第一章 集合与函数概念全章教案(共12课时)

文档属性

名称 第一章 集合与函数概念全章教案(共12课时)
格式 zip
文件大小 1.8MB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2016-09-06 12:23:35

文档简介

第2课时
分段函数
导入新课
思路1.当x>1时,f(x
( http: / / www.21cnjy.com ))=x+1;当x≤1时,f(x)=-x,请写出函数f(x)的解析式.这个函数的解析式有什么特点?教师指出本节课题.
思路2.化简函数y=|x|的解析式,说说此函数解析式的特点,教师指出本节课题.
推进新课
新知探究
提出问题
①函数h(x)=与f(x)=x-1,g(x)=x2在解析式上有什么区别
②请举出几个分段函数的例子.
活动:学生讨论交流函数解析式的区别.所谓“分段函数”,习惯上指在定义域的不同部分,有不同对应法则的函数.并让学生结合体会来实际举例.
讨论结果:①函数h(x)是分段函数,在定义域
( http: / / www.21cnjy.com )的不同部分,其解析式不同.说明:分段函数是一个函数,不要把它误认为是几个函数;分段函数的定义域是各段定义域的并集,值域是各段值域的并集;生活中有很多可以用分段函数描述的实际问题,如出租车的计费、个人所得税纳税额等等.
②例如:y=等.
应用示例
思路1
1.画出函数y=|x|的图象.
活动:学生思考函数图象的画法:①化简函数的解析式为基本初等函数;②利用变换法画出图象,根据绝对值的概念来化简解析式.
解法一:由绝对值的概念,我们有y=
所以,函数y=|x|的图象如图1-2-2-10所示.
( http: / / www.21cnjy.com )
图1-2-2-10
解法二:画函数y=x的图象,将其位
( http: / / www.21cnjy.com )于x轴下方的部分对称到x轴上方,与函数y=x的图象位于x轴上方的部分合起来得函数y=|x|的图象如图1-2-2-10所示.
变式训练
1.已知函数y=
(1)求f{f[f(5)]}的值;
(2)画出函数的图象.
分析:本题主要考查分段函数及其图象.f
( http: / / www.21cnjy.com )(x)是分段函数,要求f{f[f(5)]},需要确定f[f(5)]的取值范围,为此又需确定f(5)的取值范围,然后根据所在定义域代入相应的解析式,逐步求解.画出函数在各段上的图象,再合起来就是分段函数的图象.
解:(1)∵5>4,∴f(5)=-5+2=-3.∵-3<0,∴f[f(5)]=f(-3)=-3+4=1.
∵0<1<4,∴f{f[f(5)]}=f(1)=12-2×1=-1,即f{f[f(5)]}=-1.
(2)图象如图1-2-2-11所示:
( http: / / www.21cnjy.com )
图1-2-2-11
2.课本P23练习3.
3.画函数y=(x+1)2,-x,x≤0,x>0的图象.
步骤:①画整个二次函数y=x2的图象,再取其
( http: / / www.21cnjy.com )在区间(-∞,0]上的图象,其他部分删去不要;②画一次函数y=-x的图象,再取其在区间(0,+∞)上的图象,其他部分删去不要;③这两部分合起来就是所要画的分段函数的图象.如图1-2-2-12所示.
( http: / / www.21cnjy.com )
图1-2-2-12
函数y=f(x)的图象位于x轴上方的部
( http: / / www.21cnjy.com )分和y=|f(x)|的图象相同,函数y=f(x)的图象位于x轴下方的部分对称到上方就是函数y=|f(x)|的图象的一部分.利用函数y=f(x)的图象和函数y=|f(x)|的图象的这种关系,由函数y=f(x)的图象画出函数y=|f(x)|的图象.
2.某市“招手即停”公共汽车的票价按下列规则制定:
(1)乘坐汽车5千米以内(含5千米),票价2元;
(2)5千米以上,每增加5千米,票价增加1元(不足5千米按5千米计算),
如果某条线路的总里程为20千米,请根据题意,写出票价与里程之间的函数解析式,并画出函数的图象.
活动:学生讨论交流题目的条件,
( http: / / www.21cnjy.com )弄清题意.本例是一个实际问题,有具体的实际意义,根据实际情况公共汽车到站才能停车,所以行车里程只能取整数值.由于里程在不同的范围内,票价有不同的计算方法,故此函数是分段函数.
解:设里程为x千米时,票价为y元,根据题意得x∈(0,20].
由空调汽车票价制定的规定,可得到以下函数解析式:
( http: / / www.21cnjy.com )
图1-2-2-13
y=
根据这个函数解析式,可画出函数图象,如图1-2-2-13所示.
点评:本题主要考查分段函数的
( http: / / www.21cnjy.com )实际应用,以及应用函数解决问题的能力.生活中有很多可以用分段函数描述的实际问题,如出租车的计费、个人所得税纳税额等等.在列出其解析式时,要充分考虑实际问题的规定,根据规定来求得解析式.
注意:①本例具有实际背景,所以解题时应考虑其实际意义;
②分段函数的解析式不能写成几个不同的方程,而应写成函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.
变式训练某客运公司确定客票价格的方法是:如
( http: / / www.21cnjy.com )果行程不超过100千米,票价是每千米0.5元,如果超过100千米,超过部分按每千米0.4元定价,则客运票价y(元)与行程千米数x(千米)之间的函数关系式是________.
分析:根据行程是否大于100千米来求出解析式.
答案:y=
思路2
1.已知函数f(x)=
(1)求f(-1),f[f(-1)],f{f[f(-1)]}的值;(2)画出函数的图象.
活动:此函数是分段函数,应注意在不同的自变量取值范围内有不同的对应关系.
解:(1)f(-1)=0;f[f(-1)]=f(0)=1;f{f[f(-1)]}=f(1)=-12+2×1=1.
(2)函数图象如图1-2-2-14所示:
( http: / / www.21cnjy.com )
图1-2-2-14
变式训练
若定义运算a⊙b=则函数f(x)=x⊙(2-x)的值域是________.
分析:由题意得f(x)=画函数f(x)的图象得值域是(-∞,1].
答案:(-∞,1]
点评:本题主要考查分段函数的解析式和图象.求分段函数的函数值时,要注意自变量在其定义域的哪一段上,依次代入分段函数的解析式.画分段函数y=(D1,D2,…,两两交集是空集)的图象步骤是
(1)画整个函数y=f1(x)的图象,再取其在区间D1上的图象,其他部分删去不要;
(2)画整个函数y=f2(x)的图象,再取其在区间D2上的图象,其他部分删去不要;
(3)依次画下去;
(4)将各个部分合起来就是所要画的分段函数的图象.
2.如图1-2-2-15所示,在梯形AB
( http: / / www.21cnjy.com )CD中,AB=10,CD=6,AD=BC=4,动点P从B点开始沿着折线BC、CD、DA前进至A,若P点运动的路程为x,△PAB的面积为y.
图1-2-2-15
(1)写出y=f(x)的解析式,指出函数的定义域;
(2)画出函数的图象并求出函数的值域.
活动:学生之间相互讨论交流,教
( http: / / www.21cnjy.com )师帮助学生审题读懂题意.首先通过画草图可以发现,P点运动到不同的位置,y的求法是不同的(如图1-2-2-16的阴影部分所示).
图1-2-2-16
可以看出上述三个阴影三角形的底是相同的,它
( http: / / www.21cnjy.com )们的面积由其高来定,所以只要由运动里程x来求出各段的高即可.三角形的面积公式为底乘高除以2,则△PAB的面积的计算方式由点P所在的位置来确定.
解:(1)分类讨论:
①当P在BC上运动时,易知∠B=60°,则知
y=×10×(xsin60°)=x,0≤x≤4.
②当P点在CD上运动时,
y=×10×2=10,4③当P在DA上运动时,
y=×10×(14-x)sin60°=x+35,10综上所得,函数的解析式为
y=
(2)f(x)的图象如图1-2-2-17所示:
( http: / / www.21cnjy.com )
图1-2-2-17
由图象,可知y的取值范围是0≤y≤10,
即函数f(x)的值域为[0,10].
知能训练
1.函数f(x)=|x-1|的图象是(
)
( http: / / www.21cnjy.com )
图1-2-2-18
分析:方法一:函数的解析式化为y=画出此分段函数的图象,故选B.方法二:将函数f(x)=x-1位于x轴下方部分沿x轴翻折到x轴上方,与f(x)=x-1位于x轴上方部分合起来,即可得到函数f(x)=|x-1|的图象,故选B.方法三:由f(-1)=2,知图象过点(-1,2),排除A、C、D,故选B.
答案:B
2.已知函数f(x)=
(1)画出函数的图象;
(2)求f(1),f(-1),f[f(-1)]的值.
解析:分别作出f(x)在x>0,x=0,x<0段上的图象,合在一起得函数的图象.
(1)如图1-2-2-19所示,画法略.
( http: / / www.21cnjy.com )
图1-2-2-19
(2)f(1)=12=1,f(-1)==1,f[f(-1)]=f(1)=1.
3.某人驱车以52千米/时
( http: / / www.21cnjy.com )的速度从A地驶往260千米远处的B地,到达B地并停留1.5小时后,再以65千米/时的速度返回A地.试将此人驱车走过的路程s(千米)表示为时间t的函数.
分析:本题中的函数是分段函数,要由时间t属于哪个时间段,得到相应的解析式.
解:从A地到B地,路上的时间为=5(小时);从B地回到A地,路上的时间为=4(小时).所以走过的路程s(千米)与时间t的函数关系式为
s=
拓展提升
问题:已知函数y=1,f(n+1)=f(n)+2,n=1,n∈N
.
(1)求:f(2),f(3),f(4),f(5);
(2)猜想f(n),n∈N
.
探究:(1)由题意得f(1)=1,则有
f(2)=f(1)+2=1+2=3,
f(3)=f(2)+2=3+2=5,
f(4)=f(3)+2=5+2=7,
f(5)=f(4)+2=7+2=9.
(2)由(1)得
f(1)=1=2×1-1,
f(2)=3=2×2-1,
f(3)=5=2×3-1,
f(4)=7=2×4-1,
f(5)=9=2×5-1.
因此猜想f(n)=2n-1,n∈N
.
课堂小结
本节课学习了:画分段函数的图象;求分段函数的解析式以及分段函数的实际应用.
作业
课本P25习题1.2
B组
3、4.
设计感想
本节教学设计容量较大,特别是例题条
( http: / / www.21cnjy.com )件有图,建议使用信息技术来完成.本节重点设计了分段函数,这是课标明确要求也是高考的重点,通过分段函数问题能够区分学生的思维层次,因此教学中应予以重视.第3课时
映射
导入新课
思路1.复习初中常见的对应关系
1.对于任何一个实数a,数轴上都有唯一的点P和它对应.
2.对于坐标平面内任何一个点A,都有唯一的有序实数对(x,y)和它对应.
3.对于任意一个三角形,都有唯一确定的面积和它对应.
4.某影院的某场电影的每一张电影票有唯一确定的坐位与它对应.
5.函数的概念.
我们已经知道,函数是建立
( http: / / www.21cnjy.com )在两个非空数集间的一种对应,若将其中的条件“非空数集”弱化为“任意两个非空集合”,按照某种法则可以建立起更为普通的元素之间的对应关系,这种对应就叫映射(板书课题).
思路2.前面学习了函数的概念是:一般地,
( http: / / www.21cnjy.com )设A,B是两个非空数集,如果按照某种对应法则f,对于集合A中的每个元素x,在集合B中都有唯一的元素y和它对应.
(1)对于任意一个实数,在数轴上都有唯一的点与之对应.
(2)班级里的每一位同学在教室都有唯一的坐位与之对应.
(3)对于任意的三角形,都有唯一确定的面积与之对应.
那么这些对应又有什么特点呢?
这种对应称为映射.引出课题.
推进新课
新知探究
提出问题
①给出以下对应关系:
( http: / / www.21cnjy.com )图1-2-2-20
这三个对应关系有什么共同特点?
②像问题①中的对应我们称为映射,请给出映射的定义?
③“都有唯一”是什么意思?
④函数与映射有什么关系?
讨论结果:①集合A、B均为非空集合,并且集合A中的元素在集合B中都有唯一的元素与之对应.
②一般地,设A、B是两个非空的集合,
( http: / / www.21cnjy.com )如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射.记作“f:A→B”.
如果集合A中的元素x对应集合B中元素y,那么集合A中的元素x叫集合B中元素y的原象,集合B中元素y叫集合A中的元素x的象.
③包含两层意思:一是必有一个;二是只有一个,也就是说有且只有一个的意思,即是一对一或多对一.
④函数是特殊的映射,映射是函数的推广.
应用示例
思路1
1.下列哪些对应是从集合A到集合B的映射?
(1)A={P|P是数轴上的点},B=R,对应关系f:数轴上的点与它所代表的实数对应;
(2)A={P|P是平面直角坐标系中的点},B={(x,y)|x∈R,y∈R},对应关系f:平面直角坐标系中的点与它的坐标对应;
(3)A={三角形},B={x|x是圆},对应关系f:每一个三角形都对应它的内切圆;
(4)A={x|x是新华中学的班级},B={x|x是新华中学的学生},对应关系f:每一个班级都对应班里的学生.
活动:学生思考映射的定义.判断一个对应是否是映射,要紧扣映射的定义.
(1)中数轴上的点对应着唯一的实数;
(2)中平面直角坐标系中的点对应着唯一的有序实数对;
(3)中每一个三角形都有唯一的内切圆;
(4)中新华中学的每个班级对应其班内的多个学生.
解:(1)是映射;(2)是映射;(3)是映射;
(4)不是映射.新华中学的每个班级对应其班内的多个学生,是一对多,不符合映射的定义.
变式训练
1.图1-2-2-21(1),(2),(3),(4)用箭头所标明的A中元素与B中元素的对应法则,是不是映射?
( http: / / www.21cnjy.com )
图1-2-2-21
答案:(1)不是;(2)是;(3)是;(4)是.
2.在图1-2-2-22中的映射中,A中元素60°的对应的元素是什么?在A中的什么元素与B中元素对应?
( http: / / www.21cnjy.com )
图1-2-2-22
答案:A中元素60°的对应的元素是,在A中的元素45°与B中元素对应.
思路2
1.下列对应是不是从集合A到集合B的映射,为什么?
(1)A=R,B={x∈R|x≥0},对应法则是“求平方”;
(2)A=R,B={x∈R|x>0},对应法则是“求平方”;
(3)A={x∈R|x>0},B=R,对应法则是“求平方根”;
(4)A={平面内的圆},B={平面内的矩形},对应法则是“作圆的内接矩形”.
活动:学生回顾映射的对应,教
( http: / / www.21cnjy.com )师适时点拨或提示.判断一个对应是否是映射,关键是确定是否是“一对一”或“多对一”的对应,即集合A中的任意一个元素,在集合B中都有唯一确定的元素与之对应.
解:(1)是映射,因为A中的任何一个元素,在B中都能找到唯一的元素与之对应.
(2)不是从集合A到集合B的映射,因为A中的元素0,在集合B中没有对应的元素.
(3)不是从集合A到集合B的映射,因为任何正数的平方根都有两个值,即集合A中的任何元素,在集合B中都有两个元素与之对应.
(4)不是从集合A到集合B的映射.因为一个圆有无穷多个内接矩形,即集合A中任何一个元素在集合B中有无穷多个元素与之对应.
点评:本题主要考查映射的概念.给定两集合A、
( http: / / www.21cnjy.com )B及对应法则f,判断是否是从集合A到集合B的映射,主要利用映射的定义.用通俗的语言讲:A→B的对应有“多对一”,“一对一”,“一对多”,前两种对应是A到B的映射,而后一种不是A到B的映射.
变式训练
1.设集合A={a,b,c},集合B=R,以下对应关系中,一定能建立集合A到集合B的映射的是(
)
A.对集合A中的数开平方
B.对集合A中的数取倒数
C.对集合A中的数取算术平方根
D.对集合A中的数立方
分析:当a<0时,对a开平方或取算术平方根
( http: / / www.21cnjy.com )均无意义,则A、C错;当a=0时,对a取倒数无意义,则B错;由于对任何实数都能立方,并且其立方仅有一个,所以对集合A中的数立方能建立映射,故选D.
答案:D
2.设f:A→B是A到B的一个映射,其中A=B={(x,y)|x,y∈R},f:(x,y)→(x-y,x+y),求:
(1)A中元素(-1,2)在B中对应的元素;
(2)在A中什么元素与B中元素(-1,2)对应?
分析:这是一个映射的问题,由于A中元素(x,y)对应B中元素为(x-y,x+y),确定了对应法则,转化为解方程组.
解:(1)A中元素(-1,2)在B中对应的元素为(-1-2,-1+2),
即(-3,1).
(2)设A中元素(x,y)与B中元素(-1,2)对应,

解得
所以A中元素(,)与B中元素(-1,2)对应.
2.设映射f:x→-x2+2x是实数集R=M到实数集R=N的映射,若对于实数p∈N,在M中不存在原象,则实数p的取值范围是(
)
A.(1,+∞)
B.[1,+∞)
C.(-∞,1)
D.(-∞,1]
活动:让学生思考:若对于实数p∈
( http: / / www.21cnjy.com )N,在M中不存在原象,与函数f(x)=-x2+2x有什么关系 若对于实数p∈N,在M中不存在原象是指实数p表示函数f(x)=-x2+2x值域中的元素,转化为求函数f(x)=-x2+2x,x∈R的值域.集合M是函数f(x)=-x2+2x的定义域,集合N是函数f(x)=-x2+2x的值域.
解:(方法一)由于集合M,N都是数集,
则映射f:x→-x2+2x就是函数f(x)=-x2+2x,其定义域是M=R,
则有值域Q={y|y≤1}N=R.对于实数p∈N,在M中不存在原象,
则实数p的取值范围是Q=Q={y|y>1},即p的取值范围是(1,+∞);
(方法二)当p=0时,方程-x2+2x=0有解x=0,2,
即在M中存在原象0和2,
则p=0不合题意,排除C,D;
当p=1时,方程-x2+2x=1有解x=1,
即在M中存在原象1,
则p=1不合题意,
排除B.
答案:A
点评:本题主要考查映射的概
( http: / / www.21cnjy.com )念和函数的值域,以及综合应用知识解决问题的能力.解决本题的关键是转化思想的应用.把映射问题转化为函数的值域问题,进一步转化为求函数的值域在实数集中的补集.其转化的依据是对映射概念的理解以及对函数与映射关系的把握程度.
变式训练
设f,g都是由A到A的映射,其对应法则如下表(从上到下):
表1
映射f的对应法则
原象
1
2
3
4

3
4
2
1
表2
映射g的对应法则
原象
1
2
3
4

4
3
1
2
则与f[g(1)]相同的是(
)
A.g[f(1)]
B.g[f(2)]
C.g[f(3)]
D.g[f(4)]
分析:f(a)表示在对应法则f下a对应的象,g(a)表示在对应法则g下a对应的象.
由表1和表2,得f[g(1)]=f(4
( http: / / www.21cnjy.com ))=1,g[f(1)]=g(3)=1,g[f(2)]=g(4)=2,g[f(3)]=g(2)=3,g[f(4)]=g(1)=4,
则有f[g(1)]=g[f(1)]=1,
故选A.
答案:A
知能训练
1.下列对应是从集合S到T的映射的是(
)
A.S=N,T={-1,1},对应法则是(-1)n,n∈S
B.S={0,1,4,9},T={-3,-2,-1,0,1,2,3},对应法则是开平方
C.S={0,1,2,5},T={,},对应法则是取倒数
D.S={x|x∈R},T={y|y∈R},对应法则是x→y=分析:判断映射方法简单地说应考虑A中的元素是否都可以受f作用,作用的结果是否一定在B中,作用的结果是否唯一这三个方面.很明显A符合定义;B是一对多的对应;C命题中的元素0没有象;D命题集合S中的元素1也无象.
答案:A
2.已知集合M={x|0≤x≤6},P={y|0≤y≤3},则下列对应关系中不能看作从M到P的映射的是(
)
A.f:x→y=x
B.f:x→y=x
C.f:x→y=x
D.f:x→y=x
分析:选项C中,集合M中元素6没有象,其他均是映射.
答案:C
3.已知集合A=N
,B={a|a=2n
( http: / / www.21cnjy.com )-1,n∈Z},映射f:A→B,使A中任一元素a与B中元素2a-1对应,则与B中元素17对应的A中元素是(
)
A.3
B.5
C.17
D.9
分析:利用对应法则转化为解方程.由题意得2a-1=17,解得a=9.
答案:D
4.若映射f:A→B的象的集合是Y,原象的集合是X,则X与A的关系是;Y与B的关系是.
分析:根据映射的定义,可知集合A中的元素必有象且唯一;集合B中的元素在集合A中不一定有原象.故象的集合是B的子集.所以X=A,YB.
答案:X=A
YB
5.已知集合M={a,b,c,d},P={x,y,z},则从M到P能建立不同映射的个数是.
分析:集合M中有4个元素,集合P中有3个元素,则从M到P能建立34=81个不同的映射.
答案:81
6.下列对应哪个是集合M到集合N的映射?哪个不是映射?为什么?
(1)设M={矩形},N={实数},对应法则f为矩形到它的面积的对应.
(2)设M={实数},N={正实数},对应法则f为x→.
(3)设M={x|0≤x≤100},N={x|0≤x≤100},对应法则f为开方再乘10.
解:(1)是M到N的映射,因为它是一对一的对应.
(2)不是映射,因为当x=0时,集合M中没有元素与之对应.
(3)是映射,因为它是一对一的对应.
7.设集合A和B都是自然数集
( http: / / www.21cnjy.com ),映射f:A→B把A中的元素n映射到B中的元素2n+n,则在映射f下,A中的元素_________对应B中的元素3.(
)
A.1
B.3
C.9
D.11
分析:对应法则为f:n→2n+n,根据选项验证2n+n=3,可得n=1.
答案:A
8.已知集合A={1,2,3,k},B={4,7,a4,a2+3a},且a∈N,k∈N,x∈A,y∈B,映射f:A→B,使B中元素y=3x+1和A中元素x对应,求a及k的值.
分析:先从集合A和对应法则f入手,同时考虑集合中元素的互异性.可以分析出此映射必为一一映射,再由3→10,求得a值,进而求得k值.
解:∵B中元素y=3x+1和A中元素x对应,
∴A中元素1的象是4;2的象是7;3的象是10,即a4=10或a2+3a=10.
∵a∈N,
∴由a2+3a=10,得a=2.
∵k的象是a4,
∴3k+1=16,得k=5.
∴a=2,k=5.
9.A={(x,y)|x+y<3,x∈N,y∈N},B={0,1,2},f:(x,y)→x+y,这个对应是否为映射?是否为函数?说明理由.
解:是映射,不是函数.由题意得A
( http: / / www.21cnjy.com )={(0,0),(0,1),(0,2),(1,0),(1,1),(2,0)},显然对于A中的每一个有序实数对,它们的和是0或1或2,则在B中都有唯一一个数与它对应,所以是映射,因为集合A不是数集而是点集,所以不是函数.
拓展提升
问题:集合M中有m个元素,集合N中有n个元素,则从M到N能建立多少个不同的映射?
探究:当m=1,n=1时,从M到N能建立1=11个不同的映射;
当m=2,n=1时,从M到N能建立1=12个不同的映射;
当m=3,n=1时,从M到N能建立1=13个不同的映射;
当m=2,n=2时,从M到N能建立4=22个不同的映射;
当m=2,n=3时,从M到N能建立9=32个不同的映射.
集合M中有m个元素,集合N中有n个元素,则从M到N能建立nm个不同的映射.
课堂小结
本节课学习了:
(1)映射的对应是一种特殊的对应,元素之间的对应必须满足“一对一或多对一”.
(2)映射由三个部分组成:集合A,集合B及对应法则f,称为映射的三要素.
(3)映射中集合A,B中的元素可以为任意的.
作业
课本P23练习4.
补充作业:
已知下列集合A到B的对应,请判断哪些是A到B的映射,并说明理由.
(1)A=N,B=Z,对应法则f为“取相反数”;
(2)A={-1,0,2},B={-1,0,},对应法则:“取倒数”;
(3)A={1,2,3,4,5},B=R,对应法则:“求平方根”;
(4)A={0,1,2,4},B={0,1,4,9,64},对应法则f:a→b=(a-1)2;
(5)A=N+,B={0,1},对应法则:除以2所得的余数.
答案:(1)、(2)不是映射,(3)、(4)、(5)是映射.
设计感想
本节教学设计的内容拓展较深,在实际教
( http: / / www.21cnjy.com )学中根据学生实际选取例题和练习.本节重点设计了映射的概念,对于映射来说,只需要掌握概念即可,不要求拓展其内容,以免加重学生的负担,也偏离了课标要求和高考的方向.
习题详解
(课本P19练习)
1.(1)要使分式有意义,需4x+7≠0,即x≠.所以这个函数的定义域是(-∞,)∪(,+∞);
(2)要使根式有意义,需1-x≥0,且x+3≥0,
即-3≤x≤1.
所以这个函数的定义域是[-3,1].
2.(1)f(2)=28,f(-2)=-28,f(2)+f(-2)=0;
(2)f(a)=3a3+2a,f(-a)=-3a3-2a,f(a)+f(-a)=0.
3.(1)两个函数的对应
( http: / / www.21cnjy.com )法则相同,而表示导弹飞行高度与时间关系的函数y=500x-5x2是有实际背景的,这里x≥0;函数y=500x-5x2,x∈R,这两个函数的定义域不同,故这两个函数不相等.
(2)函数g(x)=x0=
( http: / / www.21cnjy.com )1(x≠0)与函数f(x)=1,x∈R的对应法则相同,但定义域不同,所以不是相等的函数.已知函数解析式求函数值及不同变量的函数值的关系.
(课本P23练习)
1.设矩形一边长为xcm,则另一边长为=.由题意,得
y=x,x∈(0,50).
2.图(A)与事件(2)、图(B)与事件(3)、图(D)与事件(1)吻合得最好.
