1.7有理数的加减混合运算 冀教版(2024)初中数学七年级上册同步练习(含详细答案解析)

文档属性

名称 1.7有理数的加减混合运算 冀教版(2024)初中数学七年级上册同步练习(含详细答案解析)
格式 docx
文件大小 431.2KB
资源类型 试卷
版本资源 冀教版
科目 数学
更新时间 2025-10-16 07:12:29

图片预览

文档简介

中小学教育资源及组卷应用平台
1.7有理数的加减混合运算冀教版( 2024)初中数学七年级上册同步练习
分数:120分 考试时间:120分钟 命题人:
一、选择题:本题共12小题,每小题3分,共36分。在每小题给出的选项中,只有一项是符合题目要求的。
1.把写成省略括号的形式是( )
A. B. C. D.
2.下图是一个运算程序,若输入,按下图所示的程序运算完成一个方框内的运算后,把结果输入下一个方框继续进行运算,则输出的结果为( )
A. B. C. D.
3.写成省略加号的形式正确的是( )
A. B. C. D.
4.如图,数轴表示的是个城市的国际标准时间单位:时,如果北京的时间是年月日上午时,下列说法正确的是( )
A. 伦敦的时间是年月日凌晨时 B. 纽约的时间是年月日晚上时
C. 多伦多的时间是年月日晚上时 D. 首尔的时间是年月日上午时
5.把写成省略加号的和的形式,正确的是( )
A. B. C. D.
6.如图,,,,,,均为有理数,图中各行,各列及两条对角线上三个数的和都相等,则的值为( )
A. B. C. D.
7.数轴上点表示的数是,把点向右移动个单位,然再向左移动个单位到,则表示的数是( )
A. B. C. D.
8.如图,乐乐将,,,,,,,,分别填入九个空格内,使每行、每列、每条对角线上的三个数之和相等,若,,分别表示其中的一个数,则的值为( )
A. B. C. D.
9.一个病人每天下午需要测量血压,下表为病人周一到周五收缩压的变化情况,该病人上周日的收缩压为单位.
星期 一 二 三 四 五 六
血压变化单位
注:正号表示血压比前一天上升,负号表示血压比前一天下降该病人在本周收缩压最低的是( )
A. 星期二 B. 星期三 C. 星期五 D. 星期六
10.把写成省略加号的形式是( )
A. B. C. D.
11.如图为某国预估年后的人口变动数直方图,各组的数值若为正数表示该组人口年后会增加,若为负数表示该组人口年后会减少根据此图预估该国岁以上的人口,年后会增加或减少多少人?( )
A. 增加万人 B. 增加万人 C. 减少万人 D. 减少万人
12.某路公交车从起点开始经过,,,四站到达终点,若各站上下车人数按如下方式表示:上车为正,下车为负例如表示该站上车人,下车人现在起点站有人,,,,车上乘客最多时有( )
A. 名 B. 名 C. 名 D. 名
二、填空题:本题共4小题,每小题3分,共12分。
13.写成省略括号的和的形式为 .
14.如果用表示的全部因数的和,如,那么______.
15.小明在电脑中设置了一个有理数的运算程序:,例如,试求的值为______.
16.的相反数是它本身,是最大的负整数,是最小的自然数,则的值是 .
三、解答题:本题共9小题,共72分。解答应写出文字说明,证明过程或演算步骤。
17.本小题分
计算:




18.本小题分
请根据图示的对话解答下列问题.求:
,,的值;
的值.
19.本小题分
在抗洪抢险中,解放军战士的冲锋舟加满油沿东西方向的河流抢救灾民,早晨从地出发,晚上到达地,约定向东为正方向,当天的航行路程记录如下单位:千米,,,,,,,.
请你帮忙确定地相对于地的方位
救灾过程中,冲锋舟离出发点最远处有多远
若冲锋舟每千米耗油升,油箱容量为升,求冲锋舟当天救灾过程中至少还需要补充多少升油.
20.本小题分
在近期疫情防控战役中,某志愿者驾驶汽车沿东西方向的大街巡逻,早晨从地出发,晚上到达地,约定向东为正方向,当天的行程记录如下单位:千米:
,,,,,,,,,.
在巡逻过程中,地离出发点有多远?地在地的什么方向?
若汽车每千米耗油升,油箱容量为升,求油箱中还余多少升油?
21.本小题分
已知,,.
若,求的值;
若,求的值.
22.本小题分
一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录如下单位:米,,,,,,.
守门员最后是否回到了球门线的位置?
在练习过程中,守门员离开球门线最远距离是多少米?
守门员全部练习结束后,他共跑了多少米?
23.本小题分
如图,在纸面上有一个数轴,折叠纸面.
当沿原点折叠,表示的点与表示的点重合时,表示的点与表示______的点重合;
当沿表示的点折叠,表示的点与表示的点重合时回答下列问题:
表示的点与表示______的点重合;
若数轴上、两点在的左侧经折叠后重合,且到折叠点的距离为,求、两点表示的数分别是多少?
24.本小题分
某自行车厂计划一周生产辆自行车,平均每天生产辆,由于各种原因,无法按计划进行生产,下表是一周的生产情况超产为正,减产为负,单位:辆:
星期 一 二 三 四 五 六 日
生产情况
根据记录可知前天共生产自行车________辆;
这一周自行车产量最多的一天比产量最少的一天多生产________辆;
该厂实行计件工资制,每生产一辆自行车厂方付给工人工资元,超额完成计划任务的每辆奖励元,没有完成计划任务的每辆车要扣元,则该厂工人这一周的工资总额是多少?
25.本小题分
一辆出租车在东西方向的马路上行驶,从起点开始向东行驶记为正,司机记录他一天的行程如下单位:千米
,,,,,,,,,,,.
这一天出租车最后停在离起点多远地方
若每千米耗油升,出租车这一天用了多少升油
答案和解析
1.【答案】
【解析】略
2.【答案】
【解析】根据程序流程图进行列式计算即可.
【详解】解:由题意可知:,
代入得:,输出
故选A.
3.【答案】
【解析】解:

