第二单元轴对称和平移(情境化试题专练)(含解析)——2025-2026学年北师大版数学五年级上册

文档属性

名称 第二单元轴对称和平移(情境化试题专练)(含解析)——2025-2026学年北师大版数学五年级上册
格式 docx
文件大小 1007.0KB
资源类型 试卷
版本资源 北师大版
科目 数学
更新时间 2025-10-16 16:28:29

图片预览

文档简介

中小学教育资源及组卷应用平台
第二单元轴对称和平移(情境化试题专练)
一、选择题
1.甲骨文是我国的一种古老文字,是汉字的早期形式,通过联合国教科文组织世界记忆工程国际咨询委员会的评审,成功入选《世界记忆名录》。下面是一幅甲骨文书法作品《福寿康乐》,其中不是轴对称图形的是( )。
A.福 B.寿 C.康 D.乐
2.下图是中国象棋棋盘的一部分。“车”可以沿着横线走,也可以沿着竖线走,但是不能拐弯,也不能跳过别的棋,“车”想走到A处,应该( )。
A.先向上走4格,再向右走4格 B.先向上走4格,再向右走6格
C.先向右走5格,再向上走4格 D.先向右走7格,再向上走4格
3.中秋节到了,同学们绘制了中秋黑板报,下面是黑板报上的几幅图案,其中是轴对称图形的有( )个。
A.1 B.2 C.3 D.4
4.明明在方格纸上沿格线移动一枚棋子,先后经过的位置依次是、、,在这个移动的过程中,棋子一定是沿着( )方向移动的。
A.水平 B.竖直 C.先水平后竖直 D.无法确定
5.关于下图中圆的平移,下面说法正确的是( )。
A.圆向下平移1格可以得到圆 B.圆向右平移3格可以得到圆
C.圆向下平移2格可以得到圆 D.圆向右平移5格可以得到圆
6.在下面运动中,不是平移的是( )。
A.国旗上升 B.停车场入口处的横杆抬起
C.电梯下行 D.缆车从山脚运行至上顶
二、填空题
7.醒狮是融武术、舞蹈、音乐等为一体的汉族民俗文化,是国家非物质文化遗产之一。园园买了一幅醒狮拼图,你能移动下面的图片,帮她拼成一个完整的醒狮吗?
我知道:可以将①向( )平移( )格,再向( )平移( )格;然后把②向( )平移( )格。
8.推拉抽屉的运动是( )现象;箱式电梯门的闭合是( )现象。
9.如图,笑脸图1号先向上平移1格,再向右平移3格得到的图形是( )号;不能通过平移得到图形是( )号。笑脸图1号先向( )平移( )格,再向( )平移( )格得到的图形4。
10.正方形、长方形、平行四边形、等腰直角三角形和等腰梯形中,只有一条对称轴的是( )和( ),只有两条对称轴的是( ),正方形有( )条对称轴。
11.如图,下面甲、乙、丙、丁怎样平移就能拼成如图的笑脸呢?
把甲向右平移6格,乙向右平移( )格,丙先向右平移( )格后再向( )平移3格,丁向右平移( )格再向( )平移( )格。
12.李华家的小区有这样一个长方形草坪(草坪平面图如下图所示),中间是两条互相垂直的小路,李华说可以用平移的方法一步就可以求出草坪的面积,请你把平移过程填一填并列式计算。
(1)先将( )号图形向( )平移( )格。
(2)再将( )号图形向( )平移( )格。
(3)最后:( )。
(4)列式计算:
13.正方形有( )条对称轴,长方形有( )条对称轴,等腰三角形有( )条对称轴,等腰梯形有( )条对称轴,等边三角形有( )条对称轴,半圆形的对称轴有( )条。
14.有些图形的平移要经过两次平移,画图时先按照要求画出( )平移后的图形,再在( )平移后的图形上按照第二次的要求平移。
15.乐乐用如图所示的滚筒沿从左到右的方向将图案滚涂到墙上,下面给出的四个图案中,符合图示滚筒涂出的图案的是( )。
16.如图所示,方格图中共有12个正方形,其中的2个已经涂上了颜色,再选1个涂上色,使得3个涂色的正方形组成轴对称图形,共( )种不同的涂法。
17.如下图,如果三角形顶点A用数对(3,4)表示,那么顶点B用数对( )表示,顶点C用数对( )表示,如果把这个三角形向右平移5格,顶点A的位置用数对表示是( )。这时( )变了( )没变。
三、判断题
18.两个数相除的商是0.68,如果把被除数和除数分别扩大到原来的10倍,那么商仍是0.68。( )
19.一个轴对称图形至少有一条对称轴,最多有四条对称轴。( )
20.平移不但能改变图形的位置,而且还能改变图形的大小。( )
21.正方形和长方形都是轴对称图形,它们的对称轴条数不同。( )
22.在方格纸中平移后,图形的大小和形状都不会发生变化。( )
四、解答题
23.拿一张长纸条,将它一反一正折叠起来,并画出字母D,用小刀把画出的字母D挖去,拉开就可以得到一条以字母D为图案的花边,如图。
(1)在得到的花边中,相邻的两个图案是什么关系?隔一个图案的两个图案可以通过什么得到?