图(C)可叙述为:我出发后,为了赶时间,加速行驶,走了一段后,发现时间还早,于是放慢了速度.
3.解析:由绝对值的知识,有f(x)=
所以,f(x)=|x-2|的图象如下图所示.
( http: / / www.21cnjy.com )
图1-2-2-23
4.与A中元素60°对应的B中的元素是;与B中元素相对应的A中的元素是45°.
(课本P24习题1.2)
A组
1.(1)(-∞,4)∪(4,+∞).
(2)R.
(3)要使分式有意义,只需x2-3x+2≠0,即x≠1,且x≠2,
所以这个函数的定义域是(-∞,1)∪(1,2)∪(2,+∞).
(4)要使函数有意义,只需即x≤4,且x≠1.所以这个函数的定义域是(-∞,1)∪(1,4].
2.(1)g(x)=-1=x-1,x≠0,该函数虽然与f(x)的对应关系相同,但是定义域不同,所以f(x)与g(x)不相等.
(2)g(x)=()4=x2,x≥0,该函数虽然与f(x)的对应关系相同,但是定义域不同,所以f(x)与g(x)不相等.
(3)g(x)==x2,x∈R,该函数与f(x)的对应关系相同,定义域相同,所以f(x)与g(x)相等.
3.
(1)
(2)
( http: / / www.21cnjy.com )
( http: / / www.21cnjy.com )
x∈R,y∈R.
x∈(-∞,0)∪(0,+∞),
y∈(-∞,0)∪(0,+∞).
图1-2-2-24
图1-2-2-25
(3)
(4)
( http: / / www.21cnjy.com )
( http: / / www.21cnjy.com )
x∈R,y∈R.
x∈R,y∈[-2,+∞).
图1-2-2-26
图1-2-2-27
4.f()=8+5,f(-a)=3a2+5a+2,f(a+3)=3a2+13a+14;
f(a)+f(3)=3a2-5a+16.
5.(1)点(3,14)不在f(x)的图象上;(2)f(4)=-3;(3)x=14.
6.解析:由韦达定理知1+3=-b,1×3=c,
∴b=-4,c=3.
∴f(x)=x2-4x+3.
∴f(-1)=(-1)2-4×(-1)+3=8.
答案:f(-1)=8.
7.
(1)
(2)
( http: / / www.21cnjy.com )
( http: / / www.21cnjy.com )
图1-2-2-28
图1-2-2-29
8.y=
x∈(0,+∞),y=l-x
x∈(0,l),
y=
x∈(0,d),l=2x+(x>0),l=2.
9.由题意,可知容器内溶液高度为x的体积等于注入的溶液的体积,即π()2·x=vt,整理得x=·t.
当容器注满时有π()2h=vt,得t=.
所以该函数的定义域是t∈[0,],值域是x∈[0,h].
10.共8个映射.
( http: / / www.21cnjy.com )
图1-2-2-30
B组
1.(1)[-5,0]∪[2,6);(2)[0,+∞);(3)[0,2)∪(5,+∞).
2.
( http: / / www.21cnjy.com )
图1-2-2-31
(1)点(x,0)和(5,y),即纵坐标为0或横坐标为5的点不能在图象上.
(2)略.
3.略.
4.(1)t=,x∈[0,12];
(2)t=≈3小时.1.3.2
奇偶性
整体设计
教学分析
本节讨论函数的奇偶性是描述函数整体
( http: / / www.21cnjy.com )性质的.教材沿用了处理函数单调性的方法,即先给出几个特殊函数的图象,让学生通过图象直观获得函数奇偶性的认识,然后利用表格探究数量变化特征,通过代数运算,验证发现的数量特征对定义域中的“任意”值都成立,最后在这个基础上建立了奇(偶)函数的概念.因此教学时,充分利用信息技术创设教学情景,会使数与形的结合更加自然.
值得注意的问题:对于奇函数,教材在给
( http: / / www.21cnjy.com )出的表格中留出大部分空格,旨在让学生自己动手计算填写数据,仿照偶函数概念建立的过程,独立地去经历发现、猜想与证明的全过程,从而建立奇函数的概念.教学时,可以通过具体例子引导学生认识,并不是所有的函数都具有奇偶性,如函数y=x与y=2x-1既不是奇函数也不是偶函数,可以通过图象看出也可以用定义去说明.
三维目标
1.理解函数的奇偶性及其几何意义,培养学生观察、抽象的能力,以及从特殊到一般的概括、归纳问题的能力.
2.学会运用函数图象理解和研究函数的性质,掌握判断函数的奇偶性的方法,渗透数形结合的数学思想.
重点难点
教学重点:函数的奇偶性及其几何意义.
教学难点:判断函数的奇偶性的方法与格式.
课时安排
1课时
教学过程
导入新课
思路1.同学们,我们生活
( http: / / www.21cnjy.com )在美的世界中,有过许多对美的感受,请大家想一下有哪些美呢?(学生回答可能有和谐美、自然美、对称美……)今天,我们就来讨论对称美,请大家想一下哪些事物给过你对称美的感觉呢?(学生举例,再在屏幕上给出一组图片:喜字、蝴蝶、建筑物、麦当劳的标志)生活中的美引入我们的数学领域中,它又是怎样的情况呢?下面,我们以麦当劳的标志为例,给它适当地建立直角坐标系,那么大家发现了什么特点呢?(学生发现:图象关于y轴对称.)数学中对称的形式也很多,这节课我们就同学们谈到的与y轴对称的函数展开研究.
思路2.结合轴对称与中心对称图形的定义,请同学们观察图形,说出函数y=x2和y=x3的图象各有怎样的对称性?引出课题:函数的奇偶性.
推进新课
新知探究
提出问题
①如图1-3-2-1所示,观察下列函数的图象,总结各函数之间的共性.
( http: / / www.21cnjy.com )
( http: / / www.21cnjy.com )
图1-3-2-1
②那么如何利用函数的解析式描述函数的图象关于y轴对称呢?填写表1和表2,你发现这两个函数的解析式具有什么共同特征?
x
-3
-2
-1
0
1
2
3
f(x)=x2
表1
x
-3
-2
-1
0
1
2
3
f(x)=|x|
表2
③请给出偶函数的定义?
④偶函数的图象有什么特征?
⑤函数f(x)=x2,x∈[-1,2]是偶函数吗?
⑥偶函数的定义域有什么特征?
⑦观察函数f(x)=x和f(x)=的图象,类比偶函数的推导过程,给出奇函数的定义和性质?
活动:教师从以下几点引导学生:
①观察图象的对称性.
②学生给出这两个函数的解析式具有什么共同特征后,教师指出:这样的函数称为偶函数.
③利用函数的解析式来描述.
④偶函数的性质:图象关于y轴对称.
⑤函数f(x)=x2,x∈[-1,2]的图象关于y轴不对称;对定义域[-1,2]内x=2,f(-2)不存在,
即其函数的定义域中任意一个x的相反数-x不一定也在定义域内,即f(-x)=f(x)不恒成立.
⑥偶函数的定义域中任意一个x的相反数-x一定也在定义域内,此时称函数的定义域关于原点对称.
⑦先判断它们的图象的共同特征是关于原点对称,再列表格观察自变量互为相反数时,函数值的变化情况,进而抽象出奇函数的概念,再讨论奇函数的性质.
给出偶函数和奇函数的定义后,要
( http: / / www.21cnjy.com )指明:(1)函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;(2)由函数的奇偶性定义,可知函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称);(3)具有奇偶性的函数的图象的特征:偶函数的图象关于y轴对称,奇函数的图象关于原点对称;(4)可以利用图象判断函数的奇偶性,这种方法称为图象法,也可以利用奇偶函数的定义判断函数的奇偶性,这种方法称为定义法;(5)函数的奇偶性是函数在定义域上的性质是“整体”性质,而函数的单调性是函数在定义域的子集上的性质是“局部”性质.
讨论结果:
①这两个函数之间的图象都关于y轴对称.

x
-3
-2
-1
0
1
2
3
f(x)=x2
9
4
1
0
1
4
9
表1
x
-3
-2
-1
0
1
2
3
f(x)=|x|
3
2
1
0
1
2
3
表2
这两个函数的解析式都满足:
f(-3)=f(3);
f(-2)=f(2);
f(-1)=f(1).
可以发现对于函数定义域内任意的两个相反数,它们对应的函数值相等,也就是说对于函数定义域内一个x,都有f(-x)=f(x).
③一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.
④偶函数的图象关于y轴对称.
⑤不是偶函数.
⑥偶函数的定义域关于原点轴对称.
⑦一般地,对于函数f(x)的定义域内的任
( http: / / www.21cnjy.com )意一个x,都有f(-x)=-f(x),那么f(x)就叫做奇函数.奇函数的图象关于原点中心对称,其定义域关于原点轴对称.
应用示例
思路1
例1判断下列函数的奇偶性:
(1)f(x)=x4;
(2)f(x)=x5;
(3)f(x)=x+;
(4)f(x)=.
活动:学生思考奇偶函数的定义,利用定义
( http: / / www.21cnjy.com )来判断其奇偶性.先求函数的定义域,并判断定义域是否关于原点对称,如果定义域关于原点对称,那么再判断f(-x)=f(x)或f(-x)=-f(x).
解:(1)函数的定义域是R,对定义域内任意一个x,都有f(-x)=(-x)4=x4=f(x),
所以函数f(x)=x4是偶函数.
(2)函数的定义域是R,对定义域内任意一个x,都有f(-x)=(-x)5=-x5=-f(x),
所以函数f(x)=x4是奇函数.
(3)函数的定义域是(-∞,0)∪(0,+∞),对定义域内任意一个x,都有f(-x)=-x+=-(x+)=-f(x),
所以函数f(x)=x+是奇函数.
(4)函数的定义域是(-∞,0)∪(0,+∞),对定义域内任意一个x,都有f(-x)===f(x),
所以函数f(x)=
是偶函数.
点评:本题主要考查函数的奇偶性.函数的定
( http: / / www.21cnjy.com )义域是使函数有意义的自变量的取值范围,对定义域内任意x,其相反数-x也在函数的定义域内,此时称为定义域关于原点对称.
利用定义判断函数奇偶性的格式步骤:
①首先确定函数的定义域,并判断其定义域是否关于原点对称;
②确定f(-x)与f(x)的关系;
③作出相应结论:
若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数;
若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数.
变式训练
设f(x)是R上的任意函数,则下列叙述正确的是(
)
A.f(x)f(-x)是奇函数
B.f(x)|f(-x)|是奇函数
C.f(x)-f(-x)是偶函数
D.f(x)+f(-x)是偶函数
分析:A中设F(x)=f(x)f(-x),则F(-x)=f(-x)f(x)=F(x),即函数F(x)=f(x)f(-x)为偶函数;
B中设F(x)=f(x)|f
( http: / / www.21cnjy.com )(-x)|,F(-x)=f(-x)|f(x)|,此时F(x)与F(-x)的关系不能确定,即函数F(x)=f(x)|f(-x)|的奇偶性不确定;
C中设F(x)=f(x)-f(-x),F(-x)=f(-x)-f(x)=-F(x),即函数F(x)=f(x)-f(-x)为奇函数;
D中设F(x)=f(x)+f(-x),F(-x)=f(-x)+f(x)=F(x),即函数F(x)=f(x)+f(-x)为偶函数.
答案:D
例2已知函数f(x)是定义在(-∞,+
( http: / / www.21cnjy.com )∞)上的偶函数.当x∈(-∞,0)时,f(x)=x-x4,则当x∈(0,+∞)时,f(x)=_______.
活动:学生思考偶函数的解析式的性质,考
( http: / / www.21cnjy.com )虑如何将在区间(0,+∞)上的自变量对应的函数值,转化为区间(-∞,0)上的自变量对应的函数值.利用偶函数的性质f(x)=f(-x),将在区间(0,+∞)上的自变量对应的函数值,转化为区间(-∞,0)上的自变量对应的函数值.
分析:当x∈(0,+∞)时,则-x<0.
又∵当x∈(-∞,0)时,f(x)=x-x4,
∴f(x)=(-x)-(-x)4=-x-x4.
答案:-x-x4
点评:本题主要考查函数的解析式和奇偶性.
( http: / / www.21cnjy.com )已知函数的奇偶性,求函数的解析式时,要充分利用函数的奇偶性,将所求解析式的区间上自变量对应的函数值转化为已知解析式的区间上自变量对应的函数值.
变式训练
已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)=x2+,求f(x).
解:当x=0时,f(-0)=-f(0),则f(0)=0;
当x<0时,-x>0,由于函数f(x)是奇函数,则
f(x)=-f(-x)=-[(-x)2+]=-x2+,
综上所得,f(x)=
思路2
例1判断下列函数的奇偶性.
(1)f(x)=x2,x∈[-1,2];
(2)f(x)=;
(3)f(x)=+;
(4)f(x)=.
活动:学生思考奇偶函数的定义和函数的定义域的求法.先判断函数的定义域是否关于原点对称,再判断f(-x)与f(x)的关系.在(4)中注意定义域的求法,对任意x∈R,有>=|x|≥-x,则+x>0.则函数的定义域是R.
解:(1)因为它的定义域关于原点不对称,函数f(x)=x2,x∈[-1,2]既不是奇函数又不是偶函数.
(2)因为它的定义域为{x|x∈R且x≠1},并不关于原点对称,函数f(x)=既不是奇函数又不是偶函数.
(3)∵x2-4≥0且4-x2≥0,
∴x=±2,
即f(x)的定义域是{-2,2}.
∵f(2)=0,f(-2)=0,
∴f(2)=f(-2),f(2)=-f(2).
∴f(-x)=-f(x),且f(-x)=f(x).
∴f(x)既是奇函数也是偶函数.
(4)函数的定义域是R.
∵f(-x)+f(x)=
=
=
=0,
∴f(-x)=-f(x).
∴f(x)是奇函数.
点评:本题主要考查函数的奇偶性.
定义法判断函数奇偶性的步骤是(1)求函数的
( http: / / www.21cnjy.com )定义域,当定义域关于原点不对称时,则此函数既不是奇函数也不是偶函数,当定义域关于原点对称时,判断f(-x)与f(x)或-f(x)是否相等;(2)当f(-x)=f(x)时,此函数是偶函数;当f(-x)=-f(x)时,此函数是奇函数;(3)当f(-x)=f(x)且f(-x)=-f(x)时,此函数既是奇函数又是偶函数;
(4)当f(-x)≠f(x)且f(-x)≠-f(x)时,此函数既不是奇函数也不是偶函数.
判断解析式复杂的函数的奇偶性时,如果定
( http: / / www.21cnjy.com )义域关于原点对称时,通常化简f(-x)+f(x)来判断f(-x)=f(x)或f(-x)=-f(x)是否成立.
变式训练
函数f(x)=x2-2ax+a在区间(-∞,1)上有最小值,则函数g(x)=在区间(1,+∞)上一定(
)
A.有最小值
B.有最大值
C.是减函数
D.是增函数
分析:函数f(x)=x2-2ax+a的对称轴是直线x=a,
由于函数f(x)在开区间(-∞,1)上有最小值,
所以直线x=a位于区间(-∞,1)内,即a<1.g(x)==x+-2,
下面用定义法判断函数g(x)在区间(1,+∞)上的单调性.
设1则g(x1)-g(x2)=(x1+2)-(x2+2)=(x1-x2)+()
=(x1-x2)(1)
=(x1-x2).
∵11>0.
又∵a<1,∴x1x2>a.∴x1x2-a>0.∴g(x1)-g(x2)<0.
∴g(x1)∴函数g(x)在区间(1,+∞)上是增函数,函数g(x)在区间(1,+∞)上没有最值.
答案:D
例2已知函数f(x)的定义域是x≠
( http: / / www.21cnjy.com )0的一切实数,对定义域内的任意x1、x2都有f(x1·x2)=f(x1)+f(x2),且当x>1时f(x)>0,f(2)=1,
(1)求证:f(x)是偶函数;
(2)求证:f(x)在(0,+∞)上是增函数;
(3)试比较f()与f()的大小.
活动:(1)转化为证明f(-x)=f(x),利用赋值法证明f(-x)=f(x);(2)利用定义法证明单调性,证明函数单调性的步骤是“去比赛”;(3)利用函数的单调性比较它们的大小,利用函数的奇偶性,将函数值f()和f()转化为同一个单调区间上的函数值.
解:(1)令x1=x2=1,得f(1)=2f(1),∴f(1)=0.
令x1=x2=-1,得f(1)=f[-1×(-1)]=f(-1)+f(-1),∴2f(-1)=0.
∴f(-1)=0.∴f(-x)=f(-1·x)=f(-1)+f(x)=f(x).
∴f(x)是偶函数.
(2)设x2>x1>0,则
f(x2)-f(x1)=f(x1·)-f(x1)=f(x1)+f()-f(x1)=f().
∵x2>x1>0,∴>1.∴f()>0,即f(x2)-f(x1)>0.
∴f(x2)>f(x1).
∴f(x)在(0,+∞)上是增函数.
(3)由(1)知f(x)是偶函数,则有f()=f().
由(2)知f(x)在(0,+∞)上是增函数,则f()>f().∴f()>f().
点评:本题是抽象函数问题,主要考查
( http: / / www.21cnjy.com )函数的奇偶性和单调性及其综合应用.判断抽象函数的奇偶性和单调性通常应用定义法,比较抽象函数值的大小通常利用抽象函数的单调性来比较.其关键是将所给的关系式进行有效的变形和恰当的赋值.
变式训练
已知f(x)是定义在(-∞,+∞)上的不恒为零的函数,且对定义域内的任意x、y,f(x)都满足f(xy)=yf(x)+xf(y).
(1)求f(1)、f(-1)的值;
(2)判断f(x)的奇偶性,并说明理由.
分析:(1)利用赋值法,令x=y
( http: / / www.21cnjy.com )=1得f(1)的值,令x=y=-1,得f(-1)的值;(2)利用定义法证明f(x)是奇函数,要借助于赋值法得f(-x)=-f(x).
解:(1)∵f(x)对任意x、y都有f(x·y)=yf(x)+xf(y),
∴令x=y=1时,有f(1·1)=1·f(1)+1·f(1).
∴f(1)=0.
∴令x=y=-1时,有f[(-1)·(-1)]=(-1)·f(-1)+(-1)·f(-1).
∴f(-1)=0.
(2)是奇函数.
∵f(x)对任意x、y都有f(x·y)=yf(x)+xf(y),
∴令y=-1,有f(-x)=-f(x)+xf(-1).
将f(-1)=0代入得f(-x)=-f(x),
∴函数f(x)是(-∞,+∞)上的奇函数.
知能训练
课本P36练习1、2.
[补充练习]
1.设函数y=f(x)是奇函数.若f(-2)+f(-1)-3=f(1)+f(2)+3,则f(1)+f(2)=_____.
分析:∵函数y=f(x)是奇函数,∴f(-2)=-f(2),f(-1)=-f(1).
∴-f(2)-f(1)-3=f(1)+f(2)+3.
∴2[f(1)+f(2)]=-6.∴f(1)+f(2)=-3.
答案:-3
2.f(x)=ax2+bx+3a+b是偶函数,定义域为[a-1,2a],则a=_________,b=________.
分析:∵偶函数定义域关于原点对称,
∴a-1+2a=0.∴a=.
∴f(x)=x2+bx+1+b.又∵f(x)是偶函数,∴b=0.
答案:
0
3.已知定义在R上的奇函数f(x)满足f(x+2)=-f(x),则f(6)的值为(
)
A.-1
B.0
C.1
D.2
分析:f(6)=f(4+2)=-f(4)=-f(2+2)=f(2)=f(2+0)=-f(0).
又f(x)是定义在R上的奇函数,∴f(0)=0.
∴f(6)=0.故选B.
答案:B
拓展提升
问题:基本初等函数的奇偶性.
探究:利用判断函数的奇偶性的方法:定义法和图象法,可得
正比例函数y=kx(k≠0)是奇函数;
反比例函数y=(k≠0)是奇函数;
一次函数y=kx+b(k≠0),当b=0时是奇函数,当b≠0时既不是奇函数也不是偶函数;
二次函数y=ax2+bx+c(a≠0),当b=0时是偶函数,当b≠0时既不是奇函数也不是偶函数.
课堂小结
本节主要学习了函数的奇偶性,判断函数的奇
( http: / / www.21cnjy.com )偶性通常有两种方法,即定义法和图象法,用定义法判断函数的奇偶性时,必须注意首先判断函数的定义域是否关于原点对称.
作业
课本P39习题1.3A组6,B组3.
设计感想
单调性与奇偶性的综合应用是本节的一个难
( http: / / www.21cnjy.com )点,而本节设计的题目不多,因此,在实际教学中,教师可以利用课余时间补充,让学生结合函数的图象充分理解好单调性和奇偶性这两个性质.
在教学设计中,注意培养学生的综合应用能力,以便满足高考要求.
习题详解
(课本P32页练习)
1.从生产效率与生产线上工人数
( http: / / www.21cnjy.com )量的关系看,在生产劳动力较少的情况下,随人数的增加效率随着增大,但是到了一定数量后,人数再增多效率反而降低了.这说明劳动力可能过剩,出现了怠工等现象.
2.图象如图1-3-2-2所示,
( http: / / www.21cnjy.com )
图1-3-2-2
函数的单调增区间为[8,12),[13,18);
函数的单调减区间为[12,13),[18,20].
3.函数的单调区间是[-1,0),[0,2),[2,4),[4,5].
在区间[-1,0),[2,4)上是减函数;在区间[0,2),[4,5]上是增函数.
4.证明:设x1、x2∈R,且x1f(x1)-f(x2)=(-2x1+1)-(-2x2+1)=2(x2-x1).
∵x10.∴f(x1)>f(x2).
∴函数f(x)=-2x+1在R上是减函数.
5.如图1-3-2-3所示,
( http: / / www.21cnjy.com )
图1-3-2-3
从图象上可以发现f(-2)是函数的一个最小值.
(课本P36练习)
1.(1)对于函数f(x)=2x4+3x2,其定义域为(-∞,+∞).
因为对定义域内的每一个x,都有f(-x)=2(-x)4+3(-x)2=2x4+3x2=f(x),
所以函数f(x)=2x4+3x2为偶函数.
(2)对于函数f(x)=x3-2x,其定义域为(-∞,+∞).
因为对定义域内的每一个x,都有
f(-x)=(-x)3-2(-x)=-x3+2x=-(x3-2x)=-f(x),
所以函数f(x)=x3-2x为奇函数.
(3)对于函数f(x)=,其定义域为(-∞,0)∪(0,+∞).
因为对定义域内的每一个x,都有
f(-x)===-f(x),
所以函数f(x)=为奇函数.
(4)对于函数f(x)=x2+1,其定义域为(-∞,+∞).
因为对定义域内的每一个x,都有
f(-x)=(-x)2+1=x2+1=f(x),
所以函数f(x)=x2+1为偶函数.
2.f(x)的图象如图1-3-2-4所示,g(x)的图象如图1-3-2-5所示.
( http: / / www.21cnjy.com )
( http: / / www.21cnjy.com )
图1-3-2-4
图1-3-2-5
(课本P39习题1.3)
A组
1.(1)函数的单调区间是(-∞,],(,+∞).函数y=f(x)在区间(-∞,]上是减函数,在区间(,+∞)上是增函数.
(2)函数的单调区间是(-∞,0],(0,+∞).函数y=f(x)在区间(0,+∞)上是减函数,在区间(-∞,0]上是增函数.
图略.
2.(1)设0f(x1)-f(x2)=(x12+1)-(x22+1)=x12-x22=(x1-x2)(x1+x2).
∵0∴f(x1)>f(x2).
∴函数f(x)在(-∞,0)上是减函数.
(2)设0f(x1)-f(x2)=(1)-(1)==.
∵00.
∴f(x1)∴函数f(x)在(-∞,0)上是增函数.
3.设x1、x2是(-∞,+∞)上任意两个实数,且x1<x2.
则y1-y2=(mx1+b)-(mx2+b)
=m(x1-x2).
∵x1<x2,∴x1-x2<0.
当m<0时,∴y1-y2>0,即y1>y2.
∴此时一次函数y=mx+b(m<0)在(-∞,+∞)上是减函数.
同理可证一次函数y=mx+b(m>0)在(-∞,+∞)上是增函数.
综上所得,当m<0时,一次函数y=mx+b是减函数;
当m>0时,一次函数y=mx+b是增函数.
4.心率关于时间的一个可能的图象,如图1-3-2-6所示,
( http: / / www.21cnjy.com )
图1-3-2-6
5.y=+162x-2100=(x2-8100x)-2100=(x-4050)2+307
050.
由二次函数的知识,可得当月租金为4
050元时,租赁公司的月收入最大,最大收益为307
050元.
6.图略,函数f(x)的解析式为
B组
1.(1)函数f(x)在(-∞,1)上为减函数,在[1,+∞)上为增函数;函数g(x)在[2,4]上为增函数.
(2)函数f(x)的最小值为-1,函数g(x)的最小值为0.
2.设矩形熊猫居室的宽为x
m,面积为y
m2,则长为m,那么y=x
=(30x-3x2)=(x-5)2+.
所以当x=5时,y有最大值,
即宽x为5
m时才能使所建造的每间熊猫居室面积最大,最大面积是m2.
3.函数f(x)在(-∞,0)上是增函数.
证明:设x1-x2>0.
∵函数f(x)在(0,+∞)上是减函数,∴f(-x1)∵函数f(x)是偶函数,∴f(-x)=f(x).∴f(x1)∴函数f(x)在(-∞,0)上是增函数.
(课本P44复习参考题)
A组
1.(1)A={-3,3};(2)B={1,2};(3)C={1,2}.
2.(1)线段AB的垂直平分线;
(2)以定点O为原心,以3
cm为半径的圆.
3.属于集合的点是△ABC的外接圆圆心.
4.A={-1,1},
(1)若a=0,则B=,满足BA;
(2)若a=-1,则B={-1},满足BA;
(3)若a=1,则B={1},满足BA.
综上所述,实数a的值为0,-1,1.
