但场地的宽不能是负值,所以场地的宽为2 m,长为8 m.
像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法.
可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解.
例1 用配方法解下列关于x的方程:
(1)x2-8x+1=0 (2)x2-2x-=0
分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式;(2)同上.
解:略.
三、巩固练习
教材第9页 练习1,2.(1)(2).
四、课堂小结
本节课应掌握:
左边不含有x的完全平方形式的一元二次方程化为左边是含有x的完全平方形式,右边是非负数,可以直接降次解方程的方程.
五、作业布置
教材第17页 复习巩固2,3.(1)(2).第3课时 配方法的灵活运用
了解配方法的概念,掌握运用配方法解一元二次方程的步骤.
通过复习上一节课的解题方法,给出配方法的概念,然后运用配方法解决一些具体题目.
重点
讲清配方法的解题步骤.
难点
对于用配方法解二次项系数为1的一元二次方程,通常把常数项移到方程右边后,两边加上的常数是一次项系数一半的平方;对于二次项系数不为1的一元二次方程,要先化二次项系数为1,再用配方法求解.
一、复习引入
(学生活动)解下列方程:
(1)x2-4x+7=0 (2)2x2-8x+1=0
老师点评:我们上一节课,已经学习了如何解左边不含有x的完全平方形式的一元二次方程以及不可以直接开方降次解方程的转化问题,那么这两道题也可以用上面的方法进行解题.
解:略. (2)与(1)有何关联?
二、探索新知
讨论:配方法解一元二次方程的一般步骤:
(1)先将已知方程化为一般形式;
(2)化二次项系数为1;
(3)常数项移到右边;
(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;
(5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±;如果q<0,方程无实根.
例1 解下列方程:
(1)2x2+1=3x (2)3x2-6x+4=0 (3)(1+x)2+2(1+x)-4=0
分析:我们已经介绍了配方法,因此,我们解这些方程就可以用配方法来完成,即配一个含有x的完全平方式.
解:略.
三、巩固练习
教材第9页 练习2.(3)(4)(5)(6).
四、课堂小结
本节课应掌握:
1.配方法的概念及用配方法解一元二次方程的步骤.
2.配方法是解一元二次方程的通法,它的重要性,不仅仅表现在一元二次方程的解法中,也可通过配方,利用非负数的性质判断代数式的正负性.在今后学习二次函数,到高中学习二次曲线时,还将经常用到.
五、作业布置
教材第17页 复习巩固3.(3)(4).
补充:(1)已知x2+y2+z2-2x+4y-6z+14=0,求x+y+z的值.
(2)求证:无论x,y取任何实数,多项式x2+y2-2x-4y+16的值总是正数.21.2.2 公式法
理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程.
复习具体数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0(a≠0)的求根公式的推导,并应用公式法解一元二次方程.
重点
求根公式的推导和公式法的应用.
难点
一元二次方程求根公式的推导.
一、复习引入
1.前面我们学习过解一元二次方程的“直接开平方法”,比如,方程
(1)x2=4 (2)(x-2)2=7
提问1 这种解法的(理论)依据是什么?
提问2 这种解法的局限性是什么?(只对那种“平方式等于非负数”的特殊二次方程有效,不能实施于一般形式的二次方程.)
2.面对这种局限性,怎么办?(使用配方法,把一般形式的二次方程配方成能够“直接开平方”的形式.)
(学生活动)用配方法解方程 2x2+3=7x
(老师点评)略
总结用配方法解一元二次方程的步骤(学生总结,老师点评).
(1)先将已知方程化为一般形式;
(2)化二次项系数为1;
(3)常数项移到右边;
(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;
(5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±;如果q<0,方程无实根.
二、探索新知
用配方法解方程:
(1)ax2-7x+3=0 (2)ax2+bx+3=0
如果这个一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题.
问题:已知ax2+bx+c=0(a≠0),试推导它的两个根x1=,x2=(这个方程一定有解吗?什么情况下有解?)
分析:因为前面具体数字已做得很多,我们现在不妨把a,b,c也当成一个具体数字,根据上面的解题步骤就可以一直推下去.
解:移项,得:ax2+bx=-c
二次项系数化为1,得x2+x=-
配方,得:x2+x+()2=-+()2
即(x+)2=
∵4a2>0,当b2-4ac≥0时,≥0
∴(x+)2=()2
直接开平方,得:x+=±
即x=
∴x1=,x2=
由上可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a,b,c而定,因此:
(1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b2-4ac≥0时,将a,b,c代入式子x=就得到方程的根.
(2)这个式子叫做一元二次方程的求根公式.
(3)利用求根公式解一元二次方程的方法叫公式法.
公式的理解
(4)由求根公式可知,一元二次方程最多有两个实数根.
例1 用公式法解下列方程:
(1)2x2-x-1=0 (2)x2+1.5=-3x
(3)x2-x+=0 (4)4x2-3x+2=0
分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可.
补:(5)(x-2)(3x-5)=0
三、巩固练习
教材第12页 练习1.(1)(3)(5)或(2)(4)(6).
四、课堂小结
本节课应掌握:
(1)求根公式的概念及其推导过程;
(2)公式法的概念;
(3)应用公式法解一元二次方程的步骤:1)将所给的方程变成一般形式,注意移项要变号,尽量让a>0;2)找出系数a,b,c,注意各项的系数包括符号;3)计算b2-4ac,若结果为负数,方程无解;4)若结果为非负数,代入求根公式,算出结果.
(4)初步了解一元二次方程根的情况.
五、作业布置
教材第17页 习题4,5.21.2.3 因式分解法
掌握用因式分解法解一元二次方程.
通过复习用配方法、公式法解一元二次方程,体会和探寻用更简单的方法——因式分解法解一元二次方程,并应用因式分解法解决一些具体问题.
重点
用因式分解法解一元二次方程.
难点
让学生通过比较解一元二次方程的多种方法感悟用因式分解法使解题更简便.
一、复习引入
(学生活动)解下列方程:
(1)2x2+x=0(用配方法) (2)3x2+6x=0(用公式法)
老师点评:(1)配方法将方程两边同除以2后,x前面的系数应为,的一半应为,因此,应加上()2,同时减去()2.(2)直接用公式求解.
二、探索新知
(学生活动)请同学们口答下面各题.
(老师提问)(1)上面两个方程中有没有常数项?
(2)等式左边的各项有没有共同因式?
(学生先答,老师解答)上面两个方程中都没有常数项;左边都可以因式分解.
因此,上面两个方程都可以写成:
(1)x(2x+1)=0 (2)3x(x+2)=0
因为两个因式乘积要等于0,至少其中一个因式要等于0,也就是(1)x=0或2x+1=0,所以x1=0,x2=-.
(2)3x=0或x+2=0,所以x1=0,x2=-2.(以上解法是如何实现降次的?)
因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法.
例1 解方程:
(1)10x-4.9x2=0 (2)x(x-2)+x-2=0 (3)5x2-2x-=x2-2x+ (4)(x-1)2=(3-2x)2
思考:使用因式分解法解一元二次方程的条件是什么?
解:略 (方程一边为0,另一边可分解为两个一次因式乘积.)
练习:下面一元二次方程解法中,正确的是(  )
A.(x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x1=13,x2=7
B.(2-5x)+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x1=,x2=
C.(x+2)2+4x=0,∴x1=2,x2=-2
D.x2=x,两边同除以x,得x=1
三、巩固练习
教材第14页 练习1,2.
四、课堂小结
本节课要掌握:
(1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其应用.
(2)因式分解法要使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等于0.
五、作业布置
教材第17页 习题6,8,10,11.21.2.4 一元二次方程的根与系数的关系
1.掌握一元二次方程的根与系数的关系并会初步应用.
2.培养学生分析、观察、归纳的能力和推理论证的能力.
3.渗透由特殊到一般,再由一般到特殊的认识事物的规律.
4.培养学生去发现规律的积极性及勇于探索的精神.
重点
根与系数的关系及其推导
难点
正确理解根与系数的关系.一元二次方程根与系数的关系是指一元二次方程两根的和、两根的积与系数的关系.
一、复习引入
1.已知方程x2-ax-3a=0的一个根是6,则求a及另一个根的值.
2.由上题可知一元二次方程的系数与根有着密切的关系.其实我们已学过的求根公式也反映了根与系数的关系,这种关系比较复杂,是否有更简洁的关系?
3.由求根公式可知,一元二次方程ax2+bx+c=0(a≠0)的两根为x1=,x2=.观察两式右边,分母相同,分子是-b+与-b-.两根之间通过什么计算才能得到更简洁的关系?
二、探索新知
解下列方程,并填写表格:
方程
x1
x2
x1+x2
x1·x2
x2-2x=0
x2+3x-4=0
x2-5x+6=0
  观察上面的表格,你能得到什么结论?
(1)关于x的方程x2+px+q=0(p,q为常数,p2-4q≥0)的两根x1,x2与系数p,q之间有什么关系?
(2)关于x的方程ax2+bx+c=0(a≠0)的两根x1,x2与系数a,b,c之间又有何关系呢?你能证明你的猜想吗?
解下列方程,并填写表格:
方程
x1
x2
x1+x2
x1·x2
2x2-7x-4=0
3x2+2x-5=0
5x2-17x+6=0
  小结:根与系数关系:
(1)关于x的方程x2+px+q=0(p,q为常数,p2-4q≥0)的两根x1,x2与系数p,q的关系是:x1+x2=-p,x1·x2=q(注意:根与系数关系的前提条件是根的判别式必须大于或等于零.)