故选:.
利用有理数的加减混合运算计算.
本题考查了有理数的加减运算,解题的关键是掌握有理数的加减运算法则.
4.【答案】
【解析】解:我们可以分别计算出其他城市的时间:
A、伦敦:北京时间减去小时,
年月日上午时小时年月日凌晨时,故A选项符合题意;
B、纽约:北京时间减去小时
年月日上午时小时年月日晚上时,故B选项不合题意;
C、多伦多:北京时间减去小时,
年月日上午时小时年月日晚上时,选项不合题意;
D、首尔北京时间加上小时
年月日上午时小时年月日上午时,故D选项不合题意.
故选:.
根据各城市的国际标准时间与北京时间的时差计算得出.
根据地理上的东加西减得出相应时间.
5.【答案】
【解析】解:,
故选:.
计算有理数加减混合运算时,可以将所有的加法和减法统一成加法运算,并且省略每个加数前面的加号和括号,即减去一个负数,等于加上一个正数,减去一个正数等于加上一个负数,据此解答.
本题考查了有理数的加减混合运算,解决本题的关键是
6.【答案】
【解析】本题主要考查了有理数的加减,代数式的值;先找出具有已知量最多且含有公共未知量的行或列,即,得到,再以,解得,以此类推求出各个字母的值即可得出结论.
【详解】解:由题意得:,
解得.




,,,
,,.

故选:.
7.【答案】
【解析】【分析】
本题考查的是数轴的定义及数轴上两点之间的距离公式,属较简单题目.
数的大小变化和数轴上表示这个数的点在数轴上移动的关系:左减右加,由此求解即可.
【解答】
解:根据变化规律,可知表示的数为.
故选:.
8.【答案】
【解析】【分析】
本题考查了有理数的加减运算,解题关键是能根据图中的条件求出,,的值.
先由每行、每列、每条对角线上的三个数之和相等,求出,,的值,然后代入计算即可.
【解答】
解: ,
每行、每列、每条对角线上的三个数之和均为,
故,,,
解得,,,
则.
故选:.
9.【答案】
【解析】解:星期一:单位,
星期二:单位,
星期三:单位,
星期四:单位,
星期五:单位,
星期六:单位
星期二收缩压最低.
故选:.
根据上周日收缩压为单位,由表格求出每天的收缩压,即可得到结果.
此题考查正数和负数以及有理数加减混合运算的应用,以及正数与负数,弄清题意是解本题的关键.
10.【答案】
【解析】解:根据有理数的加减混合运算的符号省略法则化简,得,

故选:.
根据有理数的加减混合运算的符号省略法则化简,即可得到结果.
本题考查了有理数的加减的应用,能灵活运用有理数的减法法则进行变形是解此题的关键,注意:减去一个数,等于加上这个数的相反数.
11.【答案】
【解析】解:由直方图可得:万人.
故选:.
利用直方图列式解答即可.
本题主要考查了有理数的加减混合运算,利用直方图正确列出算式是解题的关键.
12.【答案】
【解析】略
13.【答案】
【解析】解:写成省略括号的和的形式为:

故答案为:.
括号前面是正号则括号可以直接去掉,括号外面是负号去掉括号,则括号里面的各项要变号,.
考查了有理数的加减混合运算,即括号前是“”号时,将括号连同它前边的“”号去掉,括号内各项都不变;括号前是“”号时,将括号连同它前边的“”去掉,括号内各项都要变号.
14.【答案】
【解析】解:,


故答案为:.
根据题意可求得和的值,然后计算此题结果即可.
此题考查了利用新定义解决数学问题的能力,关键是能根据新定义进行列式、计算.
15.【答案】
【解析】解:由题意可得:,

故答案为:.
根据题意列出有理数加减混合运算的式子,再进行计算即可,
本题主要考查了有理数的加减混合运算,熟知有理数加减混合运算的法则是解题的关键.
16.【答案】
【解析】本题考查了相反数,有理数的相关概念,以及求代数式的值,分别求出符合题意的,,的值,再进行计算即可.
【详解】解:的相反数是它本身,是最大的负整数,是最小的自然数,
,,,

故答案为:.
17.【答案】;



【解析】




先去括号,然后从左向右依次计算即可;
先去括号,然后从左向右依次计算即可;
将和为零的两个数,和为整数的两个数分别结合为一组求解;
将分母相同的两个数分别结合为一组求解.
本题主要考查了有理数的加减混合运算,解决本题的关键是熟练运用有理数混合运算法则.
18.【答案】【小题】
由题意可得:,
当时,,
当时,,
综上,或;
【小题】
当时,

当时,

综上,原式的值为或.