5.A∩B={(x,y)|}={(x,y)|}={(0,0)};
A∩C={(x,y)|}=;
B∩C={(x,y)|}={(x,y)|}={(,)};
(A∩B)∪(B∩C)={(0,0),(,)}.
6.(1)要使函数有意义,必须|x|-2≥0,即x≤-2或x≥2,所以函数的定义域为{x|x≤-2或x≥2};
(2)要使函数有意义,必须即得x≥2.
所以函数的定义域为{x|x≥2};
(3)要使函数有意义,必须即x≥4,且x≠5.
所以函数的定义域为{x|x≥4,且x≠5}.
7.(1)f(a)+1==;
(2)f(a+1)==.
8.(1)∵f(-x)==,∴f(-x)=f(x).
(2)∵f()=====,∴f()=-f(x).
9.二次函数f(x)的对称轴是直线x=,则有≤5或≥20.解得k≤40或k≥160,即实数k的取值范围是(-∞,40]∪[160,+∞).
10.(1)函数y=x-2是偶函数;
(2)它的图象关于y轴对称;
(3)函数在(0,+∞)上是减函数;
(4)函数在(-∞,0)上是增函数.
B组
1.同时参加田径和球类比赛的有3人,只参加游泳一项比赛的有9人.
提示:由题意知有15人参加游泳比赛,有8人参加田径比赛,有14人参加球类比赛,所以15+8+14=37,知共有37人次参加比赛.
由已知共有28名同学参赛,且没有人同时参加三项,而37-28=9,
知共有9名同学参加两项比赛.
已知同时参加游泳和田径的有3人,同时
( http: / / www.21cnjy.com )参加游泳和球类的有3人,因此同时参加田径和球类的有3人;又已知有15人参加游泳比赛,因此只参加游泳一项的有9人.
2.实数a的取值范围为{a|a≥0}.
3.∵(A∪B)=(A)∩(B)={1,3},A∩(B)={2,4},
∴B={1,2,3,4}.∴B={5,6,7,8,9}.
4.f(1)=1×(1+4)=5;
f(-3)=-3×(-3-4)=21;
f(a+1)=
5.证明:(1)f=a·+b
==(ax1+b)+(ax2+b)=[f(x1)+f(x2)],
∴f()=[f(x1)+f(x2)].
(2)g()=()2+a·+b
=(+ax1+b)+(+ax2+b)-(x1-x2)2
=[g(x1)+g(x2)]-(x1-x2)2,
∵-(x1-x2)2≤0,
∴g()≤[g(x1)+g(x2)].
6.(1)奇函数f(x)在[-b,-a]上是减函数;
(2)偶函数g(x)在[-b,-a]上是减函数.
7.若全月纳税所得额为500元,则应交纳税款为500×5%=25(元).此时月工资为800+500=1
300(元);若全月纳税所得额为2000元,则应交纳税款为500×5%+1500×10%=175(元).此时月工资为800+500+1500=2800(元).由于此人交纳税款为26.78元,则此人的工资在区间(1300,2800)内,所以他当月的工资、薪金所得是800+500+≈1317.8(元).1.2
函数及其表示
1.2.1
函数的概念
整体设计
教学分析
函数是中学数学中最重要的基本概念之
( http: / / www.21cnjy.com )一.在中学,函数的学习大致可分为三个阶段.第一阶段是在义务教育阶段,学习了函数的描述性概念,接触了正比例函数、反比例函数、一次函数、二次函数等最简单的函数,了解了它们的图象、性质等.本节学习的函数概念与后续将要学习的函数的基本性质、基本初等函数(Ⅰ)和基本初等函数(Ⅱ)是学习函数的第二阶段,这是对函数概念的再认识阶段.第三阶段是在选修系列的导数及其应用的学习,这是函数学习的进一步深化和提高.
在学生学习用集合与对应的语言刻画函数之前,
( http: / / www.21cnjy.com )学生已经把函数看成变量之间的依赖关系;同时,虽然函数概念比较抽象,但函数现象大量存在于学生周围.因此,课本采用了从实际例子中抽象出用集合与对应的语言定义函数的方式介绍函数概念.
三维目标
1.会用集合与对应的语言来刻画函数
( http: / / www.21cnjy.com ),理解函数符号y=f(x)的含义;通过学习函数的概念,培养学生观察问题、提出问题的探究能力,进一步培养学习数学的兴趣和抽象概括能力;启发学生运用函数模型表述思考和解决现实世界中蕴涵的规律,逐渐形成善于提出问题的习惯,学会数学表达和交流,发展数学应用意识.
2.掌握构成函数的三要素,会求一些简单
( http: / / www.21cnjy.com )函数的定义域,体会对应关系在刻画函数概念中的作用,使学生感受到学习函数的必要性的重要性,激发学生学习的积极性.
重点难点
教学重点:理解函数的模型化思想,用集合与对应的语言来刻画函数.
教学难点:符号“y=f(x)”的含义,不容易认识到函数概念的整体性,而将函数单一地理解成对应关系,甚至认为函数就是函数值.
课时安排
2课时
教学过程
第1课时
函数的概念
导入新课
思路1.北京时间2005年10月
( http: / / www.21cnjy.com )12日9时整,万众瞩目的“神舟”六号飞船胜利发射升空,5天后圆满完成各项任务并顺利返回.在“神舟”六号飞行期间,我们时刻关注“神舟”六号离我们的距离y随时间t是如何变化的,本节课就对这种变量关系进行定量描述和研究.引出课题.
先让学生回答后,教师指出:这样解释会显得十分勉强,本节将用新的观点来解释,引出课题.
推进新课
新知探究
提出问题
(1)给出下列三种对应:(幻灯片)
①一枚炮弹发射后,经过26
s落到地
( http: / / www.21cnjy.com )面击中目标.炮弹的射高为845
m,且炮弹距地面的高度为h(单位:m)随时间t(单位:s)变化的规律是h=130t-5t2.
时间t的变化范围是数集A={t|0≤t≤26},h的变化范围是数集B={h|0≤h≤845}.则有对应
f:t→h=130t-5t2,t∈A,h∈B.
②近几十年来,大气层的臭氧
( http: / / www.21cnjy.com )迅速减少,因而出现了臭氧洞问题.图1-2-1-1中的曲线显示了南极上空臭氧层空洞的面积S(单位:106
km2)随时间t(单位:年)从1991~2001年的变化情况.
( http: / / www.21cnjy.com )
图1-2-1-1
根据图1-2-1-1中的曲线,可知时间t的变
( http: / / www.21cnjy.com )化范围是数集A={t|1979≤t≤2001},空臭氧层空洞面积S的变化范围是数集B={S|0≤S≤26},则有对应:
f:t→S,t∈A,S∈B.
③国际上常用恩格尔系数反映一个国家人民
( http: / / www.21cnjy.com )生活质量的高低,恩格尔系数越低,生活质量越高.下表中的恩格尔系数y随时间t(年)变化的情况表明,“八五”计划以来,我国城镇居民的生活质量发生了显著变化.
“八五”计划以来我国城镇居民恩格尔系数变化情况
时间
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
恩格尔系数y
53.8
52.9
50.1
49.9
49.9
48.6
46.4
44.5
41.9
39.2
37.9
根据上表,可知时间t的变化范围是数集A={
( http: / / www.21cnjy.com )t|1991≤t≤2001},恩格尔系数y的变化范围是数集B={S|37.9≤S≤53.8}.则有对应:
f:t→y,t∈A,y∈B.
以上三个对应有什么共同特点?
(2)我们把这样的对应称为函数,请用集合的观点给出函数的定义.
(3)函数的定义域是自变量的取值范围,那么你是如何理解这个“取值范围”的?
(4)函数有意义又指什么?
(5)函数f:A→B的值域为C,那么集合B=C吗?
活动:让学生认真思考三个对应,也可以分组讨论交流,引导学生找出这三个对应的本质共性.
解:(1)共同特点是:集合A、B都是数集,并且对于数集A中的每一个元素x,在对应关系f:A→B下,在数集B中都有唯一确定的元素y与之对应.
(2)一般地,设A、B都是非空的数集,如果按
( http: / / www.21cnjy.com )照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A,其中x叫自变量,x的取值范围A叫做函数的定义域,函数值的集合{f(x)|x∈A}叫做函数的值域.
在研究函数时常会用到区间的概念,设a,b是两个实数,且a定义
名称
符号
数轴表示
{x|a≤x≤b}
闭区间
[a,b]
{x|a开区间
(a,b)
{x|a≤x半开半闭区间
[a,b)
{x|a半开半闭区间
(a,b]
{x|x≥a}
[a,+∞)
{x|x>a}
(a,b]
{x|x≤a}
(-∞,a]
{x|x(-∞,a)
R
(-∞,+∞)
(3)自变量的取值范围就是使函数有意义的自变量的取值范围.
(4)函数有意义是指:自变量的取值使分母不为0;被开方数为非负数;如果函数有实际意义时,那么还要满足实际取值等等.
(5)CB.
应用示例
思路1
1.已知函数f(x)=+,
(1)求函数的定义域;
(2)求f(-3),f()的值;
(3)当a>0时,求f(a),f(a-1)的值.
活动:
(1)让学生回想函数的定义域指的是什么?函数的定义域是使函数有意义的自变量的取值范围,故转化为求使和有意义的自变量的取值范围;有意义,则x+3≥0,
有意义,则x+2≠0,转化解由x+3≥0和x+2≠0组成的不等式组.
(2)让学生回想f(-3),f()表示什么含义?f(-3)表示自变量x=-3时对应的函数值,f()表示自变量x=时对应的函数值.分别将-3,代入函数的对应法则中得f(-3),f()的值.
(3)f(a)表示自变量x=a时对应的函数值,f(a-1)表示自变量x=a-1时对应的函数值.
分别将a,a-1代入函数的对应法则中得f(a),f(a-1)的值.
解:(1)要使函数有意义,自变量x的取值需满足解得-3≤x<-2或x>-2,
即函数的定义域是[-3,-2)∪(-2,+∞).
(2)f(-3)=+=-1;
f()==.
(3)∵a>0,∴a∈[-3,-2)∪(-2,+∞),
即f(a),f(a-1)有意义.
则f(a)=+;
f(a-1)==.
点评:本题主要考查函数的定义域以及对符号f(x)的理解.求使函数有意义的自变量的取值范围,通常转化为解不等式组.
f(x)是表示关于变量x的函数,又可以
( http: / / www.21cnjy.com )表示自变量x对应的函数值,是一个整体符号,分开符号f(x)没有什么意义.符号f可以看作是对“x”施加的某种法则或运算.例如f(x)=x2-x+5,当x=2时,看作“2”施加了这样的运算法则:先平方,再减去2,再加上5;当x为某一代数式(或某一个函数记号时),则左右两边的所有x都用同一个代数式(或某一个函数)来代替.如:f(2x+1)=(2x+1)2-(2x+1)+5,f[g(x)]=[g(x)]2-g(x)+5等等.
符号y=f(x)表示变量
( http: / / www.21cnjy.com )y是变量x的函数,它仅仅是函数符号,并不表示y等于f与x的乘积;符号f(x)与f(m)既有区别又有联系,当m是变量时,函数f(x)与函数f(m)是同一个函数;当m是常数时,f(m)表示自变量x=m对应的函数值,是一个常量.
已知函数的解析式,求函数的定义域,就是求使得函数解析式有意义的自变量的取值范围,即:
(1)如果f(x)是整式,那么函数的定义域是实数集R.
(2)如果f(x)是分式,那么函数的定义域是使分母不等于零的实数的集合.
(3)如果f(x)是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数的集合.
(4)如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合(即求各部分定义域的交集).
(5)对于由实际问题的背景确定的函数,其定义域还要受实际问题的制约.
变式训练
1.求函数y=的定义域.
答案:{x|x≤1,且x≠-1}.
点评:本题容易错解:化简函数的解析式为y=x+1,得函数的定义域为{x|x≤1}.其原因是这样做违背了讨论函数问题要保持定义域优先的原则.化简函数的解析式容易引起函数的定义域发生变化,因此求函数的定义域之前时,不要化简解析式.
2.若f(x)=的定义域为M,g(x)=|x|的定义域为N,令全集U=R,则M∩N等于(
)
A.M
B.N
C.M
D.N
分析:由题意得M={x|x>0},N=R,则M∩N={x|x>0}=M.
答案:A
3.已知函数f(x)的定义域是[-1,1],则函数f(2x-1)的定义域是________.
分析:要使函数f(2x-1)有意义,自变量x的取值需满足-1≤2x-1≤1,∴0≤x≤1.
答案:[0,1]
思路2
1.已知函数f(x)=,那么f(1)+f(2)+f()+f(3)+f()
+f(4)+f()=________.
活动:
观察所求式子的特点,引导学生探讨f(a)+f()的值.
解法一:原式==+
=.
解法二:由题意得f(x)+f()===1.
则原式=+1+1+1=.
点评:本题主要考查对函数符号f(x)的理解.对于符号f(x),当x是一个具体的数值时,相应地f(x)也是一个具体的函数值.本题没有求代数式中的各个函数值,而是看到代数式中含有f(x)+f(),故先探讨f(x)+f()的值,从而使问题简单地获解.求含有多个函数符号的代数式值时,通常不是求出每个函数值,而是观察这个代数式的特 找到规律再求解.
受思维定势的影响,本题很容易想到求出每
( http: / / www.21cnjy.com )个函数值来求解,虽然可行,但是这样会浪费时间,得不偿失.其原因是解题前没有观察思考,没有注意经验的积累.
变式训练
1.已知a、b∈N
,f(a+b)=f(a)f(b),f(1)=2,则=_________.分析:令a=x,b=1(x∈N
),
则有f(x+1)=f(x)f(1)=2f(x),
即有=2(x∈N
).
所以,原式==4012.
答案:4012
2.设函数f(n)=k(k∈N
),k是π的小数点后的第n位数字,π=3.1415926535…,则等于________.
分析:由题意得f(10)=5,f(5)=9,f(9)=3,f(3)=1,f(1)=1,…,
则有=1.
答案:1
2.已知A={a,b,c},B={-1,0,1},函数f:A→B满足f(a)+f(b)+f(c)=0,则这样的函数f(x)有(
)
A.4个
B.6个
C.7个
D.8个
活动:学生思考函数的概念,什
( http: / / www.21cnjy.com )么是不同的函数.定义域和值域确定后,不同的对应法则就是不同的函数,因此对f(a),f(b),f(c)的值分类讨论,注意要满足f(a)+f(b)+f(c)=0.
解:当f(a)=-1时,
则f(b)=0,f(c)=1或f(b)=1,f(c)=0,
即此时满足条件的函数有2个;
当f(a)=0时,
则f(b)=-1,f(c)=1或f(b)=1,f(c)=-1或f(b)=0,f(c)=0,
即此时满足条件的函数有3个;
当f(a)=1时,
则f(b)=0,f(c)=-1或f(b)=-1,f(c)=0,
即此时满足条件的函数有2个.
综上所得,满足条件的函数共有2+3+2=7(个).
故选C.
点评:本题主要考查对函数概念的理解,用集合的观点来看待函数.
变式训练
若一系列函数的解析式相同
( http: / / www.21cnjy.com ),值域相同,但是定义域不同,则称这些函数为“同族函数”.那么解析式为y=x2,值域是{1,4}的“同族函数”共有(
)
A.9个
B.8个
C.5个
D.4个
分析:“同族函数”的个数由定义域的个数来确定,此题中每个“同族函数”的定义域中至少含有1个绝对值为1的实数和绝对值为2的实数.
令x2=1,得x=±1;令x2=4,得x=±2.
所有“同族函数”的定义域
( http: / / www.21cnjy.com )分别是{1,2},{1,-2},{-1,2},{-1,-2},{1,-1,2},{1,-1,-2},{1,-2,2},
{-1,-2,2},{1,-1,-2,2},则“同族函数”共有9个.
答案:A
知能训练1.已知函数f(x)满足:f(p+q)=f(p)f(q),f(1)=3,则=______.
解:∵f(p+q)=f(p)f(q),
∴f(x+x)=f(x)f(x),即f2(x)=f(2x).
令q=1,得f(p+1)=f(p)f(1),∴=f(1)=3.
∴原式==2(3+3+3+3+3)=30.
答案:30
2.若f(x)=的定义域为A,g(x)=f(x+1)-f(x)的定义域为B,那么(
)
A.A∪B=B
B.AB
C.AB
D.A∩B=
分析:由题意得A={x|x≠0},B={x|x≠0,且x≠-1}.则A∪B=A,则A错;A∩B=B,则D错;由于B?A,则C错,B正确.
答案:B
拓展提升
问题:已知函数f(x)=x2+1,x∈R.
(1)分别计算f(1)-f(-1),f(2)-f(-2),f(3)-f(-3)的值.
(2)由(1)你发现了什么结论?并加以证明.
活动:让学生探求f(x)-f(-x)的值.分析(1)中各值的规律,归纳猜想出结论,再用解析式证明.
解:(1)f(1)-f(-1)=(12+1)-[(-1)2+1]=2-2=0;
f(2)-f(-2)=(22+1)-[(-2)2+1]=5-5=0;
f(3)-f(-3)=(32+1)-[(-3)2+1]=10-10=0.
(2)由(1)可发现结论:对任意x∈R,有f(x)=f(-x).证明如下:
由题意得f(-x)=(-x)2+1=x2+1=f(x).
∴对任意x∈R,总有f(x)=f(-x).
课堂小结
本节课学习了:函数的概念、函数定义域的求法和对函数符号f(x)的理解.
作业
课本P24,习题1.2A组1、5.
设计感想
本节教学中,在归纳函数的概念时,本节设计运用
( http: / / www.21cnjy.com )了大量的实例,如果不借助于信息技术,那么会把时间浪费在实例的书写上,会造成课时不足即拖堂现象.本节重点设计了函数定义域的求法,而函数值域的求法将放在函数的表示法中学习.由于函数是高中数学的重点内容之一,也是高考的重点和热点,因此对函数的概念等知识进行了适当的拓展,以满足高考的需要.1.1.3
集合的基本运算
整体设计
教学分析
课本从学生熟悉的集合出发,结合实例,通过
( http: / / www.21cnjy.com )类比实数加法运算引入集合间的运算,同时,结合相关内容介绍子集和全集等概念.在安排这部分内容时,课本继续注重体现逻辑思考的方法,如类比等.
值得注意的问题:在全集和补集的教学中,应注意利用图形的直观作用,帮助学生理解补集的概念,并能够用直观图进行求补集的运算.
三维目标
1.理解两个集合的并集与交集、全集
( http: / / www.21cnjy.com )的含义,掌握求两个简单集合的交集与并集的方法,会求给定子集的补集,感受集合作为一种语言,在表示数学内容时的简洁和准确,进一步提高类比的能力.
2.通过观察和类比,借助Venn图理解集合的基本运算.体会直观图示对理解抽象概念的作用,培养数形结合的思想.
重点难点
教学重点:交集与并集,全集与补集的概念.
教学难点:理解交集与并集的概念,以及符号之间的区别与联系.
课时安排
2课时
教学过程
第1课时
导入新课
思路1.我们知道,实数有加法运算,两个实数可以相加,例如5+3=8.类比实数的加法运算,集合是否也可以“相加”呢
教师直接点出课题.
思路2.请同学们考察下列各个集合,你能说出集合C与集合A、B之间的关系吗
(1)A={1,3,5},B={2,4,6},C={1,2,3,4,5,6};
(2)A={x|x是有理数},B={x|x是无理数},C={x|x是实数}.
引导学生通过观察、类比、思考和交流,得出结论.教师强调集合也有运算,这就是我们本节课所要学习的内容.
思路3.(1)①如图1131甲和乙所示,观察两个图的阴影部分,它们分别同集合A、集合B有什么关系?
( http: / / www.21cnjy.com )
图1-1-3-1
②观察集合A与B与集合C={1,2,3,4}之间的关系.
学生思考交流并回答,教师直接指出这就是本节课学习的课题:集合的运算.
(2)①已知集合A={1,2,3},B={2,3,4},写出由集合A,B中的所有元素组成的集合C.
②已知集合A={x|x>1},B={x|x<0},在数轴上表示出集合A与B,并写出由集合A与B中的所有元素组成的集合C.
推进新课
新知探究
提出问题
①通过上述问题中集合A与B与集合C之间的关系,类比实数的加法运算,你发现了什么?
②用文字语言来叙述上述问题中,集合A与B与集合C之间的关系.
③用数学符号来叙述上述问题中,集合A与B与集合C之间的关系.
④试用Venn图表示A∪B=C.
⑤请给出集合的并集定义.
⑥求集合的并集是集合间的一种运算,那么,集合间还有其他运算吗?
请同学们考察下面的问题,集合A与B与集合C之间有什么关系?
(ⅰ)A={2,4,6,8,10},B={3,5,8,12},C={8};
(ⅱ)A={x|x是国兴中学200
( http: / / www.21cnjy.com )7年9月入学的高一年级女同学},B={x|x是国兴中学2007年9月入学的高一年级男同学},C={x|x是国兴中学2007年9月入学的高一年级同学}.
⑦类比集合的并集,请给出集合的交集定义?并分别用三种不同的语言形式来表达.
活动:先让学生思考或讨论问题
( http: / / www.21cnjy.com ),然后再回答,经教师提示、点拨,并对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路,主要引导学生发现集合的并集和交集运算并能用数学符号来刻画,用Venn图来显示.
讨论结果:
①集合之间也可以相加,也可以进行
( http: / / www.21cnjy.com )运算,但是为了不和实数的运算相混淆,规定这种运算不叫集合的加法,而是叫做求集合的并集.集合C叫集合A与B的并集.记为A∪B=C,读作A并B.
②所有属于集合A或属于集合B的元素所组成了集合C.
③C={x|x∈A,或x∈B}.
④如图1131所示.
⑤一般地,由所有属于集合A或属于集合
( http: / / www.21cnjy.com )B的元素所组成的集合,称为集合A与B的并集.其含义用符号表示为A∪B={x|x∈A,或x∈B},用Venn图表示,如图1131所示.
⑥集合之间还可以求它们的公共元素组成集合的运算,这种运算叫求集合的交集,记作A∩B,读作A交B.(ⅰ)A∩B=C,(ⅱ)A∪B=C.
⑦一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集.
其含义用符号表示为:
A∩B={x|x∈A,且x∈B}.
用Venn图表示,如图1132所示.
图1-1-3-2
应用示例
思路1
1.设A={4,5,6,8},B={3,5,7,8},求A∪B,A∩B.
( http: / / www.21cnjy.com )
图1-1-3-3
活动:让学生回顾集合的表示法和交集、
( http: / / www.21cnjy.com )并集的含义,由于本例题难度较小,让学生自己解决,重点是总结集合运算的方法.根据集合并集、交集的含义,借助于Venn图写出.观察这两个集合中的元素,或用Venn图来表示,如图1133所示.
解:A∪B={4,5,6,8}∪{
( http: / / www.21cnjy.com )3,5,7,8}={3,4,5,6,7,8}.A∩B={4,5,6,8}∩{3,5,7,8}={5,8}.
点评:本题主要考查集合的并集和交集.用列举法表示的集合,运算时常利用Venn图或直接观察得到结果.
本题易错解为A∪B={3,4,5,5,6,7,8,8}.其原因是忽视了集合元素的互异性.解决集合问题要遵守集合元素的三条性质.
变式训练
1.集合M={1,2,3},N={-1,5,6,7},则M∪N=________.M∩N=________.
答案:{-1,1,2,3,5,6,7}
2.集合P={1,2,3,m},M={m2,3},P∪M={1,2,3,m},则m=_________.
分析:由题意得m2=1或2或m,解得m=-1,1,,,0.因m=1不合题意,故舍去.
答案:-1,,,0
3.满足A∪B={0,2}的集合A与B的组数为
(
)
A.2
B.5
C.7
D.9
分析:∵A∪B={0,2},∴A{0,2}.则A=或A={0}或A={2}或A={0,2}.当A=时,B={0,2};当A={0}时,则集合B={2}或{0,2};当A={2}时,则集合B={0}或{0,2};当A={0,2}时,则集合B=或{0}或{2}或{0,2},则满足条件的集合A与B的组数为1+2+2+4=9.
答案:D
4.设集合A={1,2},则满足A∪B={1,2,3}的集合B的个数是
(
)
A.1
B.3
C.4
D.8
分析:转化为求集合A子集的个数.很明显3A,又A∪B={1,2,3},必有3∈B,即集合B中至少有一个元素3,其他元素来自集合A中,则集合B的个数等于A={1,2}的子集个数,又集合A中含有22=4个元素,则集合A有22=4个子集,所以满足条件的集合B共有4个.
答案:C
2.设A={x|-1活动:学生回顾集合的表示法和并集、交集的含义.利用数轴,将A、B分别表示出来,则阴影部分即为所求.用数轴表示描述法表示的数集.
解:将A={x|-1图1-1-3-4
由图得A∪B={x|-1A∩B={x|-1点评:本类题主要考查集合的并集和交集.用描述法表示的集合,运算时常利用数轴来计算结果.
变式训练
1.设A={x|2x-4<2},B={x|2x-4>0},求A∪B,A∩B.
答案:A∪B=R,A∩B={x|22.设A={x|2x-4=2},B={x|2x-4=0},求A∪B,A∩B.
答案:A∪B={3,2},A∩B=.
3.设集合A={x|-1≤x≤2},B={x|0≤x≤4},则A∩B等于(
)
A.[0,2]
B.[1,2]
C.[0,4]
D.[1,4]
分析:在同一条数轴上表示出集合A、B,如图1135所示.由图得A∩B=[0,2].
图1-1-3-5
答案:A
课本P11例6、例7.
思路2
1.A={x|x<5},B={x|x>0},C={x|x≥10},则A∩B,B∪C,A∩B∩C分别是什么
活动:
学生先思考集合中元素特征,明确集合中
( http: / / www.21cnjy.com )的元素.将集合中元素利用数形结合在数轴上找到,那么运算结果寻求就易进行.这三个集合都是用描述法表示的数集,求集合的并集和交集的关键是找出它们的公共元素和所有元素.