(2)形如ax2+bx+c=0(a≠0)的方程,可以先将二次项系数化为1,再利用上面的结论.
即:对于方程 ax2+bx+c=0(a≠0)
∵a≠0,∴x2+x+=0
∴x1+x2=-,x1·x2=
(可以利用求根公式给出证明)
例1 不解方程,写出下列方程的两根和与两根积:
(1)x2-3x-1=0   (2)2x2+3x-5=0
(3)x2-2x=0 (4)x2+x=
(5)x2-1=0 (6)x2-2x+1=0
例2 不解方程,检验下列方程的解是否正确?
(1)x2-2x+1=0 (x1=+1,x2=-1)
(2)2x2-3x-8=0 (x1=,x2=)
例3 已知一元二次方程的两个根是-1和2,请你写出一个符合条件的方程.(你有几种方法?)
例4 已知方程2x2+kx-9=0的一个根是-3,求另一根及k的值.
变式一:已知方程x2-2kx-9=0的两根互为相反数,求k;
变式二:已知方程2x2-5x+k=0的两根互为倒数,求k.
三、课堂小结
1.根与系数的关系.
2.根与系数关系使用的前提是:(1)是一元二次方程;(2)判别式大于等于零.
四、作业布置
1.不解方程,写出下列方程的两根和与两根积.
(1)x2-5x-3=0 (2)9x+2=x2 (3)6x2-3x+2=0
(4)3x2+x+1=0
2.已知方程x2-3x+m=0的一个根为1,求另一根及m的值.
3.已知方程x2+bx+6=0的一个根为-2,求另一根及b的值.21.3 实际问题与一元二次方程(2课时)
第1课时 解决代数问题
1.经历用一元二次方程解决实际问题的过程,总结列一元二次方程解决实际问题的一般步骤.
2.通过学生自主探究,会根据传播问题、百分率问题中的数量关系列一元二次方程并求解,熟悉解题的具体步骤.
3.通过实际问题的解答,让学生认识到对方程的解必须要进行检验,方程的解是否舍去要以是否符合问题的实际意义为标准.
重点
利用一元二次方程解决传播问题、百分率问题.
难点
如果理解传播问题的传播过程和百分率问题中的增长(降低)过程,找到传播问题和百分率问题中的数量关系.
一、引入新课
1.列方程解应用题的基本步骤有哪些?应注意什么?
2.科学家在细胞研究过程中发现:
(1)一个细胞一次可分裂成2个,经过3次分裂后共有多少个细胞?
(2)一个细胞一次可分裂成x个,经过3次分裂后共有多少个细胞?
(3)如是一个细胞一次可分裂成2个,分裂后原有细胞仍然存在并能再次分裂,试问经过3次分裂后共有多少个细胞?
二、教学活动
活动1:自学教材第19页探究1,思考教师所提问题.
有一人患了流感,经过两轮传染后,有121人患了流感,每轮传染中平均一个人传染了几个人?
(1)如何理解“两轮传染”?如果设每轮传染中平均一个人传染了x个人,第一轮传染后共有________人患流感.第二轮传染后共有________人患流感.
(2)本题中有哪些数量关系?
(3)如何利用已知的数量关系选取未知数并列出方程?
解答:设每轮传染中平均一个人传染了x个人,则依题意第一轮传染后有(x+1)人患了流感,第二轮有x(1+x)人被传染上了流感.于是可列方程:
1+x+x(1+x)=121
解方程得x1=10,x2=-12(不合题意舍去)
因此每轮传染中平均一个人传染了10个人.
变式练习:如果按这样的传播速度,三轮传染后有多少人患了流感?
活动2:自学教材第19页~第20页探究2,思考老师所提问题.
两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?
(1)如何理解年平均下降额与年平均下降率?它们相等吗?
(2)若设甲种药品年平均下降率为x,则一年后,甲种药品的成本下降了________元,此时成本为________元;两年后,甲种药品下降了________元,此时成本为________元.
(3)增长率(下降率)公式的归纳:设基准数为a,增长率为x,则一月(或一年)后产量为a(1±x);
二月(或二年)后产量为a(1±x)2;
n月(或n年)后产量为a(1±x)n;
如果已知n月(n年)后总产量为M,则有下面等式:M=a(1±x)n.
(4)对甲种药品而言根据等量关系列方程为:________________.
三、课堂小结与作业布置
课堂小结
1.列一元二次方程解应用题的步骤:审、设、找、列、解、答.最后要检验根是否符合实际.
2.传播问题解决的关键是传播源的确定和等量关系的建立.
3.若平均增长(降低)率为x,增长(或降低)前的基准数是a,增长(或降低)n次后的量是b,则有:a(1±x)n=b(常见n=2).
4.成本下降额较大的药品,它的下降率不一定也较大,成本下降额较小的药品,它的下降率不一定也较小.
作业布置
教材第21-22页 习题21.3第2-7题.第2课时 解决几何问题
1.通过探究,学会分析几何问题中蕴含的数量关系,列出一元二次方程解决几何问题.
2.通过探究,使学生认识在几何问题中可以将图形进行适当变换,使列方程更容易.
3.通过实际问题的解答,再次让学生认识到对方程的解必须要进行检验,方程的解是否舍去要以是否符合问题的实际意义为标准.
重点
通过实际图形问题,培养学生运用一元二次方程分析和解决几何问题的能力.
难点
在探究几何问题的过程中,找出数量关系,正确地建立一元二次方程.
活动1 创设情境
1.长方形的周长________,面积________,长方体的体积公式________.
2.如图所示:
(1)一块长方形铁皮的长是10 cm,宽是8 cm,四角各截去一个边长为2 cm的小正方形,制成一个长方体容器,这个长方体容器的底面积是________,高是________,体积是________.
(2)一块长方形铁皮的长是10 cm,宽是8 cm,四角各截去一个边长为x cm的小正方形,制成一个长方体容器,这个长方体容器的底面积是________,高是________,体积是________.
活动2 自学教材第20页~第21页探究3,思考老师所提问题
要设计一本书的封面,封面长27 cm,宽21 cm,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的彩色边衬所占面积是封面面积的四分之一,上下边衬等宽,左右边衬等宽,应如何设计四周边衬的宽度(精确到0.1 cm).
(1)要设计书本封面的长与宽的比是________,则正中央矩形的长与宽的比是________.
(2)为什么说上下边衬宽与左右边衬宽之比为9∶7?试与同伴交流一下.
(3)若设上、下边衬的宽均为9x cm,左、右边衬的宽均为7x cm,则中央矩形的长为________cm,宽为________cm,面积为________cm2.
(4)根据等量关系:________,可列方程为:________.
(5)你能写出解题过程吗?(注意对结果是否合理进行检验.)
(6)思考如果设正中央矩形的长与宽分别为9x cm和7x cm,你又怎样去求上下、左右边衬的宽?
活动3 变式练习
如图所示,在一个长为50米,宽为30米的矩形空地上,建造一个花园,要求花园的面积占整块面积的75%,等宽且互相垂直的两条路的面积占25%,求路的宽度.
答案:路的宽度为5米.
活动4 课堂小结与作业布置
课堂小结
1.利用已学的特殊图形的面积(或体积)公式建立一元二次方程的数学模型,并运用它解决实际问题的关键是弄清题目中的数量关系.
2.根据面积与面积(或体积)之间的等量关系建立一元二次方程,并能正确解方程,最后对所得结果是否合理要进行检验.
作业布置
教材第22页 习题21.3第8,10题.
课件14张PPT。第二十一章 专题训练D C 10或6或12 解:x1=2,x2=6;解:x1=5,x2=-3;解:方程无实数根.6.已知△ABC的三条边长分别为a,b,c,则关于x的方程cx2+2(a-b)x+c=0的根的情况是( )
A.有两个不等的实数根
B.没有实数根
C.有两个相等的实数根
D.无法判定
7.(2014·贵港)若关于x的一元二次方程x2+bx+c=0的两个实数根分别为x1=-2,x2=4,则b+c的值是( )
A.-10
B.10
C.-6
D.-1BAC D B 3 2015 4 C B 18.(2014·桂林)电动自动车已成为市民日常出行的首选工具.据某市某品牌电动自行车经销商1至3月份统计,该品牌电动自行车1月份销售150辆,3月份销售216辆.
(1)求该品牌电动自行车销售量的月均增长率;
(2)若该品牌电动自行车的进价为2 300元,售价为2 800元,则该经销商1至3月份共盈利多少元?