(2)观察整条花边,左起和右起的三个图案各为一组,这两组图案有什么关系?
24.怎样移动图B,使三个图形组成一个轴对称图形?
25.
(1)上面方格纸中小松鼠要先向( )平移( )格,再向( )平移( )格就能吃到它喜欢吃的食物(松子)。
(2)上面方格纸中小熊猫要先向( )平移( )格,再向( )平移( )格就能吃到它喜欢吃的食物(竹子)。
(3)请你用图形运动的知识,将上面方格纸中的“9”变成“6”。(把操作过程在方格纸上表示出来)
26.先写出三角形ABC各个顶点的位置,再画出三角形ABC向下平移5个单位后的图形△A’B’C’,然后用数对表示出所得图形各顶点的位置。
A’( );B’( );C’( )。
27.按要求做一做。
(1)在上面的方格纸中描出下列各点,并顺次连成封闭图形。
A(2,8) B(1,5) C(5,5) D(6,8)
(2)将画出的图形向下平移4格,画出平移后的图形。
(3)写出平移后图形顶点的位置。

28.按要求画图。
(1)以虚线为对称轴,画出图①的另一半。
(2)图②先向( )平移( )格,再向( )平移( )格可以得到图③。
29.
(1)图①向( )平移了( )格。
(2)图②是这个图形向左平移5格后得到的,你知道这个图形原来的位置吗?请你画出来。
(3)以虚线为对称轴画出图③的另一半。
参考答案
1.B
【分析】把一个平面图形沿一条直线对折,折痕两边的图形能够完全重合,这样的图形叫做轴对称图形,折痕所在的直线是轴对称图形的对称轴,据此解答。
【详解】根据轴对称图形的定义可得:

在甲骨文书法中,福、康、乐这三个字是轴对称图形,而寿不是轴对称图形。
故答案为:B
2.A
【分析】根据题意,“车”可以沿着横线走,也可以沿着竖线走,但是不能拐弯,也不能跳过别的棋,“车”只有通过平移到达A处,即“车”先向上移动4个,再向右移动4格,即“车”先向上走4格,再向右走4个,可到达A处,据此解答。
【详解】根据分析可知,下图是中国象棋棋盘的一部分。“车”可以沿着横线走,也可以沿着竖线走,但是不能拐弯,也不能跳过别的棋,“车”想走到A处,应该先向上走4格,再向右走4格。
故答案为:A
【点睛】本题考查根据平移的特征以及根据平移的特征解答实际问题。
3.C
【分析】平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形,这条直线叫做对称轴;据此逐项分析即可。
【详解】由分析可知:
第一个图形不是轴对称图形,其他三个图形是轴对称图形,其对称轴如下:
即是轴对称图形的有3个。
故答案为:C
4.A
【分析】在平面内,沿水平方向做直线运动,这样的图形运动叫做平移;
根据数对表示位置的方法:第一个数字表示列,第二个数字表示行;根据题意可知,棋子的行数相同,所以棋子一定是沿着水平方向移动,据此解答。
【详解】根据分析可知,明明在方格纸上沿格线移动一枚棋子,先后经过的位置依次是(2,8)、(3,8)、(8,8),在这个移动的过程中,棋子一定是沿着水平方向移动的。
故答案为:A
5.D
【分析】图形的平移用方向和距离来描述,从圆A到圆B是向下平移3格;从圆B到圆C是向右平移5格。
【详解】A.从圆A到圆B,方向正确,但距离错误,该选项错误。
B.从圆B到圆C,方向正确,但距离错误,该选项错误。
C.从圆A到圆B,方向正确,但距离错误,该选项错误。
D.从圆B到圆C,方向正确,距离正确,该选项正确。
故答案为:D
6.B
【分析】在平面内,把一个图形整体沿某条直线方向平行移动一定距离的过程,称为平移。
在平面内,把一个图形围绕某一固定点按顺时针或逆时针方向转动一定的角度的过程,称为旋转。
【详解】A.国旗上升是平移;
B.停车场入口处的横杆抬起是旋转;
C.电梯下行是平移;
D.缆车从山脚运行至上顶是平移。
不是平移的是停车场入口处的横杆抬起。
故答案为:B
7. 下 1 右 8 下 2