解:因A={x|x<5},B={x|x>0},C={x|x≥10},在数轴上表示,如图1136所示,所以A∩B={x|0B∪C={x|x>0},A∩B∩C=.
图1-1-3-6
点评:本题主要考查集合的交集和并集
( http: / / www.21cnjy.com ).求集合的并集和交集时,①明确集合中的元素;②依据并集和交集的含义,借助于直观(数轴或Venn图)写出结果.
变式训练
1.设A={x|x=2n,n∈N
},B={x|x=2n,n∈N},求A∩B,A∪B.
解:对任意m∈A,则有m=2n=2·2n-1,n∈N
,因n∈N
,故n-1∈N,有2n-1∈N,那么m∈B,
即对任意m∈A有m∈B,所以AB.
而10∈B但10A,即AB,那么A∩B=A,A∪B=B.
2.求满足{1,2}∪B={1,2,3}的集合B的个数.
解:满足{1,2}∪B=
( http: / / www.21cnjy.com ){1,2,3}的集合B一定含有元素3,B={3};还可含1或2其中一个,有{1,3},{2,3};还可含1和2,即{1,2,3},那么共有4个满足条件的集合B.
3.设A={-4,2,a-1,a2},B={9,a-5,1-a},已知A∩B={9},求a.
解:因A∩B={9},则9∈A,a-1=9或a2=9,
a=10或a=±3,
当a=10时,a-5=5,1-a=-9;
当a=3时,a-1=2不合题意.
当a=-3时,a-1=-4不合题意.
故a=10,此时A={-4,2,9,100},B={9,5,-9},满足A∩B={9}.
4.2006北京高考,文1设集合A={x|2x+1<3},B={x|-3(
)
A.{x|-3B.{x|1C.{x|x>-3}
D.{x|x<1}
分析:集合A={x|2x+1<3}={x|x<1},
观察或由数轴得A∩B={x|-3答案:A
2.设集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0,a∈R},若A∩B=B,求a的值.
活动:
明确集合A、B中的元素,教师和学生共同探讨满足A∩B=B的集合A、B的关系.集合A是方程x2+4x=0的解组成的集合,可以发现,BA,通过分类讨论集合B是否为空集来求a的值.利用集合的表示法来认识集合A、B均是方程的解集,通过画Venn图发现集合A、B的关系,从数轴上分析求得a的值.
解:由题意得A={-4,0}.∵A∩B=B,∴BA.∴B=或B≠.
当B=时,即关于x的方程x2+2(a+1)x+a2-1=0无实数解,
则Δ=4(a+1)2-4(a2-1)<0,解得a<-1.
当B≠时,若集合B仅含有一个元素,则Δ=4(a+1)2-4(a2-1)=0,解得a=-1,
此时,B={x|x2=0}={0}A,即a=-1符合题意.
若集合B含有两个元素,则这两个元素是-4,0,
即关于x的方程x2+2(a+1)x+a2-1=0的解是-4,0.
则有
解得a=1,则a=1符合题意.
综上所得,a=1或a≤-1.
变式训练
1.已知非空集合A={x|2a+1≤x≤3a-5},B={x|3≤x≤22},则能使A(A∩B)成立的所有a值的集合是什么?
解:由题意知A(A∩B),即AB,A非空,利用数轴得解得6≤a≤9,
即所有a值的集合是{a|6≤a≤9}.
2.已知集合A={x|-2≤x≤5},集合B={x|m+1≤x≤2m-1},且A∪B=A,试求实数m的取值范围.
分析:由A∪B=A得BA,则有B=或B≠,因此对集合B分类讨论.
解:∵A∪B=A,∴BA.
又∵A={x|-2≤x≤5}≠,∴B=,或B≠.
当B=时,有m+1>2m-1,∴m<2.
当B≠时,观察图1-1-3-7:
图1-1-3-7
由数轴可得解得-2≤m≤3.
综上所述,实数m的取值范围是m<2或-2≤m≤3,即m≤3.
点评:本题主要考查集合的运
( http: / / www.21cnjy.com )算、分类讨论的思想,以及集合间关系的应用.已知两个集合的运算结果,求集合中参数的值时,由集合的运算结果确定它们的关系,通过深刻理解集合表示法的转换,把相关问题化归为其他常见的方程、不等式等数学问题.这称为数学的化归思想,是数学中的常用方法,学会应用化归和分类讨论的数学思想方法解决有关问题.
知能训练
课本P11练习1、2、3.
【补充练习】
1.设a={3,5,6,8},B={4,5,7,8},
(1)求A∩B,A∪B.
(2)用适当的符号(、)填空:
A∩B________A,B________A∩B,A∪B________A,A∪B________B,A∩B________A∪B.
解:(1)因A、B的公共元素为5、8,故两集合的公共部分为5、8,
则A∩B={3,5,6,8}∩{4,5,7,8}={5,8}.
又A、B两集合的元素3、4、5、6、7、8,
故A∪B={3,4,5,6,7,8}.
(2)由文氏图可知
A∩BA,BA∩B,A∪BA,A∪BB,A∩BA∪B.
2.设A={x|x<5},B={x|x≥0},求A∩B.
解:因x<5及x≥0的公共部分为0≤x<5,
故A∩B={x|x<5}∩{x|x≥0}={x|0≤x<5}.
3.设A={x|x是锐角三角形},B={x|x是钝角三角形},求A∩B.
解:因三角形按角分类时,锐角三角形和钝角三角形彼此孤立.故A、B两集合没有公共部分.
所以A∩B={x|x是锐角三角形}∩{x|x是钝角三角形}=.
4.设A={x|x>-2},B={x|x≥3},求A∪B.
解:在数轴上将A、B分别表示出来,得A∪B={x|x>-2}.
5.设A={x|x是平行四边形},B={x|x是矩形},求A∪B.
解:因矩形是平行四边形,故由A及B的元素组成的集合为A∪B,A∪B={x|x是平行四边形}.
6.已知M={1},N={1,2},设A={(x,y)|x∈M,y∈N},B={(x,y)|x∈N,y∈M},求A∩B,A∪B.
分析:M、N中元素是数.A、B中元素是平面内点集,关键是找其元素.
解:∵M={1},N={1,2},则A={(1,1),(1,2)},B={(1,1),(2,1)},故A∩B={(1,1)},A∪B={(1,1),(1,2),
(2,1)}.
7.若A、B、C为三个集合,A∪B=B∩C,则一定有(
)
A.AC
B.CA
C.A≠C
D.A=
分析:思路一:∵(B∩C)B,(B∩C)C,A∪B=B∩C,
∴A∪BB,A∪BC.∴ABC.∴AC.
思路二:取满足条件的A={1},B={1,2},C={1,2,3},排除B、D,
令A={1,2},B={1,2},C={1,2},则此时也满足条件A∪B=B∩C,
而此时A=C,排除C.
答案:A
拓展提升
观察:(1)集合A={1,2},B={1,2,3,4}时,A∩B,A∪B这两个运算结果与集合A,B的关系;
(2)当A=时,A∩B,A∪B这两个运算结果与集合A,B的关系;
(3)当A=B={1,2}时,A∩B,A∪B这两个运算结果与集合A,B的关系.
由(1)(2)(3)你发现了什么结论?
活动:依据集合的交集和并集的含义写出运算结果,并观察与集合A,B的关系.用Venn图来发现运算结果与集合A,B的关系.(1)(2)(3)中的集合A,B均满足AB,用Venn图表示,如图1138所示,就可以发现A∩B,A∪B与集合A,B的关系.
( http: / / www.21cnjy.com )图1-1-3-8
解:A∩B=AABA∪B=B.
可用类似方法,可以得到集合的运算性质,归纳如下:
A∪B=B∪A,A(A∪B),B(A∪B);A∪A=A,A∪=A,ABA∪B=B;
A∩B=B∩A;(A∩B)A,(A∩B)B;A∩A=A;A∩=;ABA∩B=A.
课堂小结
本节主要学习了:
1.集合的交集和并集.
2.通常借助于数轴或Venn图来求交集和并集.
作业
1.课外思考:对于集合的基本运算,你能得出哪些运算规律?
2.请你举出现实生活中的一个实例,并说明其并集、交集和补集的现实含义.
3.书面作业:课本P12习题1.1A组6、7、8.
设计感想
由于本节课内容比较容易接受,也是历
( http: / / www.21cnjy.com )年高考的必考内容之一,所以在教学设计上注重加强练习和拓展课本内容.设计中通过借助于数轴或Venn图写出集合运算的结果,这是突破本节教学难点的有效方法.集合的基本运算第2课时
导入新课
问题:①分别在整数范围和实数范围内解方程(x-3)(x)=0,其结果会相同吗
②若集合A={x|0学生回答后,教师指明:在不同的范围内集合中的元素会有所不同,这个“范围”问题就是本节学习的内容,引出课题.
推进新课
新知探究
提出问题
①用列举法表示下列集合:
A={x∈Z|(x-2)(x+)(x)=0};
B={x∈Q|(x-2)(x+)(x)=0};
C={x∈R|(x-2)(x+)(x)=0}.
②问题①中三个集合相等吗?为什么?
③由此看,解方程时要注意什么?
④问题①,集合Z,Q,R分别含有所解方程时所涉及的全部元素,这样的集合称为全集,请给出全集的定义.
⑤已知全集U={1,2,3},A={1},写出全集中不属于集合A的所有元素组成的集合B.
⑥请给出补集的定义.
⑦用Venn图表示A.
活动:组织学生充分讨论、交流,使学生明确集合中的元素,提示学生注意集合中元素的范围.
讨论结果:
①A={2},B={2,},C={2,,}.
②不相等,因为三个集合中的元素不相同.
③解方程时,要注意方程的根在什么范围内,同一个方程,在不同的范围其解会有所不同.
④一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集,通常记为U.
⑤B={2,3}.
⑥对于一个集合A,全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集.
集合A相对于全集U的补集记为A,即A={x|x∈U,且x?A}.
⑦如图1-1-3-9所示,阴影表示补集.
( http: / / www.21cnjy.com )
图1-1-3-9
应用示例
思路1
1.设U={x|x是小于9的正整数},A={1,2,3},B={3,4,5,6},求A,B.
活动:让学生明确全集U中的元素,回顾补集的定义,用列举法表示全集U,依据补集的定义写出A,B.
解:根据题意,可知U={1,2,3,4,5,6,7,8},所以
A={4,5,6,7,8};B={1,2,7,8}.
点评:本题主要考查补集的概念和求法.用列举法表示的集合,依据补集的含义,直接观察写出集合运算的结果.
常见结论:(A∩B)=(A)∪(B);(A∪B)=(A)∩(B).
变式训练
1.2007吉林高三期末统考,文1已知集合U={1,2,3,4,5,6,7},A={2,4,5,7},B={3,4,5},则(A)∩(B)等于(
)
A.{1,6}
B.{4,5}
C.{2,3,4,5,7}
D.{1,2,3,6,7}
分析:思路一:观察得(A)∩(B)={1,3,6}∩{1,2,6,7}={1,6}.
思路二:A∪B={2,3,4,5,7},则(A)∩(B)=(A∪B)={1,6}.
答案:A
2.设集合U={1,2,3,4,5},A={1,2,4},B={2},则A∩(B)等于(
)
A.{1,2,3,4,5}
B.{1,4}
C.{1,2,4}
D.{3,5}
答案:B
3.设全集U={1,2,3,4,5,6,7},P={1,2,3,4,5},Q={3,4,5,6,7},则P∩(Q)等于(
)
A.{1,2}
B.{3,4,5}
C.{1,2,6,7}
D.{1,2,3,4,5}
答案:A
2.设全集U={x|x是三角形},A={x|x是锐角三角形},B={x|x是钝角三角形}.求A∩B,(A∪B).
活动:学生思考三角形的分类和集合的交集、并集和补集的含义.结合交集、并集和补集的含义写出结果.A∩B是由集合A,B中公共元素组成的集合,(A∪B)是全集中除去集合A∪B中剩下的元素组成的集合.
解:根据三角形的分类可知
A∩B=,
A∪B={x|x是锐角三角形或钝角三角形},(A∪B)={x|x是直角三角形}.
变式训练
1.已知集合A={x|3≤x<8},求A.
解:A={x|x<3或x≥8}.
2.设S={x|x是至少有一组对边平行的四边形},A={x|x是平行四边形},B={x|x是菱形},C={x|x是矩形},求B∩C,B,A.
解:B∩C={x|正方形},B={x|x是邻边不相等的平行四边形},A={x|x是梯形}.
3.已知全集I=R,集合A={x|x2+ax+12b=0},B={x|x2-ax+b=0},满足(A)∩B={2},(B)∩A={4},求实数a、b的值.
答案:a=,b=.
4.设全集U=R,A={x|x≤2+},B={3,4,5,6},则(A)∩B等于…(
)
A.{4}
B.{4,5,6}
C.{2,3,4}
D.{1,2,3,4}
分析:∵U=R,A={x|x≤2+},∴A={x|x>2+}.而4,5,6都大于2+,
∴(A)∩B={4,5,6}.
答案:B
思路2
1.已知全集U=R,A={x|-2≤x≤4},B={x|-3≤x≤3},求:
(1)A,B;
(2)(A)∪(B),(A∩B),由此你发现了什么结论?
(3)(A)∩(B),(A∪B),由此你发现了什么结论?
活动:学生回想补集的含义,教师指导学生利用数轴来解决.依据补集的含义,借助于数轴求得.在数轴上表示集合A,B.
解:如图1-1-3-10所示,
图1-1-3-10
(1)由图得A={x|x<-2或x>4},B={x|x<-3或x>3}.
(2)由图得(A)∪(B)={x|x<-2或x>4}∪{x|x<-3或x>3}={x|x<-2或x>3};
∵A∩B={x|-2≤x≤4}∩{x|-3≤x≤3}={x|-2≤x≤3},
∴(A∩B)={x|-2≤x≤3}={x|x<-2或x>3}.
∴得出结论(A∩B)=(A)∪(B).
(3)由图得(A)∩(B)={x|x<-2或x>4}∩{x|x<-3或x>3}={x|x<-3或x>4};
∵A∪B={x|-2≤x≤4}∪{x|-3≤x≤3}={x|-3≤x≤4},
∴(A∪B)={x|-3≤x≤4}={x|x<-3或x>4}.
∴得出结论(A∪B)=(A)∩(B).
变式训练
1.已知集合U={1,2,3,4,5,6,7},A={2,4,5,7},B={3,4,5},则(A)∪(B)等于(
)
A.{1,6}
B.{4,5}
C.{1,2,3,4,5,7}
D.{1,2,3,6,7}
答案:D
2.设集合I={x||x|<3,x∈Z},A={1,2},B={-2,-1,2},则A∪(B)等于(
)
A.{1}
B.{1,2}
C.{2}
D.{0,1,2}
答案:D
2.设全集U={x|x≤20,x∈N,x是质数},A∩(B)={3,5},(A)∩B={7,19},(A)∩(B)={2,17},求集合A、B.
活动:学生回顾集合的运算的含义,明确全
( http: / / www.21cnjy.com )集中的元素.利用列举法表示全集U,根据题中所给的条件,把集合中的元素填入相应的Venn图中即可.求集合A、B的关键是确定它们的元素,由于全集是U,则集合A、B中的元素均属于全集U,由于本题中的集合均是有限集并且元素的个数不多,可借助于Venn图来解决.
解:U={2,3,5,7,11,13,17,19},
由题意借助于Venn图,如图1-1-3-11所示,
( http: / / www.21cnjy.com )
图1-1-3-11
∴A={3,5,11,13},B={7,11,13,19}.
点评:本题主要考查集合的运算、V
( http: / / www.21cnjy.com )enn图以及推理能力.借助于Venn图分析集合的运算问题,使问题简捷地获得解决,将本来抽象的集合问题直观形象地表现出来,这正体现了数形结合思想的优越性.
变式训练
1.
( http: / / www.21cnjy.com )
图1-1-3-12
设I为全集,M、N、P都是它的子集,则图1-1-3-12中阴影部分表示的集合是(
)
A.M∩[(N)∩P]
B.M∩(N∪P)
C.[(M)∩(N)]∩P
D.M∩N∪(N∩P)
分析:思路一:阴影部分在集合M内部,排除C;阴影部分不在集合N内,排除B、D.
思路二:阴影部分在集合M内部,即是M的子集,又阴影部分在P内不在集合N内即在(N)∩P内,所以阴影部分表示的集合是M∩[(N)∩P].
答案:A
2.设U={1,2,3,4,5,6,7,8,9},(A)∩B={3,7},(B)∩A={2,8},(A)∩(B)={1,5,6},则集合A=________,B=________.
分析:借助Venn,如图1-1-3-13,把相关运算的结果表示出来,自然地就得出集合A、B了.
( http: / / www.21cnjy.com )
图1-1-3-13
答案:{2,4,8,9}
{3,4,7,9}
知能训练
课本P11练习4.
【补充练习】
1.设全集U=R,A={x|2x+1>0},试用文字语言表述A的意义.
解:A={x|2x+1>0}即不等式2x+1>0的解集,A中元素均不能使2x+1>0成立,即A中元素应当满足2x+1≤0.∴A即不等式2x+1≤0的解集.
2.如图1-1-3-14所示,U是全集,M,P,S是U的三个子集,则阴影部分表示的集合是_______.
( http: / / www.21cnjy.com )
图1-1-3-14
分析:观察图可以看出,阴影部分满足两个条件:一是不在集合S内;二是在集合M,P的公共部分内,因此阴影部分表示的集合是集合S的补集与集合M,P的交集的交集,即(S)∩(M∩P).
答案:(S)∩(M∩P)
3.2007安徽淮南一模,理1设集合A、B都是U={1,2,3,4}的子集,已知(A)∩(B)={2},(A)∩B={1},则A等于(
)
A.{1,2}
B.{2,3}
C.{3,4}
D.{1,4}
分析:如图1-1-3-15所示.
( http: / / www.21cnjy.com )
图1-1-3-15
由于(A)∩(B)={2},(A)∩B={1},则有A={1,2}.∴A={3,4}.
答案:C
4.设全集U={1,2,3,4,5,6,7,8},集合S={1,3,5},T={3,6},则(S∪T)等于(
)
A.
B.{2,4,7,8}
C.{1,3,5,6}
D.{2,4,6,8}
分析:直接观察(或画出Venn图),得S∪T={1,3,5,6},则(S∪T)={2,4,7,8}.
答案:B
5.已知集合I={1,2,3,4},A={1},B={2,4},则A∪(B)等于(
)
A.{1}
B.{1,3}
C.{3}
D.{1,2,3}
分析:∵B={1,3},∴A∪(B)={1}∪{1,3}={1,3}.
答案:B
拓展提升
问题:某班有学生50人,解甲、乙两道数学题,已知解对甲题者有34人,解对乙题者有28人,两题均解对者有20人,问:
(1)至少解对其中一题者有多少人?
(2)两题均未解对者有多少人?
分析:先利用集合表示解对甲、乙两道数学题各种类型,然后根据题意写出它们的运算,问题便得到解决.
解:设全集为U,A={只解对甲题的学生},B={只解对乙题的学生},C={甲、乙两题都解对的学生},
则A∪C={解对甲题的学生},
B∪C={解对乙题的学生},
A∪B∪C={至少解对一题的学生},
(A∪B∪C)={两题均未解对的学生}.
由已知,A∪C有34个人,C有20个人,
从而知A有14个人;B∪C有28个人,C有20个人,所以B有8个人.
因此A∪B∪C有N1=14+8+20=42(人),
(A∪B∪C)有N2=50-42=8(人).
∴至少解对其中一题者有42个人,两题均未解对者有8个人.
课堂小结
本节课学习了:
①全集和补集的概念和求法.
②常借助于数轴或Venn图进行集合的补集运算.
作业
课本P12习题1.1A组9、10,B组4.
设计感想
本节教学设计注重渗透数形结
( http: / / www.21cnjy.com )合的思想方法,因此在教学过程中要重点指导学生借助于数轴或Venn图进行集合的补集运算.由于高考中集合常与以后学习的不等式等知识紧密结合,本节也对此也予以体现,可以利用课余时间学习有关解不等式的知识.
习题详解
(课本P5练习)
1.(1)中国∈A,美国A,印度∈A,英国A.
(2)∵A={x|x2=x}={0,1},∴-1A.
(3)∵B={x|x2+x-6=0}={-3,2},∴3A.
(4)∵C={x∈N|1≤x≤10}={1,2,3,4,5,6,7,8,9,10},
∴8∈C,9.1C.
2.(1){x|x2=9}或{-3,3};
(2){2,3,5,7};
(3){(x,y)|}或{(1,4)};
(4){x∈R|4x-5<3}或{x|x<2}.
(课本P7练习)
1.,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}.
2.(1)a∈{a,b,c}.
(2)∵x2=0,∴x=0.∴{x|x2=0}={0}.
∴0∈{0}.
(3)∵x2+1=0,∴x2=-1.又∵x∈R,
∴方程x2=-1无解.∴{x∈R|x2+1=0}=.∴=.
(4).
(5)∵x2=x,∴x=0或x=1.
∴{x|x2=x}={0,1}.
∴{0}{0,1}.
(6)∵x2-3x+2=0,∴x=1或x=2.
∴{x|x2-3x+2=0}={1,2}.
∴{2,1}={1,2}.
3.(1)由于1是任何正整数的公约数,任何正整数都是自身的公约数,所以8的公约数是1,2,4,8,即B={1,2,4,8}.∴AB.
(2)显然BA,又∵3∈A,且3B,∴BA.
(3)4与10的最小公倍数是20,4与10的公倍数应是20的倍数,显然A=B.
(课本P11练习)
1.A∩B={5,8},A∪B={3,5,6,7,8}.
2.∵x2-4x-5=0,
∴x=-1或x=5.
∵A={x|x2-4x-5=0}={-1,5},
同理,B={-1,1}.
∴A∪B={-1,5}∪{-1,1}={-1,1,5},
A∩B={-1,5}∩{-1,1}={-1}.
3.A∩B={x|x是等腰直角三角形},
A∪B={x|x是等腰三角形或直角三角形}.
4.∵B={2,4,6},A={1,3,6,7},
∴A∩(B)={2,4,5}∩{2,4,6}={2,4},
(A)∩(B)={1,3,6,7}∩{2,4,6}={6}.
(课本P11习题1.1)
A组
1.(1)∈
(2)∈
(3)
(4)∈
(5)∈
(6)∈
2.(1)∈
(2)
(3)∈
3.(1){2,3,4,5};
(2){-2,1};(3){0,1,2}.
(3)∵-3<2x-1≤3,∴-2<2x≤4.
∴-1又∵x∈Z,∴x=0,1,2.
∴B={x∈Z|-3<2x-1≤3}={0,1,2}.
4.(1){y|y≥-4};
(2){x|x≠0};
(3){x|x≥}.
5.(1)∵A={x|2x-3<3x}={x|x>-3},B={x|x≥2},
∴-4B,-3A,{2}B,BA.
(2)∵A={x|x2-1=0}={-1,1},
∴1∈A,{-1}A,A,{1,-1}=A.
(3);.
6.∵B={x|3x-7≥8-2x}={x|x≥3},
∴A∪B={x|2≤x<4}∪{x|x≥3}={x|x≥2},
A∩B={x|2≤x<4}∩{x|x≥3}={x|3≤x<4}.
7.依题意,可知A={1,2,3,4,5,6,7,8},
所以A∩B={1,2,3,4,5,6,7,8}∩{1,2,3}={1,2,3}=B,
A∩C={1,2,3,4,5,6,7,8}∩{3,4,5,6}={3,4,5,6}=C.
又∵B∪C={1,2,3}∪{3,4,5,6}={1,2,3,4,5,6}.
∴A∩(B∪C)={1,2,3,4,5,6,7,8}∩{1,2,3,4,5,6}={1,2,3,4,5,6}.
又∵B∩C={1,2,3}∩{3,4,5,6}={3},
∴A∪(B∩C)={1,2,3,4,5,6,7,8}∪{3}={1,2,3,4,5,6,7,8}=A.
8.(1)A∪B={x|x是参加一百米跑的同学或参加二百米跑的同学}.
(2)A∩C={x|x是既参加一百米跑又参加四百米跑的同学}.
9.B∩C={x|x是正方形},
B={x|x是邻边不相等的平行四边形},
A={x|x是梯形}.
10.∵A∪B={x|3≤x<7}∪{x|2∴(A∪B)={x|x≤2或x≥10}.
又∵A∩B={x|3≤x<7}∩{x|2∴(A∩B)={x|x<3或x≥7}.
(A)∩B={x|x<3或x≥7}∩{x|2A∪(B)={x|3≤x<7}∪{x|x≤2或x≥10}={x|x≤2或3≤x<7或x≥10}.
B组
1.∵A={1,2},A∪B={1,2},
∴BA.
∴B=,{1},{2},{1,2}.
2.集合D={(x,y)|2x-y=1}∩{(x,y)|x+4y=5}表示直线2x-y=1与直线x+4y=5的交点坐标;
由于D={(x,y)|}={(1,1)},
所以点(1,1)在直线y=x上,
即DC.
3.B={1,4},
当a=3时,A={3},
则A∪B={1,3,4},A∩B=;
当a≠3时,A={3,a},
若a=1,则A∪B={1,3,4},A∩B={1};
若a=4,则A∪B={1,3,4},A∩B={4};
若a≠1且a≠4,则A∪B={1,a,3,4},A∩B=.
综上所得,
当a=3时,A∪B={1,3,4},A∩B=;
当a=1,则A∪B={1,3,4},A∩B={1};
当a=4,则A∪B={1,3,4},A∩B={4};
当a≠3且a≠1且a≠4时,A∪B={1,a,3,4},A∩B=.