解:(1)设该品牌电动自行车销售量的月均增长率为x,根据题意得150(1+x)2=216,解得x1=-220%(不合题意,舍去),x2=20%.故该品牌电动自行车销售量的月均增长率为20%;
(2)2月份的销量是150×(1+20%)=180(辆),所以该经销商1至3月份共盈利(2 800-2 300)×(150+180+216)=27 3000(元).第二十一章检测题
   时间:120分钟  满分:120分  
                               
一、选择题(每小题3分,共30分)
1.下列方程:①x2-5=0;②ax2+bx+c=0;③(x-2)(x+3)=x2+1;④x2-4x+4=0;⑤x2+=4中,一元二次方程的个数是(B)
A.1 B.2 C.3 D.4
2.用配方法解方程x2+4x+1=0,配方后的方程是(A)
A.(x+2)2=3 B.(x-2)2=3
C.(x-2)2=5 D.(x+2)2=5
3.已知关于x的一元二次方程x2+6x-2=0有两个根为x1和x2,则x1x2+x1+x2的值是(C)
A.4 B.8 C.-8 D.-4
4.(2014·菏泽)已知关于x的一元二次方程x2+ax+b=0有一个非零根-b,则a-b的值为(A)
A.1 B.-1 C.0 D.-2
5.(2014·深圳)下列方程没有实数根的是(C)
A.x2+4x=10 B.3x2+8x-3=0
C.x2-2x+3=0 D.(x-2)(x-3)=12
6.等腰三角形的两边长为方程x2-7x+10=0的两根,则它的周长为(A)
A.12 B.12或9 C.9 D.7
7.把边长为1的正方形木板截去四个角做成正八边形的台面,设台面边长为x,可列出方程为(C)
A.(1-x)2=x2 B.(1-x2)=x2
C.(1-x2)2=2x2 D.以上结论都不正确
8.某单位要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排10场比赛,则参加比赛的球队应有(C)
A.7队 B.6队 C.5队 D.4队
9.已知方程x2-x-1=0的两根为a,b,则代数式a2-2a-b的值为(B)
A.-1 B.0 C.1 D.2
10.某小区规划在一个长为40 m,宽为26 m的矩形场地ABCD上修建三条同样宽的路,使其中两条与AB平行,另一条与AD平行,其余部分种草,若使每块草坪的面积都为144 m2(如图),则路的宽为(C)
A.3 m B.4 m
C.2 m D.5 m
二、填空题(每小题3分,共24分)
11.把方程(x+1)(3x-2)=10化成一般形式为3x2+x-12=0,一次项系数为1,常数项为-12.
12.(2014·上海)如果关于x的方程x2-2x+k=0(k为常数)有两个不相等的实数根,那么k的取值范围是k<1.
13.(2014·常州)已知关于x的方程x2-3x+m=0的一个根是1,则m=2,另一个根为2.
14.对于任意实数a,b定义:a*b=a(a+b)+b,已知a*2.5=28.5,则实数a的值是-或4.
15.某种过季绿茶的价格经过两次下调,每袋的价格降低了10%,则平均每次下调的百分率是10%.
16.一个两位数,十位上的数字比个位上的数字的平方少9.如果把十位上的数字与个位上的数字对调,得到的两位数比原来的两位数小27,则原来的两位数是74.
17.若两个不等实数m,n满足条件:m2-2m-1=0,n2-2n-1=0,则m2+n2的值是6.
18.等腰△ABC中,BC=8,AB,AC的长是关于x的方程x2-10x+m=0的两根,则m的值是25或16.
三、解答题(共66分)
19.(8分)解方程:
(1)x2-5x+2=0; (2)x2-1=2(x+1);
解:x1=,
x2=; 解:x1=-1,x2=3;
(3)2x2-4x=-3; (4)(x+8)(x+1)=-12.
解:x1=,
x2= 解:x1=-4,x2=-5.
20.(6分)已知关于x的方程4x2-(k+2)x+k-1=0有两个相等的实根.
(1)求k的值;
(2)求此时方程的根.
解:(1)由题意得Δ=(k+2)2-4×4×(k-1)=k2+4k+4-16k+16=k2-12k+20=0,解得k=2或10;
(2)当k=2时,原方程变为4x2-4x+1=0,(2x-1)2=0,即x1=x2=;当k=10时,原方程变为4x2-12x+9=0,(2x-3)2=0,即x1=x2=.
21.(7分)某商店以每件16元的价格购进一批商品,物价局限定每件商品的利润不得超过30%.
(1)根据物价局规定,此商品每件售价最高可定为多少元?
(2)若每件商品售价定为x元,则每天可卖出(170-5x)件,商店预期每天要盈利280元,那么每件商品的售价应定为多少元?
解:(1)16(1+30%)=20.8,即此商品每件售价最高可定为20.8元;
(2)(x-16)·(170-5x)=280,整理得:x2-50x+600=0,解得:x1=20,x2=30,因为售价最高不得高于20.8元,所以x2=30不合题意应舍去.故每件商品的售价应定为20元.
22.(7分)解方程(x-1)2-5(x-1)+4=0时,我们可以将x-1看成一个整体,设x-1=y,则原方程可化为y2-5y+4=0,解得y1=1,y2=4.当y=1时,即x-1=1,解得x=2;当y=4时,即x-1=4,解得x=5,所以原方程的解为:x1=2,x2=5.请利用这种方法求方程(2x+5)2-4(2x+5)+3=0的解.
解:设2x+5=y,则原方程可化为y2-4y+3=0,所以(y-1)·(y-3)=0,解得y1=1,y2=3.当y=1时,即2x+5=1,解得x=-2;当y=3时,即2x+5=3,解得x=-1,所以原方程的解为:x1=-2,x2=-1.
23.(9分)已知关于x的方程x2-(k+2)x+k2+1=0.
(1)k取什么值时,方程有两个不相等的实数根?
(2)如果方程的两个实数根x1,x2(x1<x2)满足x1+|x2|=3,求k的值和方程的两根.
解:(1)Δ=b2-4ac=[-(k+2)]2-4=k2+4k+4-k2-4=4k>0,解得k>0,即k>0时,方程有两个不相等的实数根;(2)由x==,∵x1<x2,k>0,∴x2=>0,∴|x2|=x2.由x1+|x2|=3,得x1+x2=3,由根与系数关系得k+2=3,即k=1.此时,原方程化为x2-3x+=0,解此方程得:x1=,x2=.
24.(9分)用长为10 m的篱笆(虚线部分),两面靠墙(墙长不限)围成矩形的苗圃,要使围成的苗圃面积为24 m2.
(1)求苗圃的长与宽;
(2)能否使苗圃面积达到26 m2?若能,请求出苗圃的长与宽;若不能,请说明理由.
解:(1)设苗圃长为xm,则宽为(10-x)m,由题意得:x(10-x)=24,解得:x=4或x=6,当x=4时,10-x=10-4=6(舍去),当x=6时,10-x=10-6=4,故苗圃的长为6 m,宽为4 m;(2)不可能,x(10-x)=26,x2-10x+26=0,Δ=100-4×26=-4<0,方程无实数解,故不可能.
25.(10分)如图,在△ABC中,∠B=90°,AB=6 cm,BC=8 cm,若点P从点A沿AB边向B点以1 cm/s的速度移动,点Q从B点沿BC边向点C以2 cm/s的速度移动,两点同时出发.
(1)问几秒后,△PBQ的面积为8 cm2?
(2)出发几秒后,线段PQ的长为4 cm?
(3)△PBQ的面积能否为10 cm2?若能,求出时间;若不能,请说明理由.
解:(1)设P,Q经过t秒时,△PBQ的面积为8 cm2,则PB=6-t,BQ=2t,∵∠B=90°,∴(6-t)×2t=8,解得,t1=2,t2=4,∴当P,Q经过2或4秒时,△PBQ的面积为8 cm2;(2)设x秒后,PQ=4 cm,由题意,得(6-x)2+4x2=32,解得:x1=,x2=2,故经过秒或2秒后,线段PQ的长为4 cm;(3)设经过y秒,△PBQ的面积等于10 cm2,S△PBQ=×(6-y)×2y=10,即y2-6y+10=0,∵Δ=b2-4ac=36-4×10=-4<0,∴△PBQ的面积不会等于10 cm2.
26.(10分)观察下列各图,第①个图中有1个三角形,第②个图中有3个三角形,第③个图中有6个三角形,……
(1)根据这规律可知第④个图中有多少个三角形?第○n 个图中有多少个三角形?(用含正整数n的式子表示)
(2)在(1)中是否存在一个图形,该图形中共有29个三角形?请通过计算说明.
解:(1)观察图形,知第①个图中有=1个三角形;第②个图中有=3个三角形;第③个图中有=6个三角形;∴第④个图中有=10个三角形;第○n个图中有个三角形;(2)令=29,n(n+1)=58,∵得不到这样的正整数n,∴在(1)中不存在这样的图形.
课件14张PPT。21.1 一元二次方程 D A3.若若方程(m+2)x|m|+3mx+1=0是关于x的一元二次方程,则( )
A.m=±2 B.m=2
C.m=-2 D.m≠±2
4.方程(x+4)2=2(x-3)化为一般形式是_______________,其中二次项是____,一次项系数是____,常数项是____.Bx2+6x+22=0x26225.将下列方程化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项:
(1)5x2=3x;
解:5x2-3x=0,二次项系数是5,一次项系数是-3,常数项是0;
(2)(7x-1)2-3=0;
解:49x2-14x-2=0,二次项系数是49,一次项系数是-14,常数项是-2;
知识点2:一元二次方程的解(根)
6.(2014·百色)已知x=2是一元二次方程x2-2mx+4=0的一个解,则m的值为( )
A.2 B.0 C.0或2 D.0或-2
7.若关于x的一元二次方程ax2+bx+c=0(a≠0)有一个根为1,则下列结论正确的是( )
A.a+b+c=1 B.a-b+c=0
C.a+b+c=0 D.a-b+c=1
8.已知关于x的一元二次方程(k-1)x2+x+k2-1=0有一个根为0,求k的值.