【解析】
根据相反数和绝对值及有理数的大小比较,有理数的加法求解可得;

将所得,,的值代入计算可得.
19.【答案】解:千米,
答:地在地的东边千米;
因为路程记录中各点离出发点的距离分别为:
千米;
千米;
千米;
千米;
千米;
千米;
千米;
千米.
所以最远处离出发点千米;
这一天走的总路程为:千米,
应耗油:升,
故还需补充的油量为:升.
答:冲锋舟当天救灾过程中至少还需补充升油.
【解析】本题考查的是正数与负数的定义,解答此题的关键是熟知用正负数表示两种具有相反意义的量,注意所走总路程一定是绝对值的和.
把题目中所给数值相加,若结果为正数,则地在地的东方,若结果为负数,则地在地的西方;
分别计算出各点离出发点的距离,取数值较大的点即可;
先求出这一天走的总路程,再计算出一共所需油量,减去油箱容量即可求出途中还需补充的油量.
20.【答案】

地在地的东方,且地距离地千米远.


油箱里还有升的油.
【解析】把所有行程记录相加,然后根据正负数的意义解答;
用乘以行程记录的绝对值的和,然后计算余油即可得解.
本题考查的是正负数的实际应用,有理数的加法运算的实际应用,有理数的混合运算的实际应用,理解题意,列出正确的运算式是解本题的关键.
21.【答案】【小题】
解:,,
,,

,,

【小题】
解:,,,
,,,


,或,.
当,,时,

当,,时,

综上,的值为或.

【解析】
利用绝对值的意义,平方根的意义解答即可;

利用绝对值的意义,平方根的意义和立方根的意义解答即可;
22.【答案】守门员回到球门线的位置;
米;

【解析】.
答:守门员回到球门线的位置.
第次:米,
第次:米,
第次:米,
第次:米,
第次:米,
第次:米,
第次:米,
即在练习过程中,守门员离开球门线最远的距离是米.
答:在练习过程中,守门员离开球门线最远距离是米.
米.
答:守门员全部练习结束后,他共跑了米.
根据正数和负数的实际意义列式计算即可;
分别计算出每次离球门线的距离后即可求得答案;
对各数据的绝对值求和即可.
本题考查了有理数的加减混合运算,正数和负数,解决本题的关键是按照计算法则和计算顺序计算.
23.【答案】
【解析】解:沿原点折叠,表示的点与表示的点重合时,表示的点与表示的点重合.
故答案为:;
,,
表示的点与表示的点重合.
故答案为:;
沿表示的点折叠,且到折叠点的距离为,在的左侧,
点表示的数是,点表示的数是.
根据数轴的特征,结合折叠的性质解答即可;根据数轴的特征,结合折叠的性质解答即可;根据题意,结合数轴解答即可.
本题主要考查了数轴、有理数运算等知识,运用数形结合的思想分析问题是解题关键.
24.【答案】解:;

由题意可得:这天的自行车产量与计划产量的差为
该厂工人这天的自行车产量辆
该厂工人这天的工资总额元,
答:该厂工人这一周的工资总额是元.
【解析】【分析】
此题主要考查了正、负数,有理数的减法与加法,以及有理数的混合运算的应用,关键是看懂题意,弄清表中的数据所表示的意思.
分别表示出前天的自行车生产数量,再求其和即可;
根据出入情况:用最高一天的产量最低一天的产量,即可解答;
由工资标准计算工资:超额完成计划任务的,每超产一辆奖励元,没有完成计划任务的,每减产一辆扣元,可知工人工资可直接根据完成任务的总量计算.先计算出生产的自行车的总量,再根据工资标准计算工资即可.
【解答】
解:辆,
故答案为:;
由表可知:第天自行车产量最多为,第天最少为
辆,
故答案为:;
见答案.
25.【答案】解:千米
答:这一天出租车最后停在离出发点东边千米的地方.
千米,

答:这一天出租车用油升.

【解析】本题考查了正负数、绝对值及有理数在实际中的应用.注意,东表示正数,西表示负数,但实际行走的路程应该等于所有数的绝对值之和.
首先求出,,,,,,,,,,,的和,是正数,则在出发点东,是负数,则在出发点西;
把所有的行车里程的绝对值相加即可求出总里程;耗油总量行走的总路程单位耗油量.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)