4.作出韦恩图,如图1-1-3-16所示,
( http: / / www.21cnjy.com )
图1-1-3-16
由U=A∪B={x∈N|0≤x≤10},A∩(B)={1,3,5,7},
可知B={0,2,4,6,8,9,10}.第2课时
函数的最值
导入新课
思路1.某工厂为了扩大生产规模,计划重新建造一个面积为10
000
m2的矩形新厂址,新厂址的长为x
m,则宽为m,所建围墙ym,假如你是这个工厂的厂长,你会选择一个长和宽各为多少米的矩形土地,使得新厂址的围墙y最短
学生先思考或讨论,教师指出此题意在求函数y=2(x+),x>0的最小值.引出本节课题:在生产和生活中,我们非常关心花费最少、用料最省、用时最省等最值问题,这些最值对我们的生产和生活是很有帮助的.那么什么是函数的最值呢 这就是我们今天学习的课题.用函数知识解决实际问题,将实际问题转化为求函数的最值,这就是函数的思想,用函数解决问题.
思路2.画出下列函数的图象,指出图象的最高点或最低点,并说明它能体现函数的什么特征?
①f(x)=-x+3;②f(x)=-x+3,x∈[-1,2];
③f(x)=x2+2x+1;④f(x)=x2+2x+1,x∈[-2,2].
学生回答后,教师引出课题:函数的最值.
推进新课
新知探究
提出问题
①如图1-3-1-11所示,是函数y=-x2-2x、y=-2x+1,x∈[-1,+∞)、y=f(x)的图象.观察这三个图象的共同特征.
( http: / / www.21cnjy.com )
图1-3-1-11
②函数图象上任意点P(x,y)的坐标与函数有什么关系?
③你是怎样理解函数图象最高点的
④问题1中,在函数y=f(x)
( http: / / www.21cnjy.com )的图象上任取一点A(x,y),如图1-3-1-12所示,设点C的坐标为(x0,y0),谁能用数学符号解释:函数y=f(x)的图象有最高点C?
( http: / / www.21cnjy.com )
图1-3-1-12
⑤在数学中,形如问题1中函数y=f(x)的图象上最高点C的纵坐标就称为函数y=f(x)的最大值.谁能给出函数最大值的定义?
⑥函数最大值的定义中f(x)≤M即f(x)≤f(x0),这个不等式反映了函数y=f(x)的函数值具有什么特点?其图象又具有什么特征?
⑦函数最大值的几何意义是什么?
⑧函数y=-2x+1,x∈(-1,+∞)有最大值吗?为什么?
⑨点(-1,3)是不是函数y=-2x+1,x∈(-1,+∞)的最高点?
⑩由这个问题你发现了什么值得注意的地方?
讨论结果:
①函数y=-x2-2x图象有最高点A,
( http: / / www.21cnjy.com )函数y=-2x+1,x∈[-1,+∞)图象有最高点B,函数y=f(x)图象有最高点C.也就是说,这三个函数的图象的共同特征是都有最高点.
②函数图象上任意点P的坐标(x,y)的意义:横坐标x是自变量的取值,纵坐标y是自变量为x时对应的函数值的大小.
③图象最高点的纵坐标是所有函数值中的最大值,即函数的最大值.
④由于点C是函数y=f(
( http: / / www.21cnjy.com )x)图象的最高点,则点A在点C的下方,即对定义域内任意x,都有y≤y0,即f(x)≤f(x0),也就是对函数y=f(x)的定义域内任意x,均有f(x)≤f(x0)成立.
⑤一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:
(1)对于任意的x∈I,都有f(x)≤M;
(2)存在x0∈I,使得f(x0)=M.
那么,称M是函数y=f(x)的最大值.
⑥f(x)≤M反映了函数y=f(x)的所有函数值不大于实数M;这个函数的特征是图象有最高点,并且最高点的纵坐标是M.
⑦函数图象上最高点的纵坐标.
⑧函数y=-2x+1,x∈(-1,+∞)没有最大值,因为函数y=-2x+1,x∈(-1,+∞)的图象没有最高点.
⑨不是,因为该函数的定义域中没有-1.
⑩讨论函数的最大值,要坚持定义域优先的原则;函数图象有最高点时,这个函数才存在最大值,最高点必须是函数图象上的点.
提出问题
①类比函数的最大值,请你给出函数的最小值的定义及其几何意义.
②类比问题9,你认为讨论函数最小值应注意什么?
活动:让学生思考函数最大值的定义,利用
( http: / / www.21cnjy.com )定义来类比定义.最高点类比最低点,符号不等号“≤”类比不等号“≥”.函数的最大值和最小值统称为函数的最值.
讨论结果:①函数最小值的定义是:
一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:
(1)对于任意的x∈I,都有f(x)≥M;
(2)存在x0∈I,使得f(x0)=M.
那么,称M是函数y=f(x)的最小值.
函数最小值的几何意义:函数图象上最低点的纵坐标.
②讨论函数的最小值,也要坚持定义域优先的原则;函数图象有最低点时,这个函数才存在最小值,最低点必须是函数图象上的点.
应用示例
思路1
例1求函数y=在区间[2,6]上的最大值和最小值.
活动:先思考或讨论,再到黑板上书写.当学生没有证明思路时,才提示:图象最高点的纵坐标就是函数的最大值,图象最低点的纵坐标就是函数的最小值.根据函数的图象观察其单调性,再利用函数单调性的定义证明,最后利用函数的单调性求得最大值和最小值.利用变换法画出函数y=的图象,只取在区间[2,6]上的部分.观察可得函数的图象是上升的.
解:设2≤x1f(x1)-f(x2)===
∵2≤x10,(x1-1)(x2-1)>0.
∴f(x1)>f(x2),即函数y=在区间[2,6]上是减函数.
所以,当x=2时,函数y=在区间[2,6]上取得最大值f(2)=2;
当x=6时,函数y=在区间[2,6]上取得最小值f(6)=
.
变式训练
1.求函数y=x2-2x(x∈[-3,2])的最大值和最小值_______.
答案:最大值是f(-3)=15,最小值是f(1)=-1.
2.函数f(x)=x4+2x2-1的最小值是.
分析:(换元法)转化为求二次函数的最小值.
设x2=t,y=t2+2t-1(t≥0),
又当t≥0时,函数y=t2+2t-1是增函数,
则当t=0时,函数y=t2+2t-1(t≥0)取最小值-1.
所以函数f(x)=x4+2x2-1的最小值是-1.
答案:-1
3.画出函数y=-x2+2|x|+3的图象,指出函数的单调区间和最大值.
分析:函数的图象关于y轴对称,先画出y轴右侧的图象,再对称到y轴左侧合起来得函数的图象;借助图象,根据单调性的几何意义写出单调区间.
解:函数图象如图1-3-1-13所示.
( http: / / www.21cnjy.com )
图1-3-1-13
由图象得,函数的图象在区间(-∞,-1)和[0,1]上是上升的,在[-1,0]和(1,+∞)上是下降的,最高点是(±1,4),
故函数在(-∞,-1),[0,1]上是增函数;函数在[-1,0],(1,+∞)上是减函数,最大值是4.
点评:本题主要考查函数的单调性和最值,以及
( http: / / www.21cnjy.com )最值的求法.求函数的最值时,先画函数的图象,确定函数的单调区间,再用定义法证明,最后借助单调性写出最值,这种方法适用于做解答题.
单调法求函数最值:先判断函数的单调性,再
( http: / / www.21cnjy.com )利用其单调性求最值;常用到下面的结论:①如果函数y=f(x)在区间(a,b]上单调递增,在区间[b,c)上单调递减,则函数y=f(x)在x=b处有最大值f(b);②如果函数y=f(x)在区间(a,b]上单调递减,在区间[b,c)上单调递增,则函数y=f(x)在x=b处有最小值f(b).
例2“菊花”烟花是最壮观的烟花之一.制造
( http: / / www.21cnjy.com )时一般是期望它达到最高点时爆裂.如果烟花距地面的高度h
m与时间t
s之间的关系为h(t)=-4.9t2+14.7t+18,那么烟花冲出去后什么时候是它爆裂的最佳时刻?这时距地面的高度是多少(精确到1m)?
活动:可以指定一位学生到黑板上书写,教师
( http: / / www.21cnjy.com )在下面巡视,并及时帮助做错的学生改错.并对学生的板书及时评价.将实际问题最终转化为求函数的最值,画出函数的图象,利用函数的图象求出最大值.“烟花冲出去后什么时候是它爆裂的最佳时刻”就是当t取什么值时函数h(t)=-4.9t2+14.7t+18取得最大值;“这时距地面的高度是多少(精确到1
m)”就是函数h(t)=-4.9t2+14.7t+18的最大值;转化为求函数h(t)=-4.9t2+14.7t+18的最大值及此时自变量t的值.
解:画出函数h(t)=-4.9t2+14.7t+18的图象,如图1-3-1-14所示,
显然,函数图象的顶点就是烟花上升的最高点,顶点的横坐标就是烟花爆炸的最佳时刻,纵坐标就是这时距离地面的高度.
( http: / / www.21cnjy.com )
图1-3-1-14
由二次函数的知识,对于函数h(t)=-4.9t2+14.7t+18,我们有:
当t==1.5时,函数有最大值,
即烟花冲出去后1.5s是它爆裂的最佳时刻,这时距地面的高度约是29m.
点评:本题主要考查二次函数的最值
( http: / / www.21cnjy.com )问题,以及应用二次函数解决实际问题的能力.解应用题步骤是①审清题意读懂题;②将实际问题转化为数学问题来解决;③归纳结论.
注意:要坚持定义域优先的原则;求二次函数的最值要借助于图象即数形结合.
变式训练
1.把长为12厘米的细铁丝截成两段,各自围成一个正三角形,那么这两个正三角形面积之和的最小值是(
)
A.cm2
B.4cm2
C.3cm2
D.2cm2
解析:设一个三角形的边长为x
cm,则另一个三角形的边长为(4-x)
cm,两个三角形的面积和为S,则S=x2+(4-x)2=(x-2)2+2≥2.
当x=2时,S取最小值2m2.故选D.
答案:D
2.某超市为了获取最大利润
( http: / / www.21cnjy.com )做了一番试验,若将进货单价为8元的商品按10元一件的价格出售时,每天可销售60件,现在采用提高销售价格减少进货量的办法增加利润,已知这种商品每涨1元,其销售量就要减少10件,问该商品售价定为多少时才能赚取利润最大,并求出最大利润.
分析:设未知数,引进数学符号,建立函数关系式,再研究函数关系式的定义域,并结合问题的实际意义作出回答.利润=(售价-进价)×销售量.
解:设商品售价定为x元时,利润为y元,则
y=(x-8)[60-(x-10)·10]
=-10[(x-12)2-16]=-10(x-12)2+160(10<x<16).
当且仅当x=12时,y有最大值160元,
即售价定为12元时可获最大利润160元.
思路2
例1已知函数f(x)=x+,x>0,
(1)证明当0(2)求函数f(x)=x+,x>0的最小值.
活动:学生思考判断函数单调性的方法,以及函数最小值的含义.(1)利用定义法证明函数的单调性;(2)应用函数的单调性得函数的最小值.
(1)解:任取x1、x2∈(0,+∞)且x1<x2,则
f(x1)-f(x2)=(x1+)-(x2+)=(x1-x2)+=,
∵x1<x2,∴x1-x2<0,x1x2>0.
当0<x1<x2<1时,x1x2-1<0,
∴f(x1)-f(x2)>0.
∴f(x1)>f(x2),即当0当1≤x1<x2时,x1x2-1>0,
∴f(x1)-f(x2)<0.
∴f(x1)<f(x2),即当x≥1时,函数f(x)是增函数.
(2)解法一:由(1)得当x=1时,函数f(x)=x+,x>0取最小值.
又f(1)=2,则函数f(x)=x+,x>0取最小值是2.
解法二:借助于计算机软件画出函数f(x)=x+,x>0的图象,如图1-3-1-15所示,
( http: / / www.21cnjy.com )
图1-3-1-15
由图象知,当x=1时,函数f(x)=x+,x>0取最小值f(1)=2.
点评:本题主要考查函数的单调性和最值.定义法证明函数的单调性的步骤是“去比赛”;三个步骤缺一不可.
利用函数的单调性求函数的最值的步骤
( http: / / www.21cnjy.com ):①先判断函数的单调性,再利用其单调性求最值;常用到下面的结论:①如果函数y=f(x)在区间(a,b]上单调递增,在区间[b,c)上单调递减,则函数y=f(x)在x=b处有最大值f(b);②如果函数y=f(x)在区间(a,b]上单调递减,在区间[b,c)上单调递增,则函数y=f(x)在x=b处有最小值f(b).这种求函数最值的方法称为单调法.
图象法求函数的最值的步骤:画出函数的图象,依据函数最值的几何意义,借助图象写出最值.
变式训练
1.求函数y=(x≥0)的最大值.
解析:可证明函数y=(x≥0)是减函数,
∴函数y=(x≥0)的最大值是f(0)=3.
2.求函数y=|x+1|+|x-1|的最大值和最小值.
解法一:(图象法)y=|x+1|+|x-1|=其图象如图1-3-1-16所示.
( http: / / www.21cnjy.com )
图1-3-1-16
由图象得,函数的最小值是2,无最大值.
解法二:(数形结合)函数的解
( http: / / www.21cnjy.com )析式y=|x+1|+|x-1|的几何意义是:y是数轴上任意一点P到±1的对应点A、B的距离的和,即y=|PA|+|PB|,如图1-3-1-17所示,
图1-3-1-17
观察数轴,可得|PA|+|PB|≥|AB|=2,即函数有最小值2,无最大值.
3.设0分析:y=,当0∴y≥4.
答案:4
例2将进货单价40元的商品按50元一个售出时,能卖出500个,若此商品每个涨价1元,其销售量减少10个,为了赚到最大利润,售价应定为多少?
活动:让学生思考利润的意义
( http: / / www.21cnjy.com ),以及利润和售价之间的函数关系.设出一般情况,转化为求二次函数的最值.解决此类应用题,通常是建立函数模型,这是解题的关键.
解:设每个售价为x元时,获得利润为y元,
则每个涨(x-50)元,从而销售量减少10(x-50)个,共售出500-10(x-50)=1000-10x(个).
∴y=(x-40)(1000-10x)=-10(x-70)2+9
000(50≤x<100).
∴当x=70时,ymax=9000,
即为了赚取最大利润,售价应定为70元.
点评:本题主要考查二次函数的最值问题,以
( http: / / www.21cnjy.com )及应用二次函数解决实际问题的能力.解应用题步骤是:①审清题意读懂题;②将实际问题转化为数学问题来解决;③归纳结论.
注意:要坚持定义域优先的原则;求二次函数的最值要借助于图象即数形结合.
变式训练
1.已知某商品的价格每上涨x%,销售的数量就减少mx%,其中m为正常数.当m=时,该商品的价格上涨多少,就能使销售的总金额最大?
解:设商品现在定价a元,卖出的数量为b个,当价格上涨x%时,销售总额为y元.
由题意得y=a(1+x%)·b(1-mx%),
即y=[-mx2+100(1-m)x+10
000].
当m=时,y=[-(x-50)2+22
500],
则当x=50时,ymax=ab.
即该商品的价格上涨50%时,销售总金额最大.
2.某军工企业生产一种精密电子仪器的固定成本为20
000元,每生产一台仪器需增加投入100元,已知总收益满足函数:R(x)=其中x是仪器的月产量.
(1)将利润表示为月产量的函数.
(2)当月产量为何值时,公司所获利润最大?最大利润是多少元?(总收益=总成本+利润).
分析:本题主要考查二次函数及其最值
( http: / / www.21cnjy.com ),以及应用二次函数解决实际问题的能力.(1)利润=总收益-总成本;(2)转化为求函数的最值,由于此函数是分段函数,则要求出各段上的最大值,再从中找出函数的最大值.
解:(1)设月产量为x台,则总成本为20
000+100x,
从而f(x)=
(2)当0≤x≤400时,f(x)=(x-300)2+25000;
当x=300时,有最大值25000;
当x>400时,f(x)=60000-100x是减函数;
又f(x)<60000-100×400<25000,
所以,当x=300时,有最大值25000,
即当月产量为300台时,公司所获利润最大,最大利润是25000元.
知能训练
课本P32练习5.
[补充练习]
某厂2007年拟举行促销活动,经调查测算,该厂产品的年销售量(即该厂的年产量)x万件与去年促销费m(万元)(m≥0)满足x=3.已知2007年生产的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).
(1)将2007年该产品的利润y万元表示为年促销费m(万元)的函数;
(2)求2007年该产品利润的最大值,此时促销费为多少万元?
分析:(1)年利润=销售价格×年销售量-固定投入-促销费-再投入,销售价格=1.5×每件产品平均成本;(2)利用单调法求函数的最大值.
解:(1)每件产品的成本为元,故2007年的利润
y=1.5××x-(8+16x+m)=4+8x-m=4+8(3)-m=28-m(万元)(m≥0).
(2)可以证明当0≤m≤3时,函数y=28-m是增函数,当m>3时,函数y=28-m是减函数,所以当m=3时,函数y=28-m取最大值21(万元).
拓展提升
问题:求函数y=的最大值.
探究:(方法一)利用计算机软件画出函数的图象,如图1-3-1-18所示,
( http: / / www.21cnjy.com )
图1-3-1-18
故图象最高点是(,).
则函数y=的最大值是.
(方法二)函数的定义域是R,
可以证明当x<时,函数y=是增函数;
当x≥时,函数y=是减函数.
则当x=时,函数y=取最大值,
即函数y=的最大值是.
(方法三)函数的定义域是R,
由y=,得yx2+yx+y-1=0.
∵x∈R,∴关于x的方程yx2+yx+y-1=0必有实数根,
当y=0时,关于x的方程yx2+yx+y-1=0无实数根,即y=0不属于函数的值域.
当y≠0时,则关于x的方程yx2+yx+y-1=0是一元二次方程,
则有Δ=(-y)2-4×y(y-1)≥0.∴0∴函数y=的最大值是.
点评:方法三称为判别式法,形如函数y=(d≠0),当函数的定义域是R(此时e2-4df<0)时,常用判别式法求最值,其步骤是①把y看成常数,将函数解析式整理为关于x的方程的形式mx2+nx+k=0;②分类讨论m=0是否符合题意;③当m≠0时,关于x的方程mx2+nx+k=0中有x∈R,则此一元二次方程必有实数根,得n2-4mk≥0,即关于y的不等式,解不等式组
m≠0.此不等式组的解集与②中y的值取并集得函数的值域,从而得函数的最大值和最小值.
课堂小结
本节课学习了:(1)函数的最值;(2)求函数最值的方法:①图象法,②单调法,③判别式法;(3)求函数最值时,要注意函数的定义域.
作业
课本P39习题1.3A组5、6.
设计感想
为达到本节课的教学目标,突出重点,突破难点,教学上采取了以下的措施:
(1)在探索概念阶段,让学生经历从直观到抽象
( http: / / www.21cnjy.com )、从特殊到一般、从感性到理性的认知过程,完成对函数最值定义的三次认识,使得学生对概念的认识不断深入.
(2)在应用概念阶段,通过对证明过程的分析,帮助学生掌握用图象和单调法求函数最值的方法和步骤.
备课资料
基本初等函数的最值
1.正比例函数:y=kx
( http: / / www.21cnjy.com )(k≠0)在定义域R上不存在最值.在闭区间[a,b]上存在最值,当k>0时,函数y=kx的最大值为f(b)=kb,最小值为f(a)=ka;当k<0时,函数y=kx的最大值为f(a)=ka,最小值为f(b)=kb.
2.反比例函数:y=(k≠0)在定义域(-∞,0)∪(0,+∞)上不存在最值.在闭区间[a,b](ab>0)上存在最值,当k>0时,函数y=的最大值为f(a)=,最小值为f(b)=;当k<0时,函数y=的最大值为f(b)=,最小值为f(a)=.
3.一次函数:y=kx+b(
( http: / / www.21cnjy.com )k≠0)在定义域R上不存在最值.在闭区间[m,n]上存在最值,当k>0时,函数y=kx+b的最大值为f(n)=kn+b,最小值为f(m)=km+b;当k<0时,函数y=kx+b的最大值为f(m)=km+b,最小值为f(n)=kn+b.
4.二次函数:y=ax2+bx+c(a≠0):
当a>0时,函数y=ax2+bx+c在定义域R上有最小值f()=,无最大值;
当a<0时,函数y=ax2+bx+c在定义域R上有最大值f()=,无最小值.
二次函数在闭区间上的最值问题是高考考
( http: / / www.21cnjy.com )查的重点和热点内容之一.二次函数f(x)=ax2+bx+c(a>0)在闭区间[p,q]上的最值可能出现以下三种情况:
(1)若<p,则f(x)在区间[p,q]上是增函数,则f(x)min=f(p),f(x)max=f(q).
(2)若p≤≤q,则f(x)min=f(),此时f(x)的最大值视对称轴与区间端点的远近而定:
①当p≤<时,则f(x)max=f(q);
②当=时,则f(x)max=f(p)=f(q);
③当<<q时,则f(x)max=f(p).
(3)若≥q,则f(x)在区间[p,q]上是减函数,则f(x)min=f(q),f(x)max=f(p).
由此可见,当∈[p,q]时,二次函数f(x)=ax2+bx+c(a>0)在闭区间[p,q]上的最大值是f(p)和f(q)中的最大值,最小值是f();当[p,q]时,二次函数f(x)=ax2+bx+c(a>0)在闭区间[p,q]上的最大值是f(p)和f(q)中的最大值,最小值是f(p)和f(q)中的最小值.1.2.2
函数的表示法
整体设计
教学分析
课本从引进函数概念开始就比较注重函数的不
( http: / / www.21cnjy.com )同表示方法:解析法,图象法,列表法.函数的不同表示方法能丰富对函数的认识,帮助理解抽象的函数概念.特别是在信息技术环境下,可以使函数在形与数两方面的结合得到更充分的表现,使学生通过函数的学习更好地体会数形结合这种重要的数学思想方法.因此,在研究函数时,要充分发挥图象的直观作用.在研究图象时,又要注意代数刻画以求思考和表述的精确性.课本将映射作为函数的一种推广,这与传统的处理方式有了逻辑顺序上的变化.这样处理,主要是想较好地衔接初中的学习,让学生将更多的精力集中理解函数的概念,同时,也体现了从特殊到一般的思维过程.
三维目标
1.了解函数的一些基本表示法(列表法、图象法、解析法),会根据不同实际情境选择合适的方法表示函数,树立应用数形结合的思想.
2.通过具体实例,了解简单的分段函数,并能简单应用,提高应用函数解决实际问题的能力,增加学习数学的兴趣.
3.会用描点法画一些简单函数的图象,培养学生应用函数的图象解决问题的能力.
4.了解映射的概念及表示方法,会利用映
( http: / / www.21cnjy.com )射的概念来判断“对应关系”是否是映射,感受对应关系在刻画函数和映射概念中的作用,提高对数学高度抽象性和广泛应用性的进一步认识.
重点难点
教学重点:函数的三种表示方法,分段函数和映射的概念.
教学难点:分段函数的表示及其图象,映射概念的理解;运用集合两种常用表示——列举法与描述法.
课时安排
3课时
教学过程
第1课时
导入新课
思路1.语言是沟通人与人之间的联系的,同样
( http: / / www.21cnjy.com )的祝福又有着不同的表示方法.例如,简体中文中的“生日快乐!”用繁体中文为:生日快樂!英文为:Happy
Birthday!法文是Bon
Anniversaire!德文是Alles
Gute
Zum
Geburtstag!西班牙中称iFeliz
CumpleaRos!印度尼西亚文是Selamat
Ulang
Tahun!荷兰文的生日快乐为Van
Harte
Gefeliciteerd
met
jeverj
aardag!在俄语中则是С
днем
рождения!……那么对于函数,又有什么不同的表示方法呢?引出课题:函数的表示法.
思路2.我们前面已经学习了函数
( http: / / www.21cnjy.com )的定义,函数的定义域的求法,函数值的求法,两个函数是否相同的判定方法,那么函数的表示方法常用的有哪些呢?这节课我们就来研究这个问题(板书课题).
推进新课
新知探究
提出问题
初中学过的三种表示法:解析法、图象法和列表法各是怎样表示函数的?
讨论结果:(1)解析法:用数学表达式表示两个变量之间的函数关系,这种表示方法叫做解析法,这个数学表达式叫做函数的解析式.
(2)图象法:以自变量x的取值为
( http: / / www.21cnjy.com )横坐标,对应的函数值y为纵坐标,在平面直角坐标系中描出各个点,这些点构成了函数的图象,这种用图象表示两个变量之间函数关系的方法叫做图象法.
(3)列表法:列一个两行多列的表格,第一行是自变量的取值,第二行是对应的函数值,这种用表格来表示两个变量之间的函数关系的方法叫做列表法.
应用示例
思路1
1.某种笔记本的单价是5元,买x(x∈{1,2,3,4,5})个笔记本需要y元,试用三种表示法表示函数y=f(x).
活动:学生思考函数的表示法的规定.注意本例的
( http: / / www.21cnjy.com )设问,此处“y=f(x)”有三种含义,它可以是解析表达式,可以是图象,也可以是对应值表.本题的定义域是有限集,且仅有5个元素.
解:这个函数的定义域是数集{1,2,3,4,5},
用解析法可将函数y=f(x)表示为
y=5x,x∈{1,2,3,4,5}.
用列表法可将函数y=f(x)表示为
笔记本数x
1
2
3
4
5
钱数y
5
10
15
20
25
用图象法可将函数y=f(x)表示为图1-2-2-1.
( http: / / www.21cnjy.com )
图1-2-2-1
点评:本题主要考查函数的三种表示法
( http: / / www.21cnjy.com ).解析法的特点是:简明、全面地概括了变量间的关系;可以通过解析式求出任意一个自变量的值所对应的函数值,便于用解析式来研究函数的性质,还有利于我们求函数的值域;图象法的特点是:直观形象地表示自变量的变化,相应的函数值变化的趋势,有利于我们通过图象来研究函数的某些性质,图象法在生产和生活中有许多应用,如企业生产图,股市走势图等;列表法的特点是:不需要计算就可以直接看出与自变量的值对应的函数值,列表法在实际生产和生活中也有广泛的应用,如银行利率表、列车时刻表等等.但是并不是所有的函数都能用解析法表示,只有函数值随自变量的变化发生有规律的变化时,这样的函数才可能有解析式,否则写不出解析式,也就不能用解析法表示.例如:张丹的年龄n(n∈N
)每取一个值,那么他的身高y(单位:cm)总有唯一确定的值与之对应,因此身高y是年龄n的函数y=f(n),但是这个函数的解析式不存在,函数y=f(n)不能用解析法来表示.