解:将x=0代入方程中,有k2-1=0,k=±1.又∵k-1≠0,即k≠1,∴k=-1.AC知识点3:列一元二次方程
9.(2014·襄阳)用一条长40 cm的绳子围成一个面积为64 cm2的长方形.设长方形的长为x cm,则可列方程为( )
A.x(20+x)=64 B.x(20-x)=64
C.x(40+x)=64 D.x(40-x)=64
10.(1)两连续偶数的积是120,求这两个数.设其中一个较大的偶数为x,则可列方程为___________________;
(2)从前,有一个醉汉拿着竹竿进屋,横拿竖拿都进不去,横着比门框宽4尺,竖着比门框高2尺,有个人教他沿着门的两个对角斜着拿竹竿,这个醉汉一试,不多不少刚好进去了.若设竹竿的长为x尺,则可列方程为____________________.
(3)已知如图所示的图形的面积为24,根据图中的条件,可列出方程:
_____________________. Bx(x-2)=120(x-4)2+(x-2)2=x2(x+1)2-1=24B CB 2020 15.一块长方形菜地的面积是150 m2,如果它的长减少5 m,那么菜地就变成正方形,若设原菜地的长为x m,则可列方程为__________________.
16.已知关于x的一元二次方程m(x-1)2=-3x2+x的二次项系数与一次项系数互为相反数,则m的值为多少?
解:整理方程得:(m+3)x2-(2m+1)x+m=0,由题意得:m+3-(2m+1)=0,解得m=2.x(x-5)=15018.根据下列问题列方程,并将所列方程化成一元二次方程的一般形式.
(1)已知两个数的和是7,积是6,求这两个数;
解:设其中一个数为x,则另一个数为7-x,根据题意,得x(7-x)=6,化成一般形式为x2-7x+6=0;
(2)某大学为改善校园环境,计划在一块长80 m,宽60 m的矩形场地的中央建一个矩形网球场,网球场占地面积为3 500 m2,四周为宽度相等的人行道,求人行道的宽度;
解:设人行道的宽为x m,则网球场的长为(80-2x)m,宽为(60-2x)m,根据题意,得(80-2x)(60-2x)=3 500,化成一般形式为x2-70x+325=0;(3)某校九年级学生毕业时,每个同学都将自己的照片向全班其他同学各送一张留作纪念,全班共送了2 550张照片,求全班共有多少名学生?
解:设全班共有x名学生,根据题意,得x(x-1)=2 550,化为一般形式为x2-x-2 550=0.课件11张PPT。21.2 解一元二次方程21.2.1 配方法第1课时 用直接开平方法解一元二次方程 C DA±3 B B C C C D13.已知一元二次方程(x-3)2=1的两个解恰好分别是等腰△ABC的底边长和腰长,则△ABC的周长为( )
A.10 B.10或8 C.9 D.8
14.若(x2+y2-3)2=16,则x2+y2的值为( )
A.7 B.7或-1
C.-1 D.19AA4 解:x1=13,x2=-3; 解:方程无实数根; 19.如图所示,在长为10 cm,宽为8 cm的矩形的四个角上截去四个全等的小正方形,使得留下的图形(图中阴影部分)的面积是原矩形面积的80%,求所截去的小正方形的边长.解:设所截去的小正方形的边长为x cm.由题意得10×8-4x2=80%×10×8,解得x1=2,x2=-2(舍).故所截去的小正方形的边长为2 cm.课件13张PPT。*21.2.4 一元二次方程的根与系数的关系1.(2014·钦州)若x1,x2是一元二次方程x2+10x+16=0的两个根,则x1+x2的值是( )
A.-10
B.10
C.-16
D.16
2.(2014·昆明)已知x1,x2是一元二次方程x2-4x+1=0的两个实数根,则x1·x2等于( )
A.-4
B.-1
C.1
D.4AC3.若x1,x2是一元二次方程x2-2x-1=0的两根,则x1·x2-x1-x2=____.
4.已知一元二次方程x2-3x-1=0的两个根分别是x1,x2,则x12x2+x1x22的值为____.-3-3D A A x=-1 x=-1 11.关于x的一元二次方程x2+2x+k+1=0的实数解是x1和x2.
(1)求k的取值范围;
解:∵方程有实数根,∴Δ=22-4(k+1)≥0,解得k≤0;
(2)如果x1+x2-x1x2<-1且k为整数,求k的值.
解:x1+x2=-2,x1x2=k+1,∴x1+x2-x1x2=-2-(k+1)<-1,解得k>-2.又由(1)知,k≤0,∴-2<k≤0.∵k为整数,∴k的值为-1和0.12.(2014·来宾)已知一元二次方程的两根分别是2和-3,则这个一元二次方程是( )
A.x2-6x+8=0
B.x2+2x-3=0
C.x2-x-6=0
D.x2+x-6=0
13.(2014·黄冈)若α,β是一元二次方程x2+2x-6=0的两根,则α2+β2的值为( )
A.-8
B.32
C.16
D.40DC14.(2014·威海)已知方程x2-(m+6)x+m2=0有两个相等的实数根,且满足x1+x2=x1x2,则m的值是( )
A.-2或3 B.3
C.-2 D.-3或2
15.在解方程x2+px+q=0时,甲同学看错了p,解得方程的根为x1=1,x2=-3;乙同学看错了q,解得方程的根为x1=4,x2=-2,则方程中的p=____,q=____.
16.(2014·呼和浩特)已知m,n是方程x2+2x-5=0的两个实数根,则m2-mn+3m+n=____.C-2-3817.若关于x的一元二次方程x2-4x+k-3=0的两个实数根为x1,x2,且满足x1=3x2,试求出方程的两个实数根及k的值.
解:依题意得:x1+x2=4
①,x1x2=k-3
②.又∵x1=3x2
③,联立①、③,
解得x1=3,x2=1,∴k=x1x2+3=6.
故方程的两根为x1=3,x2=1,k=6.18.已知关于x的一元二次方程x2+4x+m=0有两个不相等的实数根.
(1)求m的取值范围;
(2)设x1,x2是方程的两实数根,且l=x12+x22+3x1x2,求l的取值范围.
解:(1)由题意得:Δ=16-4m>0,解得m<4;
(2)∵x1+x2=-4,x1x2=m,∴l=x12+x22+3x1x2=(x1+x2)2+x1x2=16+m.∵m<4,∴16+m<20,∴l<20.20.(2014·泸州)已知x1,x2是关于x的一元二次方程x2-2(m+1)x+m2+5=0的两实数根.
(1)若(x1-1)(x2-1)=28,求m的值;
解:x1+x2=2(m+1),x1x2=m2+5,∴(x1-1)(x2-1)=x1x2-(x1+x2)+1=m2+5-2(m+1)+1=28,解得m=-4或m=6.又当m=-4时,原方程无实数解,∴m=6;
(2)已知等腰△ABC的一边长为7,若x1,x2恰好是△ABC另外两边的边长,求这个三角形的周长.
解:当7为△ABC的底边时,此时方程有两个相等的实数根,∴Δ=4(m+1)2-4(m2+5)=0,解得m=2,∴方程变为x2-6x+9=0,解得x1=x2=3.∵3+3<7,∴不能构成三角形;当7为△ABC的腰时,设x1=7,代入方程得:49-14(m+1)+m2+5=0,解得m=10或4.当m=10时,方程变为x2-22x+105=0,解得x=7或15.∵7+7<15,∴不能组成三角形;当m=4时,方程变为x2-10x+21=0,解得x=3或7,此时三角形的周长为7+7+3=17.课件15张PPT。21.2 解一元二次方程21.2.2 公式法1.(2014·兰州)一元二次方程ax2+bx+c=0(a≠0)有两个不相等的实数根,则b2-4ac满足的条件是( )
A.b2-4ac=0
B.b2-4ac>0
C.b2-4ac<0
D.b2-4ac≥0
2.(2014·自贡)一元二次方程x2-4x+5=0的根的情况是( )
A.有两个不相等的实数根
B.有两个相等的实数根
C.只有一个实数根
D.没有实数根BD3.(2014·苏州)下列关于x的方程有实数根的是( )
A.x2-x+1=0
B.x2+x+1=0
C.(x-1)(x+2)=0
D.(x-1)2+1=0
4.(2014·益阳)一元二次方程x2-2x+m=0总有实数根,则m应满足的条件是( )
A.m>1
B.m=1
C.m<1
D.m≤1CD6 7.不解方程,利用判别式判断下列方程根的情况:
(1)3x2+4x-3=0;
解:方程有两个不相等的实数根;
(2)4x2=12x-9;
解:方程有两个相等的实数根;
(3)7y=5(y2+1).
解:方程没有实数根.D 2 4 1 8 10.已知代数式x2+5x-4与4x+2的值相等,求x的值.
解:由题意得:x2+5x-4=4x+2,解得:x1=2,x2=-3.
12.在一元二次方程ax2+bx+c=0(a≠0)中,若a与c异号,则方程( )
A.有不相等的两实数根
B.有相等的两实数根
C.没有实数根
D.根的情况不确定
13.若关于x的一元二次方程(a-5)x2-4x-1=0有实数根,则a满足( )
A.a≠5
B.a≥1
C.a≥1且a≠5
D.a<1且a≠5ACA -2 解:原方程无实数根.18.已知关于x的一元二次方程kx2-6x+9=0.
(1)当k取何值时,方程有两个相等的实数根?求出此时方程的根;
(2)当k取何值时,方程有两个不相等的实数根?
(3)当k取何值时,方程没有实数根?