【分析】平移是指物体或图形沿着某一个方向做直线运动。如图所示,图③的位置不变,通过将图①和图②沿着一定方向平移一定格子数到图③的位置,拼成一幅完整的醒狮拼图。
【详解】可以将①向下平移1格,再向右平移8格;然后把②向下平移2格,拼成一个完整的醒狮。
8. 平移 平移
【分析】在平面内,把一个图形整体沿某条直线方向平行移动一定距离的过程,称为平移。
【详解】推拉抽屉的运动是平移现象;箱式电梯门的闭合是平移现象。
9. 5 3 上 2 右 1
【分析】决定平移后图形的位置的要素:一是平移的方向,二是平移的距离。据此确定平移的方向和格数即可。
【详解】笑脸图1号先向上平移1格,再向右平移3格得到的图形是5号;不能通过平移得到图形是3号。笑脸图1号先向上平移2格,再向右平移1格,或先向右平移1格,再向上平移2格得到的图形4。
10. 等腰直角三角形 等腰梯形 长方形 4
【分析】把一个图形沿着一条直线对折后,折痕两侧的部分能够完全重合,这个图形就叫作轴对称图形,折痕所在的直线叫作对称轴。如下图,正方形有4条对称轴,长方形有2条对称轴,平行四边形不是轴对称图形(沿图中所示的虚线对折时,虽然折痕两侧的图形的大小和形状完全相同,但对折后,折痕两侧的部分不能完全重合,所以平行四边形不是轴对称图形),等腰直角三角形有1条对称轴,等腰梯形有1条对称轴。
【详解】根据轴对称图形的意义可知:正方形、长方形、平行四边形、等腰直角三角形和等腰梯形中,只有一条对称轴的是等腰直角三角形和等腰梯形,只有两条对称轴的是长方形,正方形有4条对称轴。
11. 4 6 上 4 上 2
【分析】平移:在平面内,将一个图形上所有点都按照某个直线方向做相同距离的移动;
可据此找准平移的方向和距离,再数清格数,即可解答。
【详解】把甲向右平移6格,乙向右平移(4)格,丙先向右平移(6)格后再向(上)平移3格,丁向右平移(4)格再向(上)平移(2)格。
【点睛】本题考查的是图形的平移,找准方向是解答关键。
12.(1)①;下;1
(2)②;下,1
(3)将②移动后的图形和④号图形一起向左移动1格
(4)6×3=18cm2
【分析】根据平移的特征,将①、②、③、④合并成一个长方形,再根据长方形面积公式:长×宽;进行解答。
【详解】(1)先将①号图形向下平移1格。
(2)再将②号图形向下平移1格。
(3)最后:将②向下移动一格与④号图形组成的长方形向左移动1格。
(4)6×3=18(cm2)
【点睛】利用平移的特征,以及长方形的面积的应用进行解答。
13. 4 2 1 1 3 1
【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后,直线两旁的部分能够完全重合,那么这个图形就是轴对称图形,这条直线就是它的对称轴,由此分别找出这几个图形的对称轴,据此解答。
【详解】正方形有4条对称轴,长方形有2条对称轴,等腰三角形有1条对称轴,等腰梯形有1条对称轴,等边三角形有3条对称轴,半圆形的对称轴有1条。
【点睛】本题考查轴对称图形的意义,根据轴对称的意义,找出对称轴的条数。
14. 第一次 第一次
【分析】在平面内,把一个图形整体沿某条直线方向平行移动的过程,称为平移,据此解答。
【详解】有些图形的平移要经过两次平移,画图时先按照要求画出(第一次)平移后的图形,再在(第一次)平移后的图形上按照第二次的要求平移。
【点睛】平移的特征:物体或图形平移后,它们的形状、大小、方向都不改变,只是位置发生了变化。
15.①
【分析】滚筒是圆柱形,沿从左到右的方向滚动时,滚筒上的图案会以平移的方式重复出现。
【详解】观察滚筒上的图案,其粉色三角形的排列具有特定的规律:
当滚筒滚动时,图案的重复应保持形状、方向和相对位置的一致性。
对比四个选项,选项①的图案中粉色三角形的排列与滚筒上的图案在平移展开后的规律完全一致,而其他选项在三角形的形状、方向或排列上存在差异。
故符合图示滚筒涂出的图案的是①。
16.7