注意:①函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等;
②解析法:必须注明函数的定义域,否则使函数解
( http: / / www.21cnjy.com )析式有意义的自变量的取值范围是函数的定义域;③图象法:根据实际情境来决定是否连线;④列表法:选取的自变量要有代表性,应能反映定义域的特征.
变式训练
1.已知函数f(x)在[-1,2]上的图象如图1-2-2-2所示,求f(x)的解析式.
图1-2-2-2
解:观察图象,知此函数是分段函数,并且在每段上均是一次函数,利用待定系数法求出解析式为:
当-1≤x≤0时,f(x)=x+1;
当02.2007山东青岛第一次调研,理13已知2f(x)+f(-x)=3x+2,则f(x)=________.
分析:由题意得
把f(x)和f(-x)看成未知数,解方程即得.
答案:3x+
2.下表是某校高一(1)班三位同学在高一学年度几次数学测试的成绩及班级平均分表:
第一次
第二次
第三次
第四次
第五次
第六次
王伟
98
87
91
92
88
95
张城
90
76
88
75
86
80
赵磊
68
65
73
72
75
82
班平均分
88.2
78.3
85.4
80.3
75.7
82.6
请你对这三位同学在高一学年度的数学学习情况做一个分析.
活动:学生思考做学情分析,具体要分析什么?怎
( http: / / www.21cnjy.com )么分析?借助什么工具?本题利用表格给出了四个函数,它们分别表示王伟、张城、赵磊的考试成绩及各次考试的班级平均分.由于表格区分三位同学的成绩高低不直观,故采用图象法来表示.做学情分析,具体要分析学习成绩是否稳定,成绩变化趋势.
解:把“成绩”y看成“测试序号”x的函数,用图象法表示函数y=f(x),如图1-2-2-3所示.
( http: / / www.21cnjy.com )
图1-2-2-3
由图1-2-2-3可看到:
王伟同学的数学成绩始终高于班级平均分,学习情况比较稳定而且成绩优秀;
张城同学的数学成绩不稳定,总是在班级平均分水平上下波动,而且波动幅度较大;
赵磊同学的数学学习成绩呈上升趋势,表明他的数学成绩稳步提高.
点评:本题主要考查根据实际情境需要选择恰
( http: / / www.21cnjy.com )当的函数表示法的能力,以及应用函数解决实际问题的能力.通过本题可见,图象法比列表法和解析法更能直观反映函数值的变化趋势.
注意:本例为了研究学生的学习情况,将离散的点用虚线连接,这样便于研究成绩的变化特点.
变式训练
1.函数y=x2-4x+6,x∈[1,5)的值域是_________.
分析:画出函数的图象,图象上所有点的纵坐标的取值范围就是函数的值域.
答案:[2,11)
2.将长为a的铁丝折成矩形,求矩形面积y关于一边长x的函数关系式,并求定义域和值域,作出函数的图象.
分析:解此题的关键是先把实际问题转化成数学问题,即把面积y表示为x的函数,用数学的方法解决,然后再回到实际中去.
解:设矩形一边长为x,则另一边长为(a-2x),则面积y=(a-2x)x=-x2+ax.
又得0由于y=-(x)2+a2≤a2,
如图1-2-2-4所示,结合函数的图象得值域为(0,a2].
( http: / / www.21cnjy.com )
图1-2-2-4
3.向高为H的水瓶中注水,注满为止,如果注水量V与水深h的函数关系的图象如图1-2-2-5所示,那么水瓶的形状是(
)
( http: / / www.21cnjy.com )
图1-2-2-5
图1-2-2-6
分析:要求由水瓶的形状识别容积V和高度h的函数关系,突出了对思维能力的考查.
观察图象,根据图象的特点发现:取水深h=,注水量V′>,
即水深为一半时,实际注水量大于水瓶总水量的一半.
A中V′<,C、D中V′=,故排除A、C、D.
答案:B
思路2
1.已知f()=,则f(x)=________.
活动:
学生思考函数的解析式表达的含义.设=t,利用换元法,转化为求f(t).利用整体思想把看成一个整体,即可得函数的解析式.要注意函数f(t)与f(x)是同一个函数.
分析:
可设=t,则有x=,
所以f(t)==,
所以f(x)=.
答案:
变式训练
课本P26练习1.
点评:本题主要考查函数的解析式.已知f[g(
( http: / / www.21cnjy.com )x)]=φ(x),求f(x)的解析式时,通常用换元法,其步骤是:①设g(x)=t;②把t看成常数,解关于x的方程g(x)=t得x=h(t);③将x=h(t)代入φ(x),得函数f(t)的解析式;④再用x替换f(t)的解析式中的t得函数f(x)的解析式.
其实求函数的解析式方法很多,例如方程法:对
( http: / / www.21cnjy.com )于已知等式中出现两个不同变量的函数关系式,依据这两个变量的关系,重新建立关于这两个变量的不同等式,利用整体思想,把f(x)和另一个函数看成未知数,解方程组得函数f(x)的解析式.类似于解二元一次方程组,故称为方程法.待定系数法:已知函数的模型求其解析式时,常用待定系数法.
2.已知函数f(x)=.
(1)画出函数f(x)的图象;
(2)观察图象写出函数的定义域和值域.
活动:学生思考函数图象的画法.利用变换法画函数f(x)的图象,利用图象法写出函数的定义域和值域.形如函数y=(c≠0,a2+b2≠0)的图象均可由反比例函数y=的图象经过平移得到,因此函数y=(c≠0,a2+b2≠0)的图象形状是双曲线.
解:(1)y===.
将y=的图象向左平移两个单位得y=的图象,再向上平移三个单位得y=+3的图象.
图象如图1-2-2-7所示.
( http: / / www.21cnjy.com )图1-2-2-7
(2)观察函数的图象图1-2-2-7,
可知图象上所有点的横坐标的取值范围是(-∞,-2)∪(-2,+∞),
图象上所有点的纵坐标的取值范围是(-∞,3)∪(3,+∞).
则函数的定义域是(-∞,-2)∪(-2,+∞),值域是(-∞,3)∪(3,+∞).
点评:本题主要考查函数的定
( http: / / www.21cnjy.com )义域、值域和图象.画不熟悉的函数的图象,可以变形成由基本函数,利用变换法画出图象,但要注意变形过程是否等价,注意x,y的变化范围.因此必须熟记基本初等函数的图象,如:正、反比例函数,一次、二次函数的图象,在变换函数的解析式中运用了转化和分类讨论的思想.
求函数值域的方法:
①图象法,借助于函数值域的几何意义,利用函数的图象求值域;
②观察法,对于解析式比较简单的函数,利用常见的结论如x2≥0,|x|≥0,x≥0等观察出函数的值域;
③换元法,利用换元法转化为求常见函数如二次函数的值域等.
注意:讨论函数的值域要先考虑函数的定义域,本
( http: / / www.21cnjy.com )例中(1)如果忽视函数的定义域,那么会错误地得函数值域为[-1,+∞).避免此类错误的方法是研究函数时要遵守定义域优先的原则.
变式训练
求下列函数的值域:(1)y=x2-2x(-1≤x≤2);(2)y=x4+1.
分析:本题主要考查函数的值域及其求法
( http: / / www.21cnjy.com ).(1)借助于函数值域的几何意义,利用函数的图象求值域;(2)观察得x4≥0,得函数的值域,也可以利用换元法转化为求二次函数的值域.
(1)解:(图象法)在平面直角坐标系中画出二次函数y=x2-2x(-1≤x≤2)的图象,如图1-2-2-8所示:
( http: / / www.21cnjy.com )
图1-2-2-8
函数y=x2-2x(-1≤x≤2)的图象上所有点的纵坐标的取值范围就是函数的值域,观察图象知函数的值域是[-1,3].
(2)解法一:(观察法)函数的定义域是R,则x4≥0,有x4+1≥1,即函数y=x4+1的值域是[1,+∞).
解法二:(换元法)函数的定义域是R,设x2=
( http: / / www.21cnjy.com )t,则t≥0,则有y=t2+1.利用图象可求得当t≥0时,二次函数y=t2+1的值域是[1,+∞),即函数y=x4+1的值域是[1,+∞).
3.车管站在某个星期日保管的自行车和电动车共有3
500辆次,其中电动车保管费是每辆一次0.5元,自行车保管费是每次一辆0.3元.
(1)若设自行车停放的辆次数为x,总的保管费收入为y元,试写出y关于x的函数关系式;
(2)若估计前来停放的3
500辆次自行车中,电动车的辆次不小于25%,但不大于40%,试求该保管站这个星期日收入保管费总数的范围.
活动:让学生审清题意读懂题.求解析式时不要忘
( http: / / www.21cnjy.com )记函数的定义域,要考虑自变量的取值必须使解析式有意义.然后再根据解析式列不等式求解.总的保管费=自行车保管费+电动车保管费.
解:(1)由题意得
y=0.3x+0.5(3500-x)=-0.2x+1750,x∈N
且0≤x≤3500.
(2)若电动车的辆次不小于25%,但不大于40%,
则3500×(1-40%)≤x≤3
500×(1-25%),
即2100≤x≤2
625,
画出函数y=-0.2x+1750(2
100≤x≤2
625)的图象,可得
函数y=-0.2x+1750(2100≤x≤2625)的值域是[1225,1330],
即收入在1225元至1330元之间.
点评:本题主要考查函数的解析式和值域,以及
( http: / / www.21cnjy.com )应用函数知识解决实际问题的能力.解函数应用题的步骤是①审清题意读懂题;②恰当设未知数;③列出函数解析式,并指明定义域;④转化为函数问题,并解决函数问题;⑤将数学问题的答案还原为实际答案.
变式训练
水池有2个进水口,1个出水口,每
( http: / / www.21cnjy.com )个水口进出水的速度如图1-2-2-9甲、乙所示.某天0点到6点,该水池的蓄水量如图1-2-2-9丙所示(至少打开一个水口).
( http: / / www.21cnjy.com )
图1-2-2-9
给出以下三个论断:
①0点到3点只进水不出水;
②3点到4点不进水只出水;
③4点到6点不进水不出水;
其中一定正确的论断是(
)
A.①
B.①②
C.①③
D.①②③
分析:由图1229甲可看出,如果进水口与出水口同时打开,每个进水口的速度为出水口速度的一半,即v进水=v出水;由图丙可看出在0点到3点之间蓄水量以速度2匀速增加,所以在此时间段内一定是两个进水口均打开,出水口关闭,故①正确.由图丙可看出在3点到4点之间蓄水量以速度1匀速减少,所以在此时间段内一定是一个进水口打开,出水口打开,故②不正确.由图丙可看出在4点到6点之间蓄水量不变,所以在此时间段内一定是两个进水口打开,出水口打开,或者两个进水口关闭,出水口关闭,故③不正确.综上所述论断仅有①正确.
答案:A
知能训练
课本P23练习2、3.
【补充练习】
1.等腰三角形的周长是20,底边长y是一腰长x的函数,则(
)
A.y=10-x(0B.y=10-x(0C.y=20-2x(5≤x≤10)
D.y=20-2x(5分析:根据等腰三角形的周长列出函数解析式.
∵2x+y=20,∴y=20-2
( http: / / www.21cnjy.com )x.则20-2x>0.∴x<10.由构成三角形的条件(两边之和大于第三边)可知2x>20-2x,得x>5,所以函数的定义域为{x|5答案:D
2.定义在R上的函数y=f(x)的值域为[a,b],则y=f(x+1)的值域为(
)
A.[a,b]
B.[a+1,b+1]
C.[a-1,b-1]
D.无法确定
分析:将函数y=f(x)的图象向左
( http: / / www.21cnjy.com )平移一个单位得函数y=f(x+1)的图象,由于定义域均是R,则这两个函数图象上点的纵坐标的取值范围相同,所以y=f(x+1)的值域也是[a,b].
答案:A
3.函数f(x)=(x∈R)的值域是(
)
A.(0,1)
B.(0,1]
C.[0,1)
D.[0,1]
分析:(观察法)定义域是R,由于x2≥0,则1+x2≥1,从而0<≤1.
答案:B
拓展提升
问题:变换法画函数的图象都有哪些
解答:变换法画函数的图象有三类:
1.平移变换:
(1)将函数y=f(x)的图象向左平移a(a>0)个单位得函数y=f(x+a)的图象;
(2)将函数y=f(x)的图象向右平移a(a>0)个单位得函数y=f(x-a)的图象;
(3)将函数y=f(x)的图象向上平移b(b>0)个单位得函数y=f(x)+b的图象;
(4)将函数y=f(x)的图象向下平移b(b>0)个单位得函数y=f(x)-b的图象.
简记为“左加(+)右减(-),上加(+)下减(-)”.
2.对称变换:
(1)函数y=f(x)与函数y=f(-x)的图象关于直线x=0即y轴对称;
(2)函数y=f(x)与函数y=-f(x)的图象关于直线x=0即x轴对称;
(3)函数y=f(x)与函数y=-f(-x)的图象关于原点对称.
3.翻折变换:
(1)函数y=|f(x)|的图象可以将函
( http: / / www.21cnjy.com )数y=f(x)的图象位于x轴下方部分沿x轴翻折到x轴上方,去掉原x轴下方部分,并保留y=f(x)的x轴上方部分即可得到.
(2)函数y=f(|x|)的
( http: / / www.21cnjy.com )图象可以将函数y=f(x)的图象y轴右边部分翻折到y轴左边替代原y轴左边部分并保留y=f(x)在y轴右边部分图象即可得到.
函数的图象是对函数关系的一种直观、形象的
( http: / / www.21cnjy.com )表示,可以直观地显示出函数的变化状况及其特性,它是研究函数性质时的重要参考,也是运用数形结合思想研究和运用函数性质的基础.另一方面,函数的一些特性又能指导作图,函数与图象是同一事物的两个方面,是函数的不同表现形式.函数的图象可以比喻成人的相片,观察函数的图象可以解决研究其性质,当然,也可以由函数的性质确定函数图象的特点.借助函数的图象来解决函数问题,函数的图象问题是高考的热点之一,应引起重视.
课堂小结
本节课学习了:函数的三种表示方法,在具体的实际问题中能够选用恰当的表示法来表示函数.
作业
课本P24习题1.2A组7、8、9.
设计感想
本节教学设计容量较大,尽量借助于信息技术
( http: / / www.21cnjy.com )来完成.本节的设计重点是函数的三种表示方法,提出了表示法的应用,特别是用图象法求函数的值域,并对求函数值域的方法进行了总结以满足高考的要求.第2课时
函数相等


1.函数的概念.
2.函数的定义域的求法.
导入新课
思路1.当实数a、b的符号相同,绝对值相
( http: / / www.21cnjy.com )等时,实数a=b;当集合A、B中元素完全相同时,集合A=B;那么两个函数满足什么条件才相等呢?引出课题:函数相等.
思路2.我们学习了函数的概念,y=x与y=是同一个函数吗?这就是本节课学习的内容,引出课题:函数相等.
推进新课
新知探究
提出问题
①指出函数y=x+1的构成要素有几部分?
②一个函数的构成要素有几部分?
③分别写出函数y=x+1和函数y=t+1的定义域和对应关系,并比较异同.
④函数y=x+1和函数y=t+1的值域相同吗?由此可见两个函数的定义域和对应关系分别相同,值域相同吗?
⑤由此你对函数的三要素有什么新的认识?
讨论结果:①函数y=x+1的构成要素为:定义域R,对应关系x→x+1,值域是R.
②一个函数的构成要素为:定
( http: / / www.21cnjy.com )义域、对应关系和值域,简称为函数的三要素.其中定义域是函数的灵魂,对应关系是函数的核心.当且仅当两个函数的三要素都相同时,这两个函数才相同.
③定义域和对应关系分别相同.
④值域相同.
⑤如果两个函数的定义域和对应关系分别相同,那么它们的值域一定相等.因此只要两个函数的定义域和对应关系分别相同,那么这两个函数就相等.
应用示例
思路1
1.下列函数中哪个与函数y=x相等?
(1)y=()2;(2)y=;(3)y=;(4)y=.
活动:
让学生思考两个函数相等的条件后
( http: / / www.21cnjy.com ),引导学生求出各个函数的定义域,化简函数关系式为最简形式.只要它们定义域和对应关系分别相同,那么这两个函数就相等.
解:函数y=x的定义域是R,对应关系是x→x.
(1)∵函数y=()2的定义域是[0,+∞),
∴函数y=()2与函数y=x的定义域R不相同.
∴函数y=()2与函数y=x不相等.
(2)∵函数y=的定义域是R,
∴函数y=与函数y=x的定义域R相同.
又∵y==x,
∴函数y=与函数y=x的对应关系也相同.
∴函数y=与函数y=x相等.
(3)∵函数y=的定义域是R,
∴函数y=与函数y=x的定义域R相同.
又∵y==|x|,
∴函数y=与函数y=x的对应关系不相同.
∴函数y=与函数y=x不相等.
(4)∵函数y=的定义域是(-∞,0)∪(0,+∞),
∴函数y=与函数y=x的定义域R不相同,
∴函数y=()2与函数y=x不相等.
点评:本题主要考查函数相
( http: / / www.21cnjy.com )等的含义.讨论函数问题时,要保持定义域优先的原则.对于判断两个函数是否是同一个函数,要先求定义域,若定义域不同,则不是同一个函数;若定义域相同,再化简函数的解析式,若解析式相同(即对应关系相同),则是同一个函数,否则不是同一个函数.
变式训练
判断下列各组的两个函数是否相同,并说明理由.
①y=x-1,x∈R与y=x-1,x∈N;
②y=与y=·;
③y=1+与u=1+;
④y=x2与y=x;
⑤y=2|x|与y=
⑥y=f(x)与y=f(u).
是同一个函数的是________(把是同一个函数的序号填上即可).
解:只需判断函数的定义域和对应法则是否均相同即可.
①前者的定义域是R,后者的定义域是N,由于它们的定义域不同,故不是同一个函数;
②前者的定义域是{x|x≥2或x≤-2},后者的定义域是{x|x≥2},它们的定义域不同,故不是同一个函数;
③定义域相同均为非零实数,对应法则相同都是自变量取倒数后加1,那么值域必相同,故是同一个函数;
④定义域是相同的,但对应法则不同,故不是同一个函数;
⑤函数y=2|x|=则定义域和对应法则均相同,那么值域必相同,故是同一个函数;
⑥定义域相同,对应法则相同,那么值域必相同,故是同一个函数.
故填③⑤⑥.
思路2
1.判断下列函数f(x)与g(x)是否表示同一个函数,说明理由.
(1)f(x)=(x-1)0,g(x)=1.
(2)f(x)=x-1,g(x)=.
(3)f(x)=x2,g(x)=(x+1)2.
(4)f(x)=x2-1,g(u)=u2-1.
活动:学生思考函数的概念及其三要素,教师引导学生先判断定义域是否相同,当定义域相同时,再判断它们的对应关系是否相同.
解:(1)∵f(x)=(x-1)0的定义域是{x|x≠1},函数g(x)=1的定义域是R,
∴函数f(x)=(x-1)0与函数g(x)=1的定义域不同.
∴函数f(x)=(x-1)0与函数g(x)=1不表示同一个函数.
(2)∵f(x)=x-1的定义域是R,g(x)==的定义域是R,
∴函数f(x)=x-1与函数g(x)=的定义域相同.
又∵g(x)===|x-1|,
∴函数f(x)=x-1与函数g(x)=的对应关系不同.
∴函数f(x)=x-1与函数g(x)=不表示同一个函数.
(3)很明显f(x)=x2和g(x)=(x+1)2的定义域都是R,
又∵f(x)=x2和g(x)=(x+1)2的对应关系不同,
∴函数f(x)=x2和g(x)=(x+1)2不表示同一个函数.
(4)很明显f(x)=x2-1与g(u)=u2-1的定义域都是R,
又∵f(x)=x2-1与g(u)=u2-1的对应关系也相同,
∴函数f(x)=x2-1与g(u)=u2-1表示同一个函数.
变式训练
1.已知函数f(x)满足f(ab)=f(a)+f(b)且f(2)=p,f(3)=q,则f(36)=_______.
解:由题意得f(36)=f(6×6)=f(6)+f(6)=2f(6)=2f(2×3)=2[f(2)+f(3)]=2p+2q.
答案:2p+2q
2.函数y=f(x)的图象与直线x=2的公共点共有(
)
A.0个
B.1个
C.0个或1个
D.不确定
答案:C
2.设y是u的函数y=f(u),而u又是x的函数u=g(x),设M表示u=g(x)的定义域,N是函数y=f(u)的值域,当M∩N≠时,则y成为x的函数,记为y=f[g(x)].这个函数叫做由y=f(u)及u=g(x)复合而成的复合函数,它的定义域为M∩N,u叫做中间变量,f称为外层函数,g称为内层函数.指出下列复合函数外层函数和内层函数,并且使外层函数和内层函数均为基本初等函数.
(1)y=;(2)y=(x2-2x+3)2;(3)y=-1.
活动:让学生思考有哪些基本初等函数,它们的解析式是什么.
解:(1)设y=,u=x+1,
即y=的外层函数是反比例函数y=,内层函数是一次函数u=x+1.
(2)设y=u2,u=x2-2x+3,
即y=(x2-2x+3)2的外层函数是二次函数y=u2,内层函数是二次函数u=x2-2x+3.
(3)设y=u2+u-1,u=,
即y=-1的外层函数是二次函数y=u2+u-1,内层函数是反比例函数u=.
点评:到目前为止,我们所遇到的函数大部分是复
( http: / / www.21cnjy.com )合函数,并且是由正、反比例函数和一、二次函数复合而成的,随着学习的深入,我们还会学习其他复合函数.复合函数是高考重点考查的内容之一,应引起我们的重视.
变式训练
1.设f(x)=,则=_______.
答案:-1
2.函数f(x)对任意实数x满足条件f(x+2)=,若f(1)=-5,则f[f(5)]=
.
分析:∵函数f(x)对任意实数x满足条件f(x+2)=
,∴f(x+4)=f[(x+2)+1]==f(x).
∴f(1)=f(1+4)=f(5).
又∵f(1)=-5,∴f(5)=-5.
∴f[f(5)]=f(-5)=f(-5+4)=f(-1)=f(-1+4)=f(3)=f(1+2)==.
答案:
知能训练
1.下列给出的四个图形中,是函数图象的是(
)
A.①
B.①③④
C.①②③
D.③④
( http: / / www.21cnjy.com )
图1-2-1-2
答案:B
2.函数y=f(x)的定义域是R,值域是[1,2],则函数y=f(2x-1)的值域是_______.
答案:[1,2]
3.下列各组函数是同一个函数的有________.
①f(x)=,g(x)=x;②f(x)=x0,g(x)=;
③f(x)=,g(u)=;④f(x)=-x2+2x,g(u)=-u2+2u.
答案:②③④
拓展提升
问题:函数y=f(x)的图象与直线x=m有几个交点?
探究:设函数y=f(x)定义域是D,
当m∈D时,根据函数的定义知f(m)唯一,
则函数y=f(x)的图象上横坐标为m的点仅有一个(m,f(m)),
即此时函数y=f(x)的图象与直线x=m仅有一个交点;
当m?D时,根据函数的定义知f(m)不存在,
则函数y=f(x)的图象上横坐标为m的点不存在,
即此时函数y=f(x)的图象与直线x=m没有交点.
综上所得,函数y=f(x)的图象与直线x=m有交点时仅有一个,或没有交点.
课堂小结
(1)复习了函数的概念,总结了函数的三要素;
(2)学习了复合函数的概念;
(3)判断两个函数是否是同一个函数.
作业
1.设M={x|-2≤x≤2},N={y|0≤y≤2},给出下列4个图形,其中能表示以集合M为定义域,N为值域的函数关系是(
)
( http: / / www.21cnjy.com )
图1-2-1-3
分析:A中,当0( http: / / www.21cnjy.com )没有元素与x对应,不能构成函数关系;C中一个x有两个y与之对应,所以不是函数关系;D中,表示函数关系,但是表示的函数值域不是N.
答案:B
2.某公司生产某种产品的成本为1000
( http: / / www.21cnjy.com )元,以1100元的价格批发出去,随生产产品数量的增加,公司收入_______,它们之间是关系________.
分析:由题意,多生产一单位产品则
( http: / / www.21cnjy.com )多收入100元.生产产品数量看成是自变量,公司收入看成是因变量,容易得出对于自变量的每一个确定值,因变量都有唯一确定值与之对应,从而判断两者是函数关系.
答案:增加
函数
3.函数y=x2与S=t2是同一函数吗
答:函数的确定只与定义域与对应关系
( http: / / www.21cnjy.com )有关,而与所表示的字母无关,因此y=x2与S=t2表示的是同一个函数.因此并非字母不同便是不同的函数,这是由函数的本质决定的.
设计感想
本节教学内容主要是依据高考说明,对课本
( http: / / www.21cnjy.com )内容适当拓展,重点对函数的相等问题进行了引申,设计时对拓展的内容采取渐进式,设计时本着逐步提高、拓展,不能急于求成,否则事倍功半.1.1
集合
1.1.1
集合的含义与表示
整体设计
教学分析
集合论是现代数学的一个重要的基础.在高中
( http: / / www.21cnjy.com )数学中,集合的初步知识与其他内容有着密切的联系,是学习、掌握和使用数学语言的基础.课本从学生熟悉的集合(自然数的集合、有理数的集合等)出发,结合实例给出元素、集合的含义,课本注重体现逻辑思考的方法,如抽象、概括等.