解:(1)当k≠0且Δ=36-4×9×k=0,即k=1时,方程有两个相等的实数根,此时方程的根为x1=x2=3;
(2)当k≠0且Δ=36-4×9×k>0,即k<1且k≠0时,方程有两个不相等的实数根;
(3)当k≠0且Δ=36-4×9×k<0,即k>1时,方程没有实数根.课件13张PPT。21.2.3 因式分解法1.一元二次方程(x-2)(x+3)=0的解是( )
A.x=2
B.x=-3
C.x1=-2或x2=3
D.x1=2或x2=-3
2.一元二次方程x2+3x=0的解是( )
A.x=-3
B.x1=0,x2=3
C.x1=0,x2=-3
D.x=3DC3.下列方程中,适合用因式分解法解的是( )
A.(2x-3)2-9(x+1)2=0
B.x2-2=x(2-x)
C.x2-4x-4=0
D.4x2-1=4x
4.方程(x+1)(x-5)=x-5的解为( )
A.x=0
B.x=-1
C.x1=5,x2=-1
D.x1=0,x2=5ADB 0或8 1或3 解:x1=0,x2=3;10.文文给明明出了一道解一元二次方程的题目如下:
解方程(x-1)2=2(x-1).明明的求解过程为:
解:方程两边同除以x-1,得x-1=2第1步
移项,得x=3第2步
∴方程的解是x1=x2=3第3步
文文说:你的求解过程的第1步就错了……
(1)文文的说法对吗?请说明理由;
(2)你会如何解这个方程?请给出解答过程.
解:(1)文文的说法正确.因为只有当x-1≠0时,方程两边才能同除以x-1;
(2)移项得(x-1)2-2(x-1)=0,∴(x-1)(x-1-2)=0,解得x1=1,x2=3.
11.用因式分解法解方程,下列解法中正确的是( )
A.(2x-2)(3x-4)=0,∴2x-2=0或3x-4=0
B.(x+3)(x-1)=1,∴x+3=0或x-1=1
C.(x-2)(x-3)=2×3,∴x-2=2或x-3=3
D.x(x+2)=0,∴x+2=0
12.若实数x,y满足(x2+y2+2)(x2+y2-1)=0,则x2+y2的值是( )
A.1
B.-2
C.2或-1
D.-2或1AA13.(2014·鞍山)对于实数a,b,我们定义一种运算“※”为:a※b=a2-ab,例如1※3=12-1×3.若x※4=0,则x=____.
14.一个三角形的两边长分别为4和6,第三边的边长是方程x(x-4)-10(x-4)=0的根,则这个三角形的周长是____.
15.已知x=1是关于x的一元二次方程(1-k)x2+k2x-1=0的根,则常数k的值为____.0或414016.用因式分解法解下列方程:
(1)(x+2)2-9=0;
解:x1=1,x2=-5;
(2)x2-25=5x+25;
解:x1=-5,x2=10;解:x1=2,x2=6;17.一个圆的直径是10 cm,另一个圆的面积比这个圆的面积少16 π cm2.求另一个圆的半径.
解:设另一个圆的半径为x cm,依题意得π×52-πx2=16π,
解得x1=3,x2=-3(舍).故另一个圆的半径为3 cm.
解:(1)x1=1,x2=2;
(2)3;
(3)解方程x2-8x+15=0,得x1=3,x2=5.若3为△ABC的底边长,5为△ABC的腰长,则△ABC的周长为3+5+5=13;若3为△ABC的腰长,5为△ABC的底边长,则△ABC的周长为3+3+5=11课件11张PPT。滚动练习 21.1~21.2.31.若关于x的方程(m+1)x2+2mx-3=0是一元二次方程,
则m的取值范围是( )
A.任意实数
B.m≠1
C.m≠-1
D.m>1
2.解方程(x+1)2=4(x-2)2较为简便的方法是( )
A.直接开平方法或因式分解法
B.直接开平方法或配方法
C.公式法或因式分解法
D.公式法CAC C D B a x=0 17或19 A B 2x2-6x-15=0 -6 -15 9 1<c<5 -1或4 2 6或12或10 解:x1=0,x2=-3;18.(2014·葫芦岛)有n个方程:x2+2x-8=0;x2+2×2x-8×22=0;…x2+2nx-8n2=0.
小静同学解第一个方程x2+2x-8=0的步骤为:
“①x2+2x=8;②x2+2x+1=8+1;
③(x+1)2=9;④x+1=±3;
⑤x=1±3;⑥x1=4,x2=-2.”
(1)小静的解法是从步骤________开始出现错误的;
(2)用配方法解第n个方程x2+2nx-8n2=0.(用含有n的式子表示方程的根)
解:(1)⑤;
(2)x1=2n,x2=-4n.
19.已知一个正方形的边长比另一个正方形边长的2倍少10 cm,两个正方形的面积之和为100 cm2.求这两个正方形的边长.
解:设另一个正方形的边长为x cm.由题意可得,x2+(2x-10)2=100,解得x1=0(舍),x2=8,∴2x-10=6.故这两个正方形的边长分别为8 cm和6 cm.
20.已知关于x的一元二次方程x2-2x-m+1=0.
(1)若x=3是此方程的一个根,求m的值和它的另一个根;
解:将x=3代入方程x2-2x-m+1=0中,解得m=4.当m=4时,解得此方程的另一个根为x=-1;
(2)若方程x2-2x-m+1=0有两个不相等的实数根,试判断另一个关于x的一元二次方程x2-(m-2)x+1-2m=0的根的情况.
解:依题意得:Δ=(-2)2-4(-m+1)>0,解得m>0.∵方程x2-(m-2)x+1-2m=0的Δ=(m-2)2-4(1-2m)=m2+4m=m(m+4),又∵m>0,∴m(m+4)>0,故方程x2-(m-2)x+1-2m=0有两个不相等的实数根.课件13张PPT。21.3 实际问题与一元二次方程第1课时 用一元二次方程解决传播问题1.有一人患了流感,经过两轮传染后共有49人患了流感,设每轮传染中平均一个人传染了x人,则x的值为( )
A.5
B.6
C.7
D.8
2.有一人患了红眼病,经过两轮传染后共有144人患了红眼病,那么每轮传染中平均一个人传染的人数为____人.B113.为了宣传环保,小明写了一篇倡议书,决定用微博转发的方式传播.他设计了如下的传播规则:将倡议书发表在自己的微博上,再邀请n个好友转发倡议书,每个好友转发倡议书之后,又邀请n个互不相同的好友转发倡议书,依此类推,已知经过两轮传播后,共有111人参与了传播活动,求n的值.
解:由题意得1+n+n2=111,
解得n1=-11(舍),n2=10,∴n的值为10.
4.在一次同学聚会上,同学之间每两人都握了一次手,同学聚会上所有人共握手45次,则参加这次聚会的同学共有( )
A.11人 B.10人
C.9人 D.8人
5.要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,则参赛球队的个数是( )
A.5个 B.6个
C.7个 D.8个BC7.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干、小分支的总数是91,求每个支干长出多少个小分支?
解:设每个支干长出x个小分支,由题意列方程得,x2+x+1=91,解得x1=9,x2=-10(舍去),∴x=9.故每个支干长出9个小分支.8.有一个两位数,它的十位与个位数字之和为6,十位与个位数字之积的3倍等于这个两位数.若设十位数字为x,则根据题意列出方程,化简整理后得 .
9.已知两个数的和为16,积是48,则这两个数分别是 .
10.一个两位数等于它个位数字的平方,且个位数字比十位数字大3,求这个两位数.
解:设这个两位数的十位数字为x,则个位数字为x+3.依题意得:10x+x+3=(x+3)2,解得x1=2,x2=3.当x1=2时,x+3=5,当x=3时,x+3=6,∴这个两位数是25或36.x2-3x+2=04,12A D 13.分别10年的同学相邀在一起聚会,每两人之间通过手机通话一次,设x人共通话15次,则列方程并化为一般形式为 .
14.一个QQ群里有若干个好友,每个好友都分别给群里其他好友发送一条消息,这样共有870条消息,则这个QQ群里有____个好友.x2-x-30=03016.一个两位数,十位与个位数字之和为5,把这个两位数的个位数字与十位数字对调后,所得新两位数与原两位数的乘积为736,求原来的两位数.
解:设原来的两位数的十位上的数字为x,则个位上的数字为(5-x).依题意得:(10x+5-x)[10(5-x)+x]=736,解得x1=2,x2=3.当x=2时,5-x=3;当x=3时,5-x=2,∴原来的两位数是23或32.
17.某种电脑病毒传播速度非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑数会不会超过700台?
解:设每轮感染中平均一台电脑会感染x台电脑,依题意得:1+x+x(1+x)=81,解得x1=8,x2=-10(舍去),∴(1+x)3=729>700.故每轮感染中平均一台电脑会感染8台电脑,3轮感染后,被感染的电脑数会超过700台.18.如图,用同样规格的黑、白两色的正方形瓷砖铺设矩形地面,请观察下列图形并解答有关问题.(1)在第n个图中,共有瓷砖______________块,其中白色瓷砖________块,黑色瓷砖________块;(均用含n的代数式表示)
(2)按上述铺设方案,铺一块这样的矩形地面共用了506块瓷砖,求此时n的值;
(3)黑瓷砖每块4元,白瓷砖每块3元,则(2)中共需花费多少元购买瓷砖?解:(1)(n+3)·(n+2) n(n+1)4n+6;
(2)依题意得:(n+3)(n+2)=506,解得n1=20,n2=-25(舍去).