【分析】如果将一个图形沿着一条直线对折,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。根据轴对称图形的意义解答即可。
【详解】
如图:、、、、、、,共7种不同的涂法。
【点睛】一个图形沿一条直线对折后,折痕两侧的部分能够完全重合才是轴对称图形。
17. (1,2) (4,1) (8,4) 三角形位置 形状和大小
【分析】根据数对表示位置的方法:第一个数表示列,第二个数表示行,据此用数对表示点B和点C的位置;把这个三角形的各点向右平移5格后,再根据用数对表示位置的方法,表示点A平移后的位置,根据平移的特点,三角形的位置改变,形状和大小不变。据此填空即可。
【详解】根据分析可知,顶点B用数对表示(1,2);顶点C用数对表示(4,1);
3+5=8,如果把这个三角形向右平移5格,顶点A的位置用数对表示(8,4);
如下图,如果三角形顶点A用数对(3,4)表示,那么顶点B用数对(1,2),顶点C用数对(4,1)表示,如果把这个三角形向右平移5格,顶点A的位置用数对表示是(8,4)。这时三角形位置变了,形状和大小不变。
【点睛】本题考查用数对表示位置,明确用数对表示位置的方法是解题的关键。
18.√
【分析】被除数和除数都乘(或除以)一个相同的0除外的数,商不变,据此即可判定。
【详解】根据商不变的规律可知,两个数相除的商是0.68,如果被除数和除数都扩大到原来的10倍,即被除数和除数都乘10,即商不变,商仍是0.68,此说法正确。
故答案为:√
19.×
【分析】把一个图形沿着一条直线对折,若这条直线两边的图形能够完全重合,这个图形就是轴对称图形,这条直线叫作对称轴,由此可知一个轴对称图形一定是至少有一条对称轴的,最多有无数条对称轴,比如圆有无数条对称轴,因为过圆心的任意一条直线都是圆的对称轴;据此解答即可。
【详解】由分析可知:
一个轴对称图形至少有一条对称轴,最多有无数条对称轴。原说法错误。
故答案为:×
20.×
【分析】根据平移的定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。图形平移后的形状、大小没有发生变化,只是位置发生了变化。据此判断即可。
【详解】图形平移只能改变图形的位置,图形平移后的形状、大小没有发生变化,即不能改变图形的大小。
所以原题干“平移不但能改变图形的位置,而且还能改变图形的大小。”说法错误。
故答案为:×
21.√
【分析】一个图形沿一条直线对折,直线两旁的图形完全重合,这样的图形叫做轴对称图形。长方形可按对边中点的连线对折使两边图形完成重合,长方形有两组对边所以长方形有2条对称轴;正方形除对边中点的连线对折使两边图形完成重合外,还能沿对角线对折使两边图形完成重合,正方形有2条对角线,所以正方形有2+2=4(条)对称轴。
【详解】由分析可知:正方形和长方形都是轴对称图形,它们的对称轴条数不同。
原说法正确。
故答案为:√
22.√
【分析】平移:在平面内,将一个图形上的所有点都按照某个方向作相同距离移动的图形运动;平移后图形的位置改变,形状、大小、方向不变,据此解答。
【详解】在方格纸中平移后,图形的大小和形状都不会发生变化。
原题干说法正确。
故答案为:√
【点睛】根据平移的特征进行解答。
23.(1)见详解
(2)见详解
【分析】判断一个或是两个图形是轴对称得到的还是平移得到的,要看图形是否改变位置,是否改变了方向。
【详解】(1)在得到的花边中,相邻的两个图案是关于折痕成轴对称的关系,隔一个图案的两个图案可以通过平移得到。
(2)观察整条花边,左起和右起的三个图案各为一组,这两组图案有关于整个纸条的中间线成轴对称的关系。
24.B先向下平移3格,再向左平移1格。
【分析】把一个平面图形沿一条直线对折,折痕两边的图形能够完全重合,这样的图形叫做轴对称图形,折痕所在的直线是轴对称图形的对称轴。图形的平移可以看成关键点的平移。关键点向哪个方位平移了几格,图形就向哪个方向平移了几格,平移后整个图形以C中间竖直的直线为对称轴,据此解答。