值得注意的问题:由于本小节的新概念、新符号
( http: / / www.21cnjy.com )较多,建议教学时先引导学生阅读课本,然后进行交流,让学生在阅读与交流中理解概念并熟悉新符号的使用.在信息技术条件较好的学校,可以利用网络平台让学生交流学习概念后的认识;也可以由教师给出问题,让学生读后回答问题,再由教师给出评价.这样做的目的是培养学生主动学习的习惯,提高阅读与理解、合作与交流的能力.在处理集合问题时,根据需要,及时提示学生运用集合语言进行表述.
三维目标
1.通过实例了解集合的含义,体会元素与集合
( http: / / www.21cnjy.com )的“属于”关系,能选择集合不同的语言形式描述具体的问题,提高语言转换和抽象概括能力,树立用集合语言表示数学内容的意识.
2.了解集合元素的确定性、
( http: / / www.21cnjy.com )互异性、无序性,掌握常用数集及其专用符号,并能够用其解决有关问题,提高学生分析问题和解决问题的能力,培养学生的应用意识.
重点难点
教学重点:集合的基本概念与表示方法.
教学难点:选择恰当的方法表示一些简单的集合.
课时安排
1课时
设计方案(一)
教学过程
导入新课
思路1.军训前学校通知:8月15日8点,高一年级学生到操场集合进行军训.试问这个通知的对象是全体的高一学生还是个别学生?
在这里,集合是我们常用的一个词语,我们
( http: / / www.21cnjy.com )感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合.
思路2.首先教师提出问题:在初中,
( http: / / www.21cnjy.com )我们已经接触过一些集合,你能举出一些集合的例子吗 引导学生回忆、举例和互相交流自己举的例子.与此同时,教师对学生的活动给予评价.接着教师指出:那么,集合的含义是什么呢 这就是我们这一堂课所要学习的内容.
推进新课
新知探究
提出问题
①请我们班的全体女生起立!接下来问:“咱班的所有女生能不能构成一个集合啊?”
②下面请班上身高在1.75以上的男生起立!他们能不能构成一个集合啊?
③其实,生活中有很多东西能构成集合
( http: / / www.21cnjy.com ),比如新华字典里所有的汉字可以构成一个集合等等.那么,大家能不能再举出一些生活中的实际例子呢 请你给出集合的含义.
④如果用A表示高一(3)班全体学生组成的集合
( http: / / www.21cnjy.com ),用a表示高一(3)班的一位同学,b是高一(4)班的一位同学,那么a、b与集合A分别有什么关系 由此看见元素与集合之间有什么关系?
⑤世界上最高的山能不能构成一个集合?
⑥世界上的高山能不能构成一个集合?
⑦问题⑥说明集合中的元素具有什么性质?
⑧由实数1、2、3、1组成的集合有几个元素?
⑨问题⑧说明集合中的元素具有什么性质?
⑩由实数1、2、3组成的集
( http: / / www.21cnjy.com )合记为M,由实数3、1、2组成的集合记为N,这两个集合中的元素相同吗?这说明集合中的元素具有什么性质?由此类比实数相等,你发现集合有什么结论?
讨论结果:
①能.
②能.
③我们把研究的对象统称为“元素”,那么把一些元素组成的总体叫“集合”.
④a是集合A的元素,b不是集合A的元素.学生得出元素与集合的关系有两种:属于和不属于.
⑤能,是珠穆朗玛峰.
⑥不能.
⑦确定性.给定的集合,它的元素必须是明确的,即任何一个元素要么在这个集合中,要么不在这个集合中,这就是集合的确定性.
⑧3个.
⑨互异性.一个给定集合的元素是互不相同的,即集合中的元素是不重复出现的,这就是集合的互异性.
⑩集合M和N相同.这说明
( http: / / www.21cnjy.com )集合中的元素具有无序性,即集合中的元素是没有顺序的.可以发现:如果两个集合中的元素完全相同,那么这两个集合是相等的.
提出问题
阅读课本P3中:数学中一些常用的数集及其记法.快速写出常见数集的记号.
活动:先让学生阅读课本,教师指定学生展
( http: / / www.21cnjy.com )示结果.学生写出常用数集的记号后,教师强调:通常情况下,大写的英文字母N、Z、Q、R不能再表示其他的集合,这是专用集合表示符号,类似于110、119等专用电话号码一样.以后,我们会经常用到这些常见的数集,要求熟练掌握.
讨论结果:
常见数集的专用符号.
N:非负整数集(或自然数集)(全体非负整数的集合);
N
或N+:正整数集(非负整数集N内排除0的集合);
Z:整数集(全体整数的集合);
Q:有理数集(全体有理数的集合);
R:实数集(全体实数的集合).
提出问题
①前面所说的集合是如何表示的?
②阅读课本中的相关内容,并思考:除字母表示法和自然语言之外,还能用什么方法表示集合?
③集合共有几种表示法
活动:①学生回顾所学的集合并作出总结.教师提示可以用字母或自然语言来表示.
②教师可以举例帮助引导:
例如,24的所有正约数构成的集合,把2
( http: / / www.21cnjy.com )4的所有正约数写在大括号“{}”内,即写出为{1,2,3,4,6,8,12,24}的形式,这种表示集合的方法是列举法.注意:大括号不能缺失;有些集合所含元素个数较多,元素又呈现出一定的规律,在不至于发生误解的情况下,亦可用列举法表示,如:从1到100的所有整数组成的集合:{1,2,3,…,100},自然数集N:{0,1,2,3,4,…,n,…};区分a与{a}:{a}表示一个集合,该集合只有一个元素,a表示这个集合的一个元素;用列举法表示集合时不必考虑元素的前后次序;相同的元素不能出现两次.
又例如,不等式x-3>2的解集,这
( http: / / www.21cnjy.com )个集合中的元素有无数个,不适合用列举法表示.可以表示为{x∈R|x-3>2}或{x|x-3>2},这种表示集合的方法是描述法.
③让学生思考总结已经学习了的集合表示法.
讨论结果:
①方法一(字母表示法):大写的英文字母表示集合,例如常见的数集N、Q,所有的正方形组成的集合记为A等等;
方法二(自然语言):用文字语言来描述出的集合,例如“所有的正方形”组成的集合等等.
②列举法:把集合中的全部元素一一列举出来,并用大括号“{}”括起来表示集合,这种表示集合的方法叫做列举法;
描述法:在大括号内先写上表示这个集合元素
( http: / / www.21cnjy.com )的一般符号及其取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.这种用集合所含元素的共同特征表示集合的方法叫做描述法.注:在不致混淆的情况下,也可以简写成列举法的形式,只是去掉竖线和元素代表符号,例如:所有直角三角形的集合可以表示为{x|x是直角三角形},也可以写成{直角三角形}.
③表示一个集合共有四种方法:字母表示法、自然语言、列举法、描述法.
应用示例
思路1
1.下列各组对象不能组成集合的是(
)
A.大于6的所有整数
B.高中数学的所有难题
C.被3除余2的所有整数
D.函数y=图象上所有的点
活动:学生先思考、讨论集合元素的性质,教师指导学生此类选择题要逐项判断.判断一组对象能否构成集合,关键是看是否满足集合元素的确定性.
在选项A、C、D中的元素符合集合的确定性;而选项B中,难题没有标准,不符合集合元素的确定性,不能构成集合.
答案:B
变式训练
1.下列条件能形成集合的是(
)
A.充分小的负数全体
B.爱好足球的人
C.中国的富翁
D.某公司的全体员工
答案:D
2.在数集{2x,x2-x}中,实数x的取值范围是.
分析:实数x的取值满足集合元素的互异性,则2x≠x2-x,解得x≠0且x≠3,∴实数x的取值范围是{x|x<0或03}.
答案:{x|x<0或03}
点评:本题主要考查集合的含义和元素的性质.当所指的对象非常明确时就能构成集合,若元素不明确,没有判断的标准就不能构成集合.
2.用列举法表示下列集合:
(1)小于10的所有自然数组成的集合;
(2)方程x2=x的所有实数根组成的集合;
(3)由1~20以内的所有质数组成的集合.
活动:学生先思考或讨论列举法的形式,
( http: / / www.21cnjy.com )展示解答过程.当学生出现错误时,教师及时加以纠正.利用相关的知识先明确集合中的元素,再把元素写入大括号“{}”内,并用逗号隔开.所给的集合均是用自然语言给出的.
提示学生注意以下方面:
(1)自然数中包含零;
(2)解一元二次方程有公式法和分解因式法,方程x2=x的根是x=0,x=1;
(3)除去1和本身外没有其他约数的正整数是质数,1~20以内的所有质数是2、3、5、7、11、13、17、19.
解:(1)设小于10的所有自然数组成的集合为A,那么
A={0,1,2,3,4,5,6,7,8,9}.
(2)设方程x2=x的所有实数根组成的集合为B,那么
A={0,1}.
(3)设由1~20以内的所有质数组成的集合为C,那么
C={2,3,5,7,11,13,17,19}.
点评:本题主要考查集合表示法中的列举法.通过本题可以体会利用集合表示数学内容的简洁性和严谨性,以后我们尽量用集合来表示数学内容.
如果一个集合是有限集,并且元素的个数较少时,通常选择列举法表示,其特点是非常显明地表示出了集合中的元素,是常用的表示法;
列举法表示集合的步骤:(1)用字母表示集合;(2)明确集合中的元素;(3)把集合中所有元素写在大括号“{}”内,并写成A={……}的形式.
变式训练
用列举法表示下列集合:
(1)所有绝对值等于8的数的集合A;
(2)所有绝对值小于8的整数的集合B.
答案:(1)A={-8,8};
(2)B={-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7}.
3.试分别用列举法和描述法表示下列集合:
(1)方程x2-2=0的所有实数根组成的集合;
(2)由大于10小于20的所有整数组成的集合.
活动:先让学生回顾列举法表示集合的步骤
( http: / / www.21cnjy.com ),思考描述法的形式,再找学生到黑板上书写.当学生出现错误时,教师指导学生书写过程.用描述法表示集合时,要用数学符号表示集合元素的特征.大于10小于20的所有整数用数学符号可以表示为10用描述法表示集合时,用一个小写
( http: / / www.21cnjy.com )英文字母表示集合中的元素,作为集合中元素的代表符号,找到集合中元素的共同特征,并把共同特征用数学符号来表达,然后写在大括号“{}”内,在大括号内先写上集合中元素的代表符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.
在(1)中利用条件中现有元素代表符号x,集合中元素的共同特征就是满足方程x2-2=0.
在(2)的条件中没有元素代表符号,故要
( http: / / www.21cnjy.com )先设出,用一个小写英文字母表示即可;集合中元素的共同特征有两个:一是大于10小于20(用不等式表示),二是整数(用元素与集合的关系符号“∈”来表示).
解:(1)设方程x2-2=0的实根为x,它满足条件x2-2=0,因此,用描述法表示为
A={x∈R|x2-2=0}.
方程x2-2=0的两个实数根为,,因此,用列举法表示为
A={,}.
(2)设大于10小于20的整数为x,它满足条件x∈Z,且10B={x∈Z|10大于10小于20的整数有11,12,13,14,15,16,17,18,19,因此,用列举法表示为
B={11,12,13,14,15,16,17,18,19}.
描述法表示集合的步骤:(1)用字母分别表示
( http: / / www.21cnjy.com )集合和元素;(2)用数学符号表达集合元素的共同特征;(3)在大括号内先写上集合中元素的代表符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.并写成A={…|…}的形式.描述法适合表示有无数个元素的集合.
注意:当集合中的元素个数较少时,通常用列举法表示,否则用描述法表示.
思路2
1.(1)A={1,3},判断元素3,5和集合A的关系,并用符号表示.
(2)所有素质好的人能否表示为集合
(3)A={2,2,4}表示是否准确
(4)A={太平洋,大西洋},B={大西洋,太平洋}是否表示同一集合
活动:如果学生没有解题思路,让学生思考以下知识:
(1)元素与集合的关系及其符号表示;
(2)集合元素的性质;
(3)两个集合相同的定义.
解:(1)根据元素与集合的关系有两种:属于(∈)和不属于(),知3属于集合A,即3∈A,5不属于集合A,即5A.
(2)由于素质好的人标准不可量化,不符合集合元素的确定性,故A不能表示为集合.
(3)表示不准确,不符合集合元素的互异性,应表示为A={2,4}.
(4)因其元素相同,A与B表示同一集合.
变式训练
1.数集{3,x,x2-2x}中,实数x满足什么条件
解:集合元素的特征说明{3,x,x2-2x}中元素应满足
即也就是即满足x≠-1,0,3.
2.方程ax2+5x+c=0的解集是{,},则a=________,c=_______.
分析:方程ax2+5x+c=0的解集是{,},那么、是方程的两根,
即有得那么a=-6,c=-1.
答案:6
-1
3.集合A中的元素由关于x的方程kx2-3x+2=0的解构成,其中k∈R,若A中仅有一个元素,求k的值.
解:由于A中元素是关于x的方程kx2-3x+2=0(k∈R)的解,
若k=0,则x=,知A中有一个元素,符合题设;
若k≠0,则方程为一元二次方程,
当Δ=9-8k=0即k=时,kx2-3x+2=0有两相等的实数根,此时A中有一个元素.
综上所述k=0或k=.
4.定义集合运算:A⊙B={
( http: / / www.21cnjy.com )z|z=xy(x+y),x∈A,y∈B},设集合A={0,1},B={2,3},则集合A⊙B的所有元素之和为(
)
A.0
B.6
C.12
D.18
分析:∵x∈A,∴x=0或x=1.
当x=0,y∈B时,总有z=0;
当x=1时,
若x=1,y=2时,有z=6;当x=1,y=3时,有z=12.
综上所得,集合A⊙B的所有元素之和为0+6+12=18.
答案:D
注意:①判断元素与此集合的关系时,用列
( http: / / www.21cnjy.com )举法表示的集合,只需观察这个元素是否在集合中即可.用符号∈,?表示,注意这两个符号的左边写元素,右边写集合,不能互换它们的位置,否则没有意义.
②如果有明确的标准来判断元素在集合中,那么这些元素就能构成集合,否则不能构成集合.
③用列举法表示的集合,直接观察它们的元素是否完全相同,如果完全相同,那么这两个集合就相等,否则不相等.
2.用列举法表示下列集合:
(1)小于5的正奇数组成的集合;
(2)能被3整除且大于4小于15的自然数组成的集合;
(3)方程x2-9=0的解组成的集合;
(4){15以内的质数};
(5){x|∈Z,x∈Z}.
活动:教师指导学生思考列举法的书写格式,并讨论各个集合中的元素.明确各个集合中的元素,写在大括号内即可.
提示学生注意:
(2)中满足条件的数按从小到大排列时,从第二个数起,每个数比前一个数大3;
(4)中除去1和本身外没有其他的约数的正整数是质数;
(5)中3-x是6的约数,6的约数有±1,±2,±3,±6.
解:(1)满足题设条件小于5的正奇数有1、3,故用列举法表示为{1,3};
(2)能被3整除且大于4小于15的自然数有6、9、12,故用列举法表示为{6,9,12};
(3)方程x2-9=0的解为-3、3,故用列举法表示为{-3,3};
(4)15以内的质数有2、3、5、7、11、13,故该集合用列举法表示为{2,3,5,7,11,13};
(5)满足∈Z的x有3-x=±1、±2、±3、±6,解之,得x=2、4、1、5、0、6、-3、9,故用列举法表示为{2,4,1,5,0,6,-3,9}.
变式训练
用列举法表示下列集合:
(1)x2-4的一次因式组成的集合;
(2){y|y=-x2-2x+3,x∈R,y∈N};
(3)方程x2+6x+9=0的解集;
(4){20以内的质数};
(5){(x,y)|x2+y2=1,x∈Z,y∈Z};
(6){大于0小于3的整数};
(7){x∈R|x2+5x-14=0};
(8){(x,y)|x∈N且1≤x<4,y-2x=0};
(9){(x,y)|x+y=6,x∈N,y∈N}.
思路分析:用列举法表示集合的关键是找出集合中的所有元素,要注意不重不漏,不计次序地用“,”隔开放在大括号内.
解:(1)因x2-4=(x-2)(x+2),故符合题意的集合为{x-2,x+2};
(2)y=-x2-2x+3=-(x+1)2+4,即y≤4.又y∈N,∴y=0、1、2、3、4,
故{y|y=-x2-2x+3,x∈R,y∈N}={0,1,2,3,4};
(3)由x2+6x+9=0得x1=x2=-3,∴方程x2+6x+9=0的解集为{-3};
(4){20以内的质数}={2,3,5,7,11,13,17,19};
(5)因x∈Z,y∈Z,则x=-1、0、1时,y=0、1、-1,
那么{(x,y)|x2+y2=1,x∈Z,y∈Z}={(-1,0),(0,1),(0,-1),(1,0)};
(6){大于0小于3的整数}={1,2};
(7)因x2+5x-14=0的解为x1=-7,x2=2,则{x∈R|x2+5x-14=0}={-7,2};
(8)当x∈N且1≤x<4时,x=1、2、3,此时y=2x,即y=2、4、6,
那么{(x,y)|x∈N且1≤x<4,y-2x=0}={(1,2),(2,4),(3,6)};
(9){(x,y)|x+y=6,x∈N,y∈N}={(0,6)(1,5),(2,4),(3,3),(4,2),(5,1),(6,0)}.
点评:本题主要考查集合的列举法表示.列
( http: / / www.21cnjy.com )举法适用于元素个数有限个并且较少的集合.用列举法表示集合:先明确集合中的元素,再把元素写在大括号内并用逗号隔开,相同的元素写成一个.
3.用描述法分别表示下列集合:
(1)二次函数y=x2图象上的点组成的集合;
(2)数轴上离原点的距离大于6的点组成的集合;
(3)不等式x-7<3的解集.
活动:让学生思考用描述法的形式如何表示平
( http: / / www.21cnjy.com )面直角坐标系中的点?如何表示数轴上的点?如何表示不等式的解?学生板书,教师在其他学生中间巡视,及时帮助思维遇到障碍的同学.必要时,教师可提示学生:
(1)集合中的元素是点,它是坐标平面内的点,集合元素代表符号用有序实数对(x,y)来表示,其特征是满足y=x2;
(2)集合中元素是点,而数轴上的点可以用其坐标表示,其坐标是一个实数,集合元素代表符号用x来表示,其特征是对应的实数绝对值大于6;
(3)集合中的元素是实数,集合元素代表符号用x来表示,把不等式化为x解:(1)二次函数y=x2上的点(x,y)的坐标满足y=x2,则
二次函数y=x2图象上的点组成的集合表示为{(x,y)|y=x2};
(2)数轴上离原点的距离大于6的点组成的集合等于绝对值大于6的实数组成的集合,则
数轴上离原点的距离大于6的点组成的集合表示为{x∈R||x|>6};
(3)不等式x-7<3的解是x<10,则
不等式x-7<3的解集表示为{x|x<10}.
点评:本题主要考查集合的描述法表示.描述法适用于元素个数是有限个并且较多或无限个的集合.
用描述法表示集合时,集合元素的代表符号不能随
( http: / / www.21cnjy.com )便设,点集的元素代表符号是(x,y),数集的元素代表符号常用x.集合中元素的公共特征属性可以用文字直接表述,最好用数学符号表示,必须抓住其实质.
变式训练
用描述法表示下列集合:
(1)方程2x+y=5的解集;
(2)小于10的所有非负整数的集合;
(3)方程ax+by=0(ab≠0)的解;
(4)数轴上离开原点的距离大于3的点的集合;
(5)平面直角坐标系中第Ⅱ、Ⅳ象限点的集合;
(6)方程组的解的集合;
(7){1,3,5,7,…};
(8)x轴上所有点的集合;
(9)非负偶数;
(10)能被3整除的整数.
解:(1){(x,y)|2x+y=5};
(2){x|0≤x<10,x∈Z};
(3){(x,y)|ax+by=0(ab≠0)};
(4){x||x|>3};
(5){(x,y)|xy<0};
(6){(x,y)|};
(7){x|x=2k-1,k∈N
};
(8){(x,y)|x∈R,y=0};
(9){x|x=2k,k∈N};
(10){x|x=3k,k∈Z}.
知能训练
课本P5练习1、2.
【补充练习】
1.下列对象能否组成集合:
(1)数组1、3、5、7;
(2)到两定点距离的和等于两定点间距离的点;
(3)满足3x-2>x+3的全体实数;
(4)所有直角三角形;
(5)美国NBA的著名篮球明星;
(6)所有绝对值等于6的数;
(7)所有绝对值小于3的整数;
(8)中国男子足球队中技术很差的队员;
(9)参加2008年奥运会的中国代表团成员.
答案:(1)(2)(3)(4)(6)(7)(9)能组成集合,(5)(8)不能组成集合.
2.(口答)说出下面集合中的元素:
(1){大于3小于11的偶数};
(2){平方等于1的数};
(3){15的正约数}.
答案:(1)其元素为4,6,8,10;
(2)其元素为-1,1;
(3)其元素为1,3,5,15.
3.用符号∈或填空:
(1)1______N,0______N,-3______N,0.5______N,______N;
(2)1______Z,0______Z,-3______Z,0.5______Z,______Z;
(3)1______Q,0______Q,-3______Q,0.5______Q,______Q;
(4)1______R,0______R,-3______R,0.5______R,______R.
答案:
(1)∈

(2)∈


(3)∈



(4)∈




4.判断正误:
(1)所有属于N的元素都属于N
.
(
)
(2)所有属于N的元素都属于Z.
(
)
(3)所有不属于N
的数都不属于Z.
(
)
(4)所有不属于Q的实数都属于R.
(
)
(5)不属于N的数不能使方程4x=8成立.
(
)
答案:(1)×
(2)√
(3)×
(4)√
(5)√
5.分别用列举法、描述法表示方程组的解集.
解:因的解为
用描述法表示该集合为{(x,y)|};
用列举法表示该集合为{(3,-7)}.
拓展提升
问题:集合A={x|x=a+b,a∈Z,b∈Z},判断下列元素x=0、、与集合A之间的关系.
活动:学生先思考元素与集合之间有什么
( http: / / www.21cnjy.com )关系,书写过程,将元素x化为a+2b的形式,再判断a、b是否为整数.描述法表示集合的优点是突出显示了集合元素的特征,那么判断一个元素是否属于集合时,转化为判断这个元素是否满足集合元素的特征即可.
解:由于x=a+b,a∈Z,b∈Z,
∴当a=b=0时,x=0.∴0∈A.
又=+1=1+,
当a=b=1时,a+b=1+,∴∈A.
又=+,
当a=3,b=1时,a+b=+,而3Z,
∴A.
∴0∈A,∈A,A.
点评:本题考查集合的描述法表示以及元素与集合间的关系.
课堂小结
本节学习了:(1)集合的概念;(2)集合的表示法;(3)利用列举法和描述法表示集合的步骤.
作业
课本P11习题1.1A组2、3、4.
设计感想
集合语言是现代数学的基本语言,在高中数
( http: / / www.21cnjy.com )学课程中,它也是学习、掌握和使用数学语言的基础.由于集合的概念较难理解,因此设计时采用渐进式学习,而集合的列举法和描述法的形式比较容易接受,在设计时注重让学生自己学习,重点引导学生学习这两种方法的应用.同时通过解决一系列具体问题,使学生自己体会到集合各种表示法的优缺点;针对不同问题,能选用合适集合表示法.在练习过程中熟练掌握集合语言与自然语言的转换.教师在教学过程中时时监控,对学生不可能解决的问题,如集合常见表示法的写法,常见数集及其记法应直接给出,以避免出现不必要的混乱.对学生解题过程中遇到的困难给予适当点拨.引导学生养成良好学习习惯,最大限度地挖掘学生的学习潜力是我们教师的奋斗目标.1.3
函数的基本性质
1.3.1
单调性与最大(小)值
整体设计
教学分析
在研究函数的性质时,单调性和最值是一个重
( http: / / www.21cnjy.com )要内容.实际上,在初中学习函数时,已经重点研究了一些函数的增减性,只是当时的研究较为粗略,未明确给出有关函数增减性的定义,对于函数增减性的判断也主要根据观察图象得出,而本小节内容,正是初中有关内容的深化和提高:给出函数在某个区间上是增函数或减函数的定义,明确指出函数的增减性是相对于某个区间来说的,还说明判断函数的增减性既有从图象上进行观察的较为粗略的方法,又有根据定义进行证明的较为严格的方法、最好根据图象观察得出猜想,用推理证明猜想的正确性,这样就将以上两种方法统一起来了.
由于函数图象是发现函数性质的直
( http: / / www.21cnjy.com )观载体,因此,在本节教学时可以充分使用信息技术创设教学情境,以利于学生作函数图象,有更多的时间用于思考、探究函数的单调性、最值等性质.还要特别重视让学生经历这些概念的形成过程,以便加深对单调性和最值的理解.
三维目标
1.函数单调性的研究经历了从直观
( http: / / www.21cnjy.com )到抽象,以图识数的过程,在这个过程中,让学生通过自主探究活动,体验数学概念的形成过程的真谛,学会运用函数图象理解和研究函数的性质.
2.理解并掌握函数的单调性及其几何意义,掌握用定义证明函数单调性的步骤,会求函数的单调区间,提高应用知识解决问题的能力.
3.通过实例,使学生体会、理解到函数的最大(小)值及其几何意义,能够借助函数图象的直观性得出函数的最值,培养以形识数的解题意识.
4.能够用函数的性质解决
( http: / / www.21cnjy.com )日常生活中的简单的实际问题,使学生感受到学习函数单调性的必要性与重要性,增强学生学习函数的紧迫感,激发学生学习的积极性.
重点难点
教学重点:函数的单调性和最值.
教学难点:增函数、减函数、奇函数、偶函数形式化定义的形成.
课时安排
2课时
设计方案(一)
教学过程
第1课时
函数的单调性
导入新课
思路1.德国有一位著名的心理学家名叫
( http: / / www.21cnjy.com )艾宾浩斯(Hermann
Ebbinghaus,1850~1909),他以自己为实验对象,共做了163次实验,每次实验连续要做两次无误的背诵.经过一定时间后再重学一次,达到与第一次学会的同样的标准.他经过对自己的测试,得到了一些数据.