故n的值为20;
(3)当n=20时,n(n+1)=420,4n+6=86,
则(2)中购买瓷砖的钱数为4×86+420×3=1 604(元).课件12张PPT。21.3 实际问题与一元二次方程第2课时 用一元二次方程解决平均增长(降低)率问题及利润问题1.(2014·海南)某药品经过两次降价,每瓶零售价由100元降为81元.已知两次降价的百分率都为x,那么x满足的方程是( )
A.100(1+x)2=81
B.100(1-x)2=81
C.100(1-x%)2=81
D.100x2=81
2.某超市第二季度的营业额为200万元,第四季度的营业额为288万元.如果每季度营业额的平均增长率相同,那么每季度的平均增长率是( )
A.10%
B.15%
C.20%
D.30%BC3. (2014·天水)某商品经过连续两次降价,销售单价由原来的125元降到80元,则平均每次降价的百分率为 .
4.国家一直在设法控制大城市房价的增长速度,某城市的房均价2013年为6 000元/平方米,2015年的房均价为7 260元/平方米,则这个城市的房均价这两年的平均增长率是 .
5.某市为了更好地吸引外资,决定改善城市容貌,绿化环境.计划用两年时间,将绿地面积增加44%,
则这两年平均每年绿地面积的增长率为 .20%10%20%6.(2014·南京)某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长.已知该养殖户第1年的可变成本为2.6万元,设可变成本平均每年增长的百分率为x.
(1)用含x的代数式表示第3年的可变成本为____________万元;
(2)如果该养殖户第3年的养殖成本为7.146万元,求可变成本平均每年增长的百分率x.
解:(1)2.6(1+x)2;
(2)由题意得,4+2.6(1+x)2=7.146,解得:x1=0.1,x2=-2.1(舍去).故可变成本平均每年增长的百分率为10%.7.(2014·泰安)某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x株,则可以列出的方程是( )
A.(3+x)(4-0.5x)=15
B.(x+3)(4+0.5x)=15
C.(x+4)(3-0.5x)=15
D.(x+1)(4-0.5x)=15
8.将进货价为40元的商品按50元售出时,每天能售出500个.经市场调查发现:该商品每涨价1元,其销售量减少10个.若一天能盈利8 000元,则售价应定为( )
A.60元
B.80元
C.60元或80元
D.70元AC9.某商店从厂家以每件21元的价格购进一批商品,该商店可以自行定价,若每件商品售价为a元,则可卖出(350-10a)件,但物价局限定每件商品加价不能超过进价的20%,若商店计划要赚400元,则每件商品的售价为____元,需要卖出____件商品.
10.百货商品服装柜在销售中发现:某品牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”国际儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件,要想平均每天销售这种童装盈利1 200元,那么每件童装应降价多少元?
解:设每件童装应降价x元,由题意得:(40-x)(20+2x)=1 200,解得x1=20,x2=10.因要尽快减少库存,故取x=20.故每件童装应降价20元.2510011.我国某汽车企业2012年的汽车销量是10万辆,2013年、2014年销量逐年增长,2012年、2013年、2014年三年合计销售汽车达70万辆,如果设该汽车企业2013年、2014年平均每年的增长率为x,那么x满足的方程是( )
A.10(1+x)2=70
B.10(1+x)+10(1+x)2=70
C.10x2=70
D.10+10(1+x)+10(1+x)2=70
12.制造一种产品,原来每件成本价是500元,销售价为625元,经市场预测,该产品销售价为第一个月降低20%,第二个月比第一个月提高6%,为使两月后的销售利润与原来的销售利润一样,该产品的成本价平均每月应降低( )
A.5%
B.10%
C.20%
D.25%DB13.小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每件增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1 200元,则他购买了____件这种服装.2014.某市从2013年起治理空气污染,中期目标为:2017年PM2.5年平均值降至38微克/立方米以下.该城市PM2.5的相关数据如下:2013年PM2.5年平均值为60微克/立方米,经过治理,预计2015年PM2.5年平均值降至48.6微克/立方米.假设该城市PM2.5指数每年降低的百分率相同,问该市能否顺利达成中期目标?
解:设该市PM2.5指数平均每年降低的百分率为x,根据题意得:60(1-x)2=48.6,解得x1=0.1,x2=1.9(舍去).故该城市PM2.5指数平均每年降低的百分率为10%.∵48.6×(1-10%)2=39.366>38,∴该市不能顺利达成中期目标.15.(2014·巴中)某商店准备进一批季节性小家电,单价40元.经市场预测,销售定价为52元时,可售出180个,定价每增加1元,销售量净减少10个;定价每减少1元,销售量净增加10个.因受库存的影响,每批次进货个数不得超过180个,商店若准备获利2 000元,则应进货多少个?定价为多少元?
解:设每个商品的定价是x元,由题意得,(x-40)[180-10(x-52)]=2 000,解得x1=50,x2=60.当x=50时,进货为200个,不符合题意,舍去;当x=60时,进货为100个,符合题意.故该商品每个的定价应为60元,进货100个.
课件16张PPT。21.2 解一元二次方程21.2.1 配方法第2课时 用配方法解一元二次方程1.用配方法将代数式a2+4a-5进行变形,结果正确的是( )
A.(a+2)2-1
B.(a+2)2-5
C.(a+2)2+4
D.(a+2)2-9D2 1 1 C C A C A 13.若方程2x2-bx-1=0经过配方后得到a(x-1)2-3=0,则a,b的值分别为( )
A.-2,4
B.1,5
C.2,4
D.2,5
14.(2014·台湾)若一元二次方程4x2+12x-1 147=0的两根为a,b,且a>b,则3a+b之值为何?( )
A.22
B.28
C.34
D.40CB15.不论x,y为何实数,代数式x2+y2+2x-4y+7的值( )
A.总不小于2
B.总不小于7
C.可为任何实数
D.可能为负数
16.已知方程x2-6x+q=0可以配方成(x-p)2=7的形式,那么x2-6x+q=2可以配方成下列的( )
A.(x-p)2=5
B.(x-p)2=9
C.(x-p+2)2=9
D.(x-p+2)2=5AB解:方程无实数根.18.试证明:无论m取何实数,关于x的方程(m2-8m+17)x2+2mx+1=0都是一元二次方程.
证明:∵m2-8m+17=(m-4)2+1,又∵(m-4)2≥0,∴(m-4)2+1>0,即无论m取何实数,关于x的方程(m2-8m+17)x2+2mx+1=0都是一元二次方程.20.一个正方形蔬菜园需修整并用篱笆围住.修整蔬菜园的费用是15元/平方米,而购买篱笆材料的费用是30元/米,这两项支出一共为3 600元.求此正方形蔬菜园的边长.
解:设此正方形蔬菜园的边长为x米,由题意可得15x2+30×4x=3 600,解得x1=12,x2=-20(舍).故此正方形蔬菜园的边长为12米.课件13张PPT。21.3 实际问题与一元二次方程第3课时 用一元二次方程解决几何图形问题1.某中学准备建一个面积为375 m2的矩形游泳池,且游泳池的宽比长短10 m.设游泳池的长为x m,则可列方程为( )
A.x(x-10)=375
B.x(x+10)=375
C.2x(2x-10)=375
D.2x(2x+10)=375
2.(2014·白银)用10米长的铝材制成一个矩形窗框,使它的面积为6平方米.若设它的一条边长为x米,则根据题意可列出关于x的方程为( )
A.x(5+x)=6
B.x(5-x)=6
C.x(10-x)=6
D.x(10-2x)=6AB3.有一个面积为16 cm2的梯形,它的一条底边长为3 cm,另一条底边比它的高线长1 cm.若设这条底边长为x cm,依题意,列出方程整理后得( )
A.x2+2x-35=0
B.x2+2x-70=0
C.x2-2x-35=0
D.x2-2x+70=0
4.以正方形木板的一条边长为边,在正方形的木板上锯掉一个2 m宽的长方形木条,若剩余木板的面积是48 m2,则原来这块木板的面积是( )
A.100 m2
B.64 m2
C.121 m2
D.144 m2ABx2-70x+825=0 解:设原正方形空地的边长为x m,由题意得(x-3)(x-2)=20,
解得x1=7,x2=-2(舍去).故原正方形空地的边长为7 m.72+(6+x)2=102 10 9.某班前年暑假将勤工俭学挣得的班费2 000元按一年定期存入银行.去年暑假到期后取出1 000元寄往灾区,将剩下的1 000元和利息继续按一年定期存入银行,待今年毕业后全部捐给母校.若今年到期后取得人民币(本息和)1 155元,
则银行一年定期存款的年利率(假定利率不变)是 .5%C B C (3,-1)或(1,-3) 解:设AB的长度为x,则BC的长度为(100-4x)米.
根据题意得(100-4x)x=400,解得 x1=20,x2=5,
则100-4x=20或100-4x=80.∵80>25,∴x=20.
∴羊圈的边长AB,BC分别是20米、20米.解:设小道进出口的宽度为x米,依题意得(30-2x)(20-x)=532,解得:x1=1,x2=34(舍去),故小道进出口的宽度应为1米.17.如图,在长方形ABCD中,AB=5 cm,BC=6 cm,点P从点A开始沿边AB向终点B以1 cm/s的速度移动,与此同时,点Q从点B开始沿边BC向终点C以2 cm/s的速度移动,如果点P,Q分别从A,B同时出发,当点Q运动到点C时,两点停止运动,设运动时间为t秒.
(1)BQ=________cm,PB=________cm;(用含t的代数式表示)
(2)当t为何值时,PQ的长度等于5 cm?
(3)是否存在t的值,使得五边形APQCD的面积等于26 cm2?若存在,请求出此时t的值;若不存在,请说明理由.课件11张PPT。21.1 一元二次方程教学目标1.通过类比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a≠0),分清二次项及其系数、一次项及其系数与常数项等概念.