【详解】把B先向下平移3格,再向左平移1格,此时三个图形组成一个轴对称图形。
(答案不唯一)
25.(1)右;5;下;6
(2)左;3;上;11
(3)见详解
【分析】(1)小松鼠先向右移动,再向下移动可吃到松子;或先向下移动再向右移动可吃到松子;
(2)小熊猫先向上移动,再向左移动可吃到竹子;或先向左移动再向上移动可吃到竹子;
(3)轴对称图形,是指在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形,这条直线就叫做对称轴。先找出一条对称轴画出“9”右边的对称图形,再找出一条对称轴画出所得图形下方的对称图形,即为所求图形。
【详解】由分析可知:
(1)上面方格纸中小松鼠要先向右平移5格,再向下平移6格就能吃到它喜欢吃的食物(松子)。或上面方格纸中小松鼠要先向下平移6格,再向右平移5格就能吃到它喜欢吃的食物(松子)。
(2)上面方格纸中小熊猫要先向左平移3格,再向上平移11格就能吃到它喜欢吃的食物(竹子)。或上面方格纸中小熊猫要先向上平移11格,再向左平移3格就能吃到它喜欢吃的食物(竹子)。
(3)如图所示:
26.图形见详解;A’(3,1);B’(6,3);C’(2,3)
【分析】根据用数对表示位置的方法,第一个数字表示列,第二个数字表示行,据此用数对表示出三角形ABC各个顶点的位置;将三角形ABC的各个顶点向下平移5个单位,再顺次连接各点即可,然后用数对表示出平移后三角形的各个顶点的位置。
【详解】如图所示:
A’(3,1);B’(6,3);C’(2,3)。
【点睛】本题考查用数对表示位置,明确用数对表示位置的方法是解题的关键。
27.(1)(2)见详解
(3)
【分析】(1)根据用数对表示物体位置的方法,第一个数字表示列数,第二个数字表示行数,据此画图;
(2)根据平移的特征,把画出的图形的各顶点分别向下平移4格,依次连接即可得到平移后的图形;
(3)用数对表示位置时,前一个数表示第几列,后一个数表示第几行,据此分别写出图形各顶点的位置。
【详解】(1)(2)如图:
(3)
【点睛】本题考查了图形的平移以及用数对表示位置的方法,平移作图要注意:①方向;②距离。整个平移作图,就是把整个图案的每一个特征点按一定方向和一定的距离平行移动。
28.(1)见详解
(2)右;6;下;1(答案不唯一)
【分析】(1)根据轴对称图形的性质,对称点到对称轴的距离相等,对称轴是对称点的连线的垂直平分线,在对称轴的另一边画出图形的几个顶点,再依次连线即可;
(2)根据平移的特征,确定图形②与图③的位置及对应部分之间的格子数量,即可确定平移的方向和格子数。
【详解】由分析可得:
(1)画图如下:
(2)图②先向右平移6格,再向下平移1格可以得到图③。(答案不唯一)
【点睛】本题考查了作轴对称图形和判断图形平移的情况,以上知识都需要熟练掌握并且灵活运用,尤其需要能结合知识准确画图。
29.(1)左;6;
(2)见详解;
(3)见详解
【分析】(1)根据图①实线图与虚线图的相对位置、箭头指向、对应部分间的格数,即可确定平移的方向、格数。
(2)再平移回去,与平移来的方向完全相反,格数不变。
(3)根据轴对称图形的特征,对称点到对称轴的距离相等,对称点的连线垂直于对称轴,在对称轴的下边画出图形③上半图的关键对称点,依次连接即可画出图③的另一半,使它成为一个轴对称图形。
【详解】(1)观察可知,图①向左平移了6格。
(2)图②是这个图形向左平移5格后得到的,找到这个图形原来的位置,并画出来,如下:
(3)以虚线为对称轴画出图③的另一半,如下:
【点睛】此题考查了作平移后的图形、作轴对称图形等,正确理解平移的定义、轴对称的意义是解答此题的关键。
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)