2.了解一元二次方程的解的概念,会检验一个数是不是一元二次方程的解.重点难点重点
通过类比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a≠0)和一元二次方程的解等概念,并能用这些概念解决简单问题.
难点
一元二次方程及其二次项系数、一次项系数和常数项的识别.教学设计教学设计活动2 探究新知
根据题意列方程.
1.教材第2页 问题1.
提出问题:
(1)正方形的大小由什么量决定?本题应该设哪个量为未知数?
(2)本题中有什么数量关系?能利用这个数量关系列方程吗?怎么列方程?
(3)这个方程能整理为比较简单的形式吗?请说出整理之后的方程.
2.教材第2页 问题2.
提出问题:
(1)本题中有哪些量?由这些量可以得到什么?
(2)比赛队伍的数量与比赛的场次有什么关系?如果有5个队参赛,每个队比赛几场?一共有20场比赛吗?如果不是20场比赛,那么究竟比赛多少场?
(3)如果有x个队参赛,一共比赛多少场呢?教学设计3.一个数比另一个数大3,且两个数之积为0,求这两个数.
提出问题:
本题需要设两个未知数吗?如果可以设一个未知数,那么方程应该怎么列?
4.一个正方形的面积的2倍等于25,这个正方形的边长是多少?教学设计活动3 归纳概念
提出问题:
(1)上述方程与一元一次方程有什么相同点和不同点?
(2)类比一元一次方程,我们可以给这一类方程取一个什么名字?
(3)归纳一元二次方程的概念.
1.一元二次方程:只含有________个未知数,并且未知数的最高次数是________,这样的________方程,叫做一元二次方程.
2.一元二次方程的一般形式是ax2+bx+c=0(a≠0),其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.
提出问题:
(1)一元二次方程的一般形式有什么特点?等号的左、右分别是什么?
(2)为什么要限制a≠0,b,c可以为0吗?
(3)2x2-x+1=0的一次项系数是1吗?为什么?教学设计总结:判断一个方程是否是一元二次方程的依据:(1)整式方程;(2)只含有一个未知数;(3)含有未知数的项的最高次数是2.注意有些方程化简前含有二次项,但是化简后二次项系数为0,这样的方程不是一元二次方程.教学设计例2 教材第3页 例题.
例3 以-2为根的一元二次方程是(  )
A.x2+2x-1=0 B.x2-x-2=0
C.x2+x+2=0 D.x2+x-2=0
总结:判断一个数是否为方程的解,可以将这个数代入方程,判断方程左、右两边的值是否相等.教学设计练习:
1.若(a-1)x2+3ax-1=0是关于x的一元二次方程,那么a的取值范围是________.
2.将下列一元二次方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项.
(1)4x2=81;(2)(3x-2)(x+1)=8x-3.
3.教材第4页 练习第2题.
4.若-4是关于x的一元二次方程2x2+7x-k=0的一个根,则k的值为________.
答案:1.a≠1;2.略;3.略;4.k=4.教学设计活动5 课堂小结与作业布置
课堂小结
我们学习了一元二次方程的哪些知识?一元二次方程的一般形式是什么?一般形式中有什么限制?你能解一元二次方程吗?
作业布置
教材第4页 习题21.1第1~7题.课件7张PPT。21.2 解一元二次方程21.2.1 配方法 第1课时 直接开平方法教学目标理解一元二次方程“降次”——转化的数学思想,并能应用它解决一些具体问题.
提出问题,列出缺一次项的一元二次方程ax2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex+f)2+c=0型的一元二次方程.重点难点重点
运用开平方法解形如(x+m)2=n(n≥0)的方程,领会降次——转化的数学思想.
难点
通过根据平方根的意义解形如x2=n的方程,将知识迁移到根据平方根的意义解形如(x+m)2=n(n≥0)的方程.教学设计教学设计教学设计例2 市政府计划2年内将人均住房面积由现在的10 m2提高到14.4 m2,求每年人均住房面积增长率.
分析:设每年人均住房面积增长率为x,一年后人均住房面积就应该是10+10x=10(1+x);二年后人均住房面积就应该是10(1+x)+10(1+x)x=10(1+x)2
解:设每年人均住房面积增长率为x,
则:10(1+x)2=14.4
(1+x)2=1.44
直接开平方,得1+x=±1.2
即1+x=1.2,1+x=-1.2
所以,方程的两根是x1=0.2=20%,x2=-2.2
因为每年人均住房面积的增长率应为正的,因此,x2=-2.2应舍去.
所以,每年人均住房面积增长率应为20%.教学设计(学生小结)老师引导提问:解一元二次方程,它们的共同特点是什么?
共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.我们把这种思想称为“降次转化思想”.
三、巩固练习
教材第6页 练习.
四、课堂小结
本节课应掌握:由应用直接开平方法解形如x2=p(p≥0)的方程,那么x=±转化为应用直接开平方法解形如(mx+n)2=p(p≥0)的方程,那么mx+n=±,达到降次转化之目的.若p<0则方程无解.
五、作业布置
教材第16页 复习巩固1. 课件11张PPT。21.2 解一元二次方程21.2.2 公式法教学目标理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程.
复习具体数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0(a≠0)的求根公式的推导,并应用公式法解一元二次方程.重点难点重点
求根公式的推导和公式法的应用.
难点
一元二次方程求根公式的推导.教学设计一、复习引入
1.前面我们学习过解一元二次方程的“直接开平方法”,比如,方程
(1)x2=4 (2)(x-2)2=7
提问1 这种解法的(理论)依据是什么?
提问2 这种解法的局限性是什么?(只对那种“平方式等于非负数”的特殊二次方程有效,不能实施于一般形式的二次方程.)
2.面对这种局限性,怎么办?(使用配方法,把一般形式的二次方程配方成能够“直接开平方”的形式.)教学设计教学设计二、探索新知
用配方法解方程:
(1)ax2-7x+3=0 (2)ax2+bx+3=0
如果这个一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题.教学设计教学设计教学设计教学设计教学设计三、巩固练习
教材第12页 练习1.(1)(3)(5)或(2)(4)(6).
四、课堂小结
本节课应掌握:
(1)求根公式的概念及其推导过程;
(2)公式法的概念;
(3)应用公式法解一元二次方程的步骤:1)将所给的方程变成一般形式,注意移项要变号,尽量让a>0;2)找出系数a,b,c,注意各项的系数包括符号;3)计算b2-4ac,若结果为负数,方程无解;4)若结果为非负数,代入求根公式,算出结果.
(4)初步了解一元二次方程根的情况.
五、作业布置
教材第17页 习题4,5. 课件8张PPT。21.2 解一元二次方程21.2.3 因式分解法 教学目标掌握用因式分解法解一元二次方程.
通过复习用配方法、公式法解一元二次方程,体会和探寻用更简单的方法——因式分解法解一元二次方程,并应用因式分解法解决一些具体问题.重点难点重点
用因式分解法解一元二次方程.
难点
让学生通过比较解一元二次方程的多种方法感悟用因式分解法使解题更简便.教学设计教学设计教学设计(2)3x=0或x+2=0,所以x1=0,x2=-2.(以上解法是如何实现降次的?)
因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法.教学设计教学设计三、巩固练习
教材第14页 练习1,2.
四、课堂小结
本节课要掌握:
(1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其应用.
(2)因式分解法要使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等于0.
五、作业布置
教材第17页 习题6,8,10,11. 课件10张PPT。21.2 解一元二次方程21.2.4 一元二次方程的根与系数的关系教学目标1.掌握一元二次方程的根与系数的关系并会初步应用.
2.培养学生分析、观察、归纳的能力和推理论证的能力.
3.渗透由特殊到一般,再由一般到特殊的认识事物的规律.
4.培养学生去发现规律的积极性及勇于探索的精神.重点难点重点
根与系数的关系及其推导
难点
正确理解根与系数的关系.一元二次方程根与系数的关系是指一元二次方程两根的和、两根的积与系数的关系.教学设计教学设计教学设计解下列方程,并填写表格:
 小结:根与系数关系:
(1)关于x的方程x2+px+q=0(p,q为常数,p2-4q≥0)的两根x1,x2与系数p,q的关系是:x1+x2=-p,x1·x2=q(注意:根与系数关系的前提条件是根的判别式必须大于或等于零.)教学设计教学设计教学设计例3 已知一元二次方程的两个根是-1和2,请你写出一个符合条件的方程.(你有几种方法?)
例4 已知方程2x2+kx-9=0的一个根是-3,求另一根及k的值.
变式一:已知方程x2-2kx-9=0的两根互为相反数,求k;
变式二:已知方程2x2-5x+k=0的两根互为倒数,求k.教学设计三、课堂小结
1.根与系数的关系.
2.根与系数关系使用的前提是:(1)是一元二次方程;(2)判别式大于等于零.
四、作业布置
1.不解方程,写出下列方程的两根和与两根积.
(1)x2-5x-3=0 (2)9x+2=x2 (3)6x2-3x+2=0
(4)3x2+x+1=0
2.已知方程x2-3x+m=0的一个根为1,求另一根及m的值.
3.已知方程x2+bx+6=0的一个根为-2,求另一根及b的值. 课件9张PPT。21.3 实际问题与一元二次方程第1课时 解决代数问题教学目标1.经历用一元二次方程解决实际问题的过程,总结列一元二次方程解决实际问题的一般步骤.
2.通过学生自主探究,会根据传播问题、百分率问题中的数量关系列一元二次方程并求解,熟悉解题的具体步骤.
3.通过实际问题的解答,让学生认识到对方程的解必须要进行检验,方程的解是否舍去要以是否符合问题的实际意义为标准.重点难点重点
利用一元二次方程解决传播问题、百分率问题.
难点
如果理解传播问题的传播过程和百分率问题中的增长(降低)过程,找到传播问题和百分率问题中的数量关系.教学设计一、引入新课
1.列方程解应用题的基本步骤有哪些?应注意什么?
2.科学家在细胞研究过程中发现:
(1)一个细胞一次可分裂成2个,经过3次分裂后共有多少个细胞?
(2)一个细胞一次可分裂成x个,经过3次分裂后共有多少个细胞?
(3)如是一个细胞一次可分裂成2个,分裂后原有细胞仍然存在并能再次分裂,试问经过3次分裂后共有多少个细胞?教学设计二、教学活动
活动1:自学教材第19页探究1,思考教师所提问题.
有一人患了流感,经过两轮传染后,有121人患了流感,每轮传染中平均一个人传染了几个人?
(1)如何理解“两轮传染”?如果设每轮传染中平均一个人传染了x个人,第一轮传染后共有________人患流感.第二轮传染后共有________人患流感.
(2)本题中有哪些数量关系?
(3)如何利用已知的数量关系选取未知数并列出方程?教学设计解答:设每轮传染中平均一个人传染了x个人,则依题意第一轮传染后有(x+1)人患了流感,第二轮有x(1+x)人被传染上了流感.于是可列方程:
1+x+x(1+x)=121
解方程得x1=10,x2=-12(不合题意舍去)
因此每轮传染中平均一个人传染了10个人.教学设计变式练习:如果按这样的传播速度,三轮传染后有多少人患了流感?
活动2:自学教材第19页~第20页探究2,思考老师所提问题.
两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?
(1)如何理解年平均下降额与年平均下降率?它们相等吗?
(2)若设甲种药品年平均下降率为x,则一年后,甲种药品的成本下降了________元,此时成本为________元;两年后,甲种药品下降了________元,此时成本为________元.教学设计(3)增长率(下降率)公式的归纳:设基准数为a,增长率为x,则一月(或一年)后产量为a(1±x);
二月(或二年)后产量为a(1±x)2;
n月(或n年)后产量为a(1±x)n;
如果已知n月(n年)后总产量为M,则有下面等式:M=a(1±x)n.
(4)对甲种药品而言根据等量关系列方程为:________________.教学设计三、课堂小结与作业布置
课堂小结
1.列一元二次方程解应用题的步骤:审、设、找、列、解、答.最后要检验根是否符合实际.
2.传播问题解决的关键是传播源的确定和等量关系的建立.
3.若平均增长(降低)率为x,增长(或降低)前的基准数是a,增长(或降低)n次后的量是b,则有:a(1±x)n=b(常见n=2).
4.成本下降额较大的药品,它的下降率不一定也较大,成本下降额较小的药品,它的下降率不一定也较小.
作业布置
教材第21-22页 习题21.3第2-7题. 课件8张PPT。21.3 实际问题与一元二次方程第2课时 解决几何问题教学目标1.通过探究,学会分析几何问题中蕴含的数量关系,列出一元二次方程解决几何问题.
2.通过探究,使学生认识在几何问题中可以将图形进行适当变换,使列方程更容易.
3.通过实际问题的解答,再次让学生认识到对方程的解必须要进行检验,方程的解是否舍去要以是否符合问题的实际意义为标准.重点难点重点
通过实际图形问题,培养学生运用一元二次方程分析和解决几何问题的能力.
难点
在探究几何问题的过程中,找出数量关系,正确地建立一元二次方程.教学设计活动1 创设情境
1.长方形的周长________,面积________,长方体的体积公式________.
2.如图所示:
(1)一块长方形铁皮的长是10 cm,宽是8 cm,四角各截去一个边长为2 cm的小正方形,制成一个长方体容器,这个长方体容器的底面积是________,高是________,体积是________.
(2)一块长方形铁皮的长是10 cm,宽是8 cm,四角各截去一个边长为x cm的小正方形,制成一个长方体容器,这个长方体容器的底面积是________,高是________,体积是________.教学设计活动2 自学教材第20页~第21页探究3,思考老师所提问题
要设计一本书的封面,封面长27 cm,宽21 cm,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的彩色边衬所占面积是封面面积的四分之一,上下边衬等宽,左右边衬等宽,应如何设计四周边衬的宽度(精确到0.1 cm).
(1)要设计书本封面的长与宽的比是________,则正中央矩形的长与宽的比是________.
(2)为什么说上下边衬宽与左右边衬宽之比为9∶7?试与同伴交流一下.教学设计(3)若设上、下边衬的宽均为9x cm,左、右边衬的宽均为7x cm,则中央矩形的长为________cm,宽为________cm,面积为________cm2.
(4)根据等量关系:________,可列方程为:________.
(5)你能写出解题过程吗?(注意对结果是否合理进行检验.)
(6)思考如果设正中央矩形的长与宽分别为9x cm和7x cm,你又怎样去求上下、左右边衬的宽?教学设计活动3 变式练习
如图所示,在一个长为50米,宽为30米的矩形空地上,建造一个花园,要求花园的面积占整块面积的75%,等宽且互相垂直的两条路的面积占25%,求路的宽度.
答案:路的宽度为5米.教学设计活动4 课堂小结与作业布置
课堂小结
1.利用已学的特殊图形的面积(或体积)公式建立一元二次方程的数学模型,并运用它解决实际问题的关键是弄清题目中的数量关系.
2.根据面积与面积(或体积)之间的等量关系建立一元二次方程,并能正确解方程,最后对所得结果是否合理要进行检验.
作业布置
教材第22页 习题21.3第8,10题.课件13张PPT。21.2 解一元二次方程21.2.1 配方法 第2课时 配方法教学目标理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题.
通过复习可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面两种形式的一元二次方程的解题步骤.了解配方法的概念,掌握运用配方法解一元二次方程的步骤.
通过复习上一节课的解题方法,给出配方法的概念,然后运用配方法解决一些具体题目.重点难点重点
讲清直接降次有困难,如x2+6x-16=0的一元二次方程的解题步骤.
讲清配方法的解题步骤.
难点
将不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧.对于用配方法解二次项系数为1的一元二次方程,通常把常数项移到方程右边后,两边加上的常数是一次项系数一半的平方;对于二次项系数不为1的一元二次方程,要先化二次项系数为1,再用配方法求解.
教学设计教学设计列出下面问题的方程并回答:
(1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢?
(2)能否直接用上面前三个方程的解法呢?
问题:要使一块矩形场地的长比宽多6 m,并且面积为16 m2,求场地的长和宽各是多少?教学设计(1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x的完全平方式而后二个不具有此特征.
(2)不能.
既然不能直接降次解方程,那么,我们就应该设法把它转化为可直接降次解方程的方程,下面,我们就来讲如何转化:
x2+6x-16=0移项→x2+6x=16
两边加(6/2)2使左边配成x2+2bx+b2的形式→x2+6x+32=16+9
左边写成平方形式→(x+3)2=25降次→x+3=±5即x+3=5或x+3=-5
解一次方程→x1=2,x2=-8
可以验证:x1=2,x2=-8都是方程的根,但场地的宽不能是负值,所以场地的宽为2 m,长为8 m.教学设计像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法.
可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解.
例1 用配方法解下列关于x的方程:
(1)x2-8x+1=0 (2)x2-2x-=0
分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式;(2)同上.
解:略.教学设计三、巩固练习
教材第9页 练习1,2.(1)(2).
四、课堂小结
本节课应掌握:
左边不含有x的完全平方形式的一元二次方程化为左边是含有x的完全平方形式,右边是非负数,可以直接降次解方程的方程.
五、作业布置
教材第17页 复习巩固2,3.(1)(2). 教学设计一、复习引入
(学生活动)解下列方程:
(1)x2-4x+7=0 (2)2x2-8x+1=0
老师点评:我们上一节课,已经学习了如何解左边不含有x的完全平方形式的一元二次方程以及不可以直接开方降次解方程的转化问题,那么这两道题也可以用上面的方法进行解题.
解:略. (2)与(1)有何关联?教学设计二、探索新知
讨论:配方法解一元二次方程的一般步骤:
(1)先将已知方程化为一般形式;
(2)化二次项系数为1;
(3)常数项移到右边;
(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;
(5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±;如果q<0,方程无实根.教学设计例1 解下列方程:
(1)2x2+1=3x (2)3x2-6x+4=0 (3)(1+x)2+2(1+x)-4=0
分析:我们已经介绍了配方法,因此,我们解这些方程就可以用配方法来完成,即配一个含有x的完全平方式.
解:略.教学设计三、巩固练习
教材第9页 练习2.(3)(4)(5)(6).
四、课堂小结
本节课应掌握:
1.配方法的概念及用配方法解一元二次方程的步骤.
2.配方法是解一元二次方程的通法,它的重要性,不仅仅表现在一元二次方程的解法中,也可通过配方,利用非负数的性质判断代数式的正负性.在今后学习二次函数,到高中学习二次曲线时,还将经常用到.教学设计五、作业布置
教材第17页 复习巩固3.(3)(4).
补充:(1)已知x2+y2+z2-2x+4y-6z+14=0,求x+y+z的值.
(2)求证:无论x,y取任何实数,多项式x2+y2-2x-4y+16的值总是正数.