时间间隔t
0分钟
20分钟
60分钟
8~9小时
1天
2天
6天
一个月
记忆量y(百分比)
100%
58.2%
44.2%
35.8%
33.7%
27.8%
25.4%
21.1%
观察这些数据,可以看出:记忆量y是时间间隔t
( http: / / www.21cnjy.com )的函数.当自变量(时间间隔t)逐渐增大时,你能看出对应的函数值(记忆量y)有什么变化趋势吗?描出这个函数图象的草图(这就是著名的艾宾浩斯曲线).从左向右看,图象是上升的还是下降的?你能用数学符号来刻画吗?通过这个实验,你打算以后如何对待刚学过的知识 (可以借助信息技术画图象)
( http: / / www.21cnjy.com )
图1-3-1-1
学生:先思考或讨论,回答:记忆量y随
( http: / / www.21cnjy.com )时间间隔t的增大而增大;以时间间隔t为x轴,以记忆量y为y轴建立平面直角坐标系,描点连线得函数的草图——艾宾浩斯遗忘曲线如图1-3-1-1所示.
遗忘曲线是一条衰减曲线,它表明了遗忘的规
( http: / / www.21cnjy.com )律.随着时间的推移,记忆保持量在递减,刚开始遗忘速度最快,我们应利用这一规律,在学习新知识时一定要及时复习巩固,加深理解和记忆.教师提示、点拨,并引出本节课题.
思路2.在第23届奥运会上,中国首次参加就
( http: / / www.21cnjy.com )获15枚金牌;在第24届奥运会上,中国获5枚金牌;在第25届奥运会上,中国获16枚金牌;在第26届奥运会上,中国获16枚金牌;在第27届奥运会上,中国获28枚金牌;在第28届奥运会上,中国获32枚金牌.按这个变化趋势,2008年,在北京举行的第29届奥运会上,请你预测一下中国能获得多少枚金牌?
学生回答(只要大于32就可以算准确),教师:提示、点拨,并引出本节课题.
推进新课
新知探究
提出问题
①如图1-3-1-2所示
( http: / / www.21cnjy.com )为一次函数y=x,二次函数y=x2和y=-x2的图象,它们的图象有什么变化规律 这反映了相应的函数值的哪些变化规律
( http: / / www.21cnjy.com )
图1-3-1-2
②函数图象上任意点P(x,y)的坐标有什么意义?
③如何理解图象是上升的?
④对于二次函数y=x2,列出x,y的对应值表(1).完成表(1)并体会图象在y轴右侧上升.
x
-4
-3
-2
-1
0
1
2
3
4
f(x)=x2
表(1)
⑤在数学上规定:函数y=x2在区间(0,+∞)上是增函数.谁能给出增函数的定义?
⑥增函数的定义中,把“当x1x2时,都有f(x1)>f(x2)”,这样行吗
⑦增函数的定义中,“当x1⑧增函数的几何意义是什么?
⑨类比增函数的定义,请给出减函数的定义及其几何意义?
⑩函数y=f(x)在区间D上具有单调性,说明了函数y=f(x)在区间D上的图象有什么变化趋势?
讨论结果:①函数y=x的
( http: / / www.21cnjy.com )图象,从左向右看是上升的;函数y=x2的图象在y轴左侧是下降的,在y轴右侧是上升的;函数y=-x2的图象在y轴左侧是上升的,在y轴右侧是下降的.
②函数图象上任意点P的坐标(x,y)的意义:横坐标x是自变量的取值,纵坐标y是自变量为x时对应的函数值的大小.
③按从左向右的方向看函数的图象,意味着图象
( http: / / www.21cnjy.com )上点的横坐标逐渐增大即函数的自变量逐渐增大.图象是上升的意味着图象上点的纵坐标逐渐变大,也就是对应的函数值随着逐渐增大.也就是说从左向右看图象上升,反映了函数值随着自变量的增大而增大.
④在区间(0,+∞)上,任取x
( http: / / www.21cnjy.com )1、x2,且x1⑤一般地,设函数f(x)的定义域为I:
( http: / / www.21cnjy.com )如果对于定义域I内某个区间D上的任意两个自变量的值x1、x2,当x1⑥可以.增函数的定义:由
( http: / / www.21cnjy.com )于当x1x2时,都有f(x1)>f(x2)”都是相同的不等号“>”,也就是说前面是“>”,后面也是“>”,步调一致.因此我们可以简称为:步调一致增函数.
⑦函数值随着自变量的增大而增大;从左向右看,图象是上升的.
⑧从左向右看,图象是上升的.
⑨一般地,设函数f(x)的
( http: / / www.21cnjy.com )定义域为I,如果对于定义域I内某个区间D上的任意两个自变量的值x1、x2,当x1f(x2),那么就说函数f(x)在区间D上是减函数.简称为:步调不一致减函数.减函数的几何意义:从左向右看,图象是下降的.函数值变化趋势:函数值随着自变量的增大而减小.总结:如果函数y=f(x)在区间D上是增函数(或减函数),那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调递增(或减)区间.
⑩函数y=f(x)在区间D上,函数值的变化趋势是随自变量的增大而增大(减小),几何意义:从左向右看,图象是上升(下降)的.
应用示例
思路1
例1如图1-3-1-3是定义在
( http: / / www.21cnjy.com )区间[-5,5]上的函数y=f(x),根据图象说出函数的单调区间,以及在每一单调区间上,它是增函数还是减函数?
( http: / / www.21cnjy.com )
图1-3-1-3
活动:教师提示利用函数单调性的几
( http: / / www.21cnjy.com )何意义.学生先思考或讨论后再回答,教师点拨、提示并及时评价学生.图象上升则在此区间上是增函数,图象下降则在此区间上是减函数.
解:函数y=f(x)的单调区间是[-5,
( http: / / www.21cnjy.com )2),[-2,1),[1,3),[3,5].其中函数y=f(x)在区间[-5,2),[1,3)上是减函数,在区间[-2,1),[3,5]上是增函数.
点评:本题主要考查函数单调性的几何意
( http: / / www.21cnjy.com )义,以及图象法判断函数单调性.图象法判断函数的单调性适合于选择题和填空题.如果解答题中给出了函数的图象,通常用图象法判断单调性.函数的图象类似于人的照片,我们能根据人的照片来估计其身高,同样我们根据函数的图象可以分析出函数值的变化趋势即单调性.
图象法求函数单调区间的步骤是第一步:画函数的图象;第二步:观察图象,利用函数单调性的几何意义写出单调区间.
变式训练
课本P32练习1、3.
例2物理学中的玻意耳定律p=(k为正常数)告诉我们,对于一定量的气体,当其体积V减少时,压强p将增大.试用函数的单调性证明.
活动:学生先思考或讨论,再到黑板上书写.当学生没有证明思路时,教师再提示,及时纠正学生解答过程出现的问题,并标出关键的地方,以便学生总结定义法的步骤.体积V减少时,压强p将增大是指函数p=是减函数;刻画体积V减少时,压强p将增大的方法是用不等式表达.已知函数的解析式判断函数的单调性时,常用单调性的定义来解决.
解:利用函数单调性的定义只要证明函数p=在区间(0,+∞)上是减函数即可.
点评:本题主要考查函数的单调性,以及定义法判断函数的单调性.
定义法判断或证明函数的单调性
( http: / / www.21cnjy.com )的步骤是第一步:在所给的区间上任取两个自变量x1和x2,通常令x1变式训练
课本P32练习4.
思路2
例1(1)画出已知函数f(x)=-x2+2x+3的图象;
(2)证明函数f(x)=-x2+2x+3在区间(-∞,1]上是增函数;
(3)当函数f(x)在区间(-∞,m]上是增函数时,求实数m的取值范围.
( http: / / www.21cnjy.com )
图1-3-1-4
解:(1)函数f(x)=-x2+2x+3的图象如图1-3-1-4所示.
(2)设x1、x2∈(-∞,1],且x1f(x1)-f(x2)=(-x12+2x1+3)-(-x22+2x2+3)
=(x22-x12)+2(x1-x2)
=(x1-x2)(2-x1-x2).
∵x1、x2∈(-∞,1],且x1∴2-x1-x2>0.∴f(x1)-f(x2)<0.∴f(x1)∴函数f(x)=-x2+2x+3在区间(-∞,1]上是增函数.
(3)函数f(x)=-x2+2x+
( http: / / www.21cnjy.com )3的对称轴是直线x=1,在对称轴的左侧是增函数,那么当区间(-∞,m]位于对称轴的左侧时满足题意,则有m≤1,即实数m的取值范围是(-∞,1].
点评:本题主要考查二次函数的图象、
( http: / / www.21cnjy.com )函数的单调性及其应用.讨论有关二次函数的单调性问题时,常用数形结合的方法,结合二次函数图象的特点来分析;二次函数在对称轴两侧的单调性相反;二次函数在区间D上是单调函数,那么二次函数的对称轴不在区间D内.
判断函数单调性时,通常先画出其图象,由图象观察出单调区间,最后用单调性的定义证明.
判断函数单调性的三部曲:
第一步,画出函数的图象,观察图象,描述函数值的变化趋势;
第二步,结合图象来发现函数的单调区间;
第三步,用数学符号即函数单调性的定义来证明发现的结论.
函数的单调性是函数的一个重要性质,是高考
( http: / / www.21cnjy.com )的必考内容之一.因此应理解单调函数及其几何意义,会根据定义判断、证明函数的单调性,会求函数的单调区间,能综合运用单调性解决一些问题,会判断复合函数的单调性.函数的单调性与函数的值域、不等式等知识联系极为密切,是高考命题的热点题型.
变式训练
已知函数f(x)是R上的增函数,设F(x)=f(x)-f(a-x).
(1)用函数单调性定义证明F(x)是R上的增函数;
(2)证明函数y=F(x)的图象关于点(,0)成中心对称图形.
活动:(1)本题中的函数解析式不明确即为抽象函数,用定义法判断单调性的步骤是要按格式书写;(2)证明函数y=F(x)的图象上的任意点关于点(,0)的对称点还是在函数y=F(x)的图象上即可.
解:(1)设x1、x2∈R,且x1F(x1)-F(x2)=[f(x1)-f(a-x1)]-[f(x2)-f(a-x2)]
=[f(x1)-f(x2)]+[f(a-x2)-f(a-x1)].
又∵函数f(x)是R上的增函数,x1∴f(x1)∴[f(x1)-f(x2)]+[f(a-x2)-f(a-x1)]<0.
∴F(x1)(2)设点M(x0,F(x0))是函数F(x)图象上任意一点,则点M(x0,F(x0))关于点(,0)的对称点M′(a-x0,-F(x0)).
又∵F(a-x0)=f(a-x0)-f(a-(a-x0))
=f(a-x0)-f(x0)
=-[f(x0)-f(a-x0)]
=-F(x0),
∴点M′(a-x0,-F(x0))也在函数F(x)图象上,
又∵点M(x0,F(x0))是函数F(x)图象上任意一点,
∴函数y=F(x)的图象关于点(,0)成中心对称图形.
例2(1)写出函数y=x2-2x的单调区间及其图象的对称轴,观察:在函数图象对称轴两侧的单调性有什么特点
(2)写出函数y=|x|的单调区间及其图象的对称轴,观察:在函数图象对称轴两侧的单调性有什么特点
( http: / / www.21cnjy.com )
图1-3-1-5
(3)定义在[-4,8]上的函数y
( http: / / www.21cnjy.com )=f(x)的图象关于直线x=2对称,y=f(x)的部分图象如图1-3-1-5所示,请补全函数y=f(x)的图象,并写出其单调区间,观察:在函数图象对称轴两侧的单调性有什么特点
(4)由以上你发现了什么结论 试加以证明.
活动:学生先思考,再回答,教师适时点拨和提示:
(1)画出二次函数y=x2-2x的图象,借
( http: / / www.21cnjy.com )助于图象解决;(2)类似于(1);(3)根据轴对称的含义补全函数的图象,也是借助于图象写出单调区间;(4)归纳函数对称轴两侧对称区间上的单调性的异同来发现结论,利用轴对称的定义证明.
解:(1)函数y=x2-2x的单
( http: / / www.21cnjy.com )调递减区间是(-∞,1),单调递增区间是(1,+∞);对称轴是直线x=1;区间(-∞,1)和区间(1,+∞)关于直线x=1对称,而单调性相反.
(2)函数y=|x|的单调递
( http: / / www.21cnjy.com )减区间是(-∞,0),单调递增区间是(0,+∞);对称轴是y轴即直线x=0;区间(-∞,0)和区间(0,+∞)关于直线x=0对称,而单调性相反.
(3)函数y=f(x),x∈[-4,8]的图象如图1-3-1-6.
( http: / / www.21cnjy.com )
图1-3-1-6
函数y=f(x)的单调递增区
( http: / / www.21cnjy.com )间是[-4,-1],[2,5];单调递减区间是[5,8],[-1,2];区间[-4,-1]和区间[5,8]关于直线x=2对称,而单调性相反,区间[-1,2]和区间[2,5]关于直线x=2对称,而单调性相反.
(4)可以发现结论:如果函数y=
( http: / / www.21cnjy.com )f(x)的图象关于直线x=m对称,那么函数y=f(x)在直线x=m两侧对称单调区间内具有相反的单调性.证明如下:
不妨设函数y=f(x)在对称轴直线x=m的右
( http: / / www.21cnjy.com )侧一个区间[a,b]上是增函数,区间[a,b]关于直线x=m的对称区间是[2m-b,2m-a].
由于函数y=f(x)的图象关于直线x=m对称,则f(x)=f(2m-x).
设2m-b≤x12m-x2≥a,
f(x1)-f(x2)=f(2m-x1)-f(2m-x2).
又∵函数y=f(x)在[a,b]上是增函数,∴f(2m-x1)-f(2m-x2)>0.
∴f(x1)-f(x2)>0.∴f(x1)>f(x2).
∴函数y=f(x)在区间[2m-b,2m-a]上是减函数.
∴当函数y=f(x)在对称轴直
( http: / / www.21cnjy.com )线x=m的右侧一个区间[a,b]上是增函数时,其在[a,b]关于直线x=m的对称区间[2m-b,2m-a]上是减函数,即单调性相反.
因此有结论:如果函数y=f(x)的图象关于直线x=m对称,那么函数y=f(x)在对称轴两侧的对称单调区间内具有相反的单调性.
点评:本题通过归纳——猜
( http: / / www.21cnjy.com )想——证明得到了正确的结论,这是我们认识世界发现问题的主要方法,这种方法的难点是猜想,突破路径是寻找共同的特征.本题作为结论记住,可以提高解题速度.图象类似于人的照片,看见人的照片就能估计这个人的身高、五官等特点,同样根据函数的图象也能观察出函数的性质特征.这需要有细致的观察能力.
变式训练
函数y=f(x)满足以下条件:
①定义域是R;
②图象关于直线x=1对称;
③在区间[2,+∞)上是增函数.
试写出函数y=f(x)的一个解析式f(x)=(只需写出一个即可,不必考虑所有情况).
活动:根据这三个条件,画
( http: / / www.21cnjy.com )出函数y=f(x)的图象简图(只要能体现这三个条件即可),再根据图象简图,联系猜想基本初等函数及其图象和已有的解题经验写出.
解:定义域是R的函数解析式通常不含分式或根式
( http: / / www.21cnjy.com ),常是整式;图象关于直线x=1对称的函数解析式满足:f(x)=f(2-x),基本初等函数中有对称轴的仅有二次函数,则由①②想到了二次函数;结合二次函数的图象,在区间[2,+∞)上是增函数说明开口必定向上,且正好满足二次函数的对称轴直线x=1不在区间[2,+∞)内,故函数的解析式可能是y=a(x-1)2+b(a>0).
结合二次函数的图象和性质,可知这三条都可满足开口向上的抛物线,故有:
形如y=a(x-1)2+b(a>0),或为y=a|x-1|+b(a>0)等都可以,答案不唯一.
知能训练
课本P32练习2.
【补充练习】
1.利用图象法写出基本初等函数的单调性.
解:①正比例函数:y=kx(k≠0)
当k>0时,函数y=kx在定义域R上是增函数;当k<0时,函数y=kx在定义域R上是减函数.
②反比例函数:y=(k≠0)
当k>0时,函数y=的单调递减区间是(-∞,0),(0,+∞),不存在单调递增区间;当k<0时,函数y=的单调递增区间是(-∞,0),(0,+∞),不存在单调递减区间.
③一次函数:y=kx+b(k≠0)
当k>0时,函数y=kx+b在定义域R上是增函数;当k<0时,函数y=kx+b在定义域R上是减函数.
④二次函数:y=ax2+bx+c(a≠0)
当a>0时,函数y=ax2+bx+c的单调递减区间是(-∞,],单调递增区间是[,+∞);
当a<0时,函数y=ax2+bx+c的单调递减区间是[,+∞),单调递增区间是(-∞,].
点评:以上基本初等函数的单调性作为结论记住,可以提高解题速度.
2.已知函数y=kx+2在R上是增函数,求实数k的取值范围.
答案:k∈(0,+∞).
3.二次函数f(x)=x2-2ax+m在(-∞,2)上是减函数,在(2,+∞)上是增函数,求实数a的值.
答案:a=2.
4.已知f(x)是定义在(0,+∞)上的减函数,若f(2a2+a+1)分析:∵f(x)的定义域是(0,+∞),
∴解得a<或a>1.
∵f(x)在(0,+∞)上是减函数,
∴2a2+a+1>3a2-4a+1.∴a2-5a<0.
∴0答案:(0,)∪(1,5)
点评:本题实质是解不等式,但
( http: / / www.21cnjy.com )是这是一个不具体的不等式,是抽象不等式.解与函数有关的抽象不等式时,常用的技巧是利用函数的单调性“剥掉外衣”,转化为整式不等式.
拓展提升
问题:1.画出函数y=的图象,结合图象探讨下列说法是否正确?
(1)函数y=是减函数;(2)函数y=的单调递减区间是(-∞,0)∪(0,+∞).
2.对函数y=,取x1=-13.通过上面两道题,你对函数的单调性定义有什么新的理解?
解答:1.(1)是错误的,从左向右看,函数y=的图象不是下降的.
(2)是错误的,函数y=的单调递减区间是(-∞,0),(0,+∞).这表示在区间(-∞,0)∪(0,+∞)即定义域上是减函数,在定义域上函数y=的图象,从左向右看不是下降的,因此这是错误的.
2.不对.这个过程看似是定义法,实质上不是.定义中x1、x2是在某区间内任意取的两个值,不能用特殊值来代替.
3.函数单调性定义中的x1、x2必须是任意的,应用单调性定义解决问题时,要注意保持其任意性.
点评:函数的单调性反映了
( http: / / www.21cnjy.com )函数在其定义域的子集上的性质,是函数的“局部性质”;函数y=f(x)在区间(a,b)和(b,c)上均是增(减)函数,那么在区间(a,b)∪(b,c)上的单调性不能确定.
课堂小结
本节学习了:①函数的单调性;②判断函数单调性的方法:定义法和图象法.
活动:学生先思考或讨论,再回答.教师提示、点拨,及时评价.
引导方法:从基本知识和基本技能两方面来总结.
作业
课本P39习题1.3A组2、3、4.
设计感想
“函数单调性”是一个重要的数
( http: / / www.21cnjy.com )学概念,以往的教学方法一般是由教师讲解为主,在单调性的定义教学中,往往缺少从定性的描述到定量表示的思维过程,即缺少“意义建构”.本设计致力于展示概念是如何生成的.在概念的发生、发展中,通过层层设问,调动学生的思维,突出培养了学生的思维能力,体现了教师是用教材教,而不是教教材.
本节课是函数单调性的起始课,采用教师
( http: / / www.21cnjy.com )启发引导,学生探究学习的教学方法,通过创设情境,引导探究,师生交流,最终形成概念,获得方法.本节课使用了多媒体投影和计算机来辅助教学,为学生提供直观感性的材料,有助于学生对问题的理解和认识.考虑到部分学生数学基础较好、思维较为活跃的特点,对判断方法进行适当的延展,加深对定义的理解,同时也为用导数研究函数单调性埋下伏笔.
设计方案(二)
教学过程
第1课时
函数的单调性
导入新课
思路1.
为了预测北京奥运会开幕式当天的天气情况
( http: / / www.21cnjy.com ),数学兴趣小组研究了2002年到2006年每年这一天的天气情况,如图1-3-1-7是北京市今年8月8日一天24小时内气温随时间变化的曲线图.
( http: / / www.21cnjy.com )
图1-3-1-7
问题:观察图1-3-1-7,能得到什么信息?
(1)当天的最高温度、最低温度以及达到的时刻;
(2)在某时刻的温度;
(3)某些时段温度升高,某些时段温度降低.
引导学生识图,捕捉信息,启发学生思考回答
( http: / / www.21cnjy.com ).教师:在生活中,我们关心很多数据的变化规律,了解这些数据的变化规律,对我们的生活是很有帮助的.归纳:用函数观点看,其实这些例子反映的就是随着自变量的变化,函数值是变大或变小.
思路2.如图1-3-1-8所示,观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律:
( http: / / www.21cnjy.com )
图1-3-1-8
随x的增大,y的值有什么变化?
引导学生回答,点拨提示,引出课题.
设计意图:创设情景,引起学生兴趣.
推进新课
新知探究
提出问题
问题①:分别作出函数y=x+2,y=-x+2,y=x2,y=的图象,并且观察自变量变化时,函数值的变化规律.
如图1-3-1-9所示:
( http: / / www.21cnjy.com )
图1-3-1-9
问题②:能不能根据自己的理解说说什么是增函数、减函数
设计意图:从图象直观感知函数单调性,完成对函数单调性的第一次认识:直观感知.
问题③:如图1-3-1-10是函数y=x+(x>0)的图象,能说出这个函数分别在哪个区间为增函数和减函数吗?
( http: / / www.21cnjy.com )
图1-3-1-10
设计意图:使学生体会到用数量大小关系严格表述函数单调性的必要性.
问题④:如何从解析式的角度说明f(x)=x2在[0,+∞)上为增函数?
设计意图:把对单调性的认识由感性上升到理性的高度,完成对概念的第二次认识.事实上也给出了证明单调性的方法,为第三阶段的学习作好铺垫.
问题⑤:你能用准确的数学符号语言表述出增函数的定义吗
设计意图:让学生由特殊到一般,从具体到抽象归纳出单调性的定义,通过对判断题的辨析,加深学生对定义的理解,完成对概念的第三次认识.
活动:先让学生思考或讨论后再回答,经教师提示、点拨,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.
引导方法与过程:问题①:
( http: / / www.21cnjy.com )引导学生进行分类描述图象是上升的、下降的(增函数、减函数),同时明确函数的图象变化(单调性)是对定义域内某个区间而言的,是函数的局部性质.
问题②:这种认识是从图象的角度得到的,是对函数单调性的直观、描述性的认识.
学生的困难是难以确定分界点的确切位置.
问题③:通过讨论,使学生感受到用函数图象判断函数单调性虽然比较直观,但有时不够精确,需要结合解析式进行严密化、精确化的研究.
问题④:对于学生错误的回答,引导学
( http: / / www.21cnjy.com )生分别用图形语言和文字语言进行辨析,使学生认识到问题的根源在于自变量不可能被穷举,从而引导学生在给定的区间内任意取两个自变量x1、x2.
问题⑤:师生共同探究:利用不等式表示变大或变小,得出增函数严格的定义,然后学生类比得出减函数的定义.
归纳总结:1.函数单调性的几何意义:如果函数y=f(x)在区间D上是增(减)函数,那么在区间D上的图象是上升的(下降的).
2.函数单调性的定义:略.可以简称为步调一致增函数,步调相反减函数.
讨论结果:①(1)函数y=x+2,在整个定义域内y随x的增大而增大;函数y=-x+2,在整个定义域内y随x的增大而减小.(2)函数y=x2,在[0,+∞)上y随x的增大而增大,在(-∞,0)上y随x的增大而减小.(3)函数y=,在(0,+∞)上y随x的增大而减小,在(-∞,0)上y随x的增大而减小.
②如果函数f(x)在某个区
( http: / / www.21cnjy.com )间上随自变量x的增大,y也越来越大,我们说函数f(x)在该区间上为增函数;如果函数f(x)在某个区间上随自变量x的增大,y越来越小,我们说函数f(x)在该区间上为减函数.
③不能.
④(1)在给定区间内取两个数,例如2和3,因为22<32,所以f(x)=x2在[0,+∞)上为增函数.
(2)仿(1),取多组数值验证均满足,所以f(x)=x2在[0,+∞)上为增函数.
(3)任取x1、x2∈[0,
( http: / / www.21cnjy.com )+∞),且x1⑤略
应用示例
思路1
例1课本P29页例1.
思路分析:利用函数单调性的几何意义.学生先思考或讨论,再回答.
点评:本题主要考查函数单调性的几何意义.
图象法求函数单调区间的步骤:
①画函数的图象;
②观察图象,利用函数单调性的几何意义写出单调区间.
图象法的难点是画函数的图象,常见画法有描点法和变换法.
答案:略.
变式训练
课本P32练习4.
例2课本P32页例2.
思路分析:按题意,只要证明函数p=在区间(0,+∞)上是减函数即可,用定义证明.
点评:本题主要考查函数的单调性.
利用定义证明函数f(x)在给定的区间D上的单调性的一般步骤:(定义法)
①任取x1、x2∈D,且x1②作差f(x1)-f(x2);
③变形(通常是因式分解和配方);
④定号(即判断差f(x1)-f(x2)的正负);
⑤下结论(即指出函数f(x)在给定的区间D上的单调性).
易错分析:错取两个特殊值x1、x2来证明.
答案:略.
变式训练
判断下列说法是否正确:
①已知f(x)=,因为f(-1)②若函数f(x)满足f(2)③若函数f(x)在区间(1,2]和(2,3)上均为增函数,则函数f(x)在区间(1,3)上为增函数.
④因为函数f(x)=在区间(-∞,0)和(0,+∞)上都是减函数,所以f(x)=在(-∞,0)∪(0,+∞)上是减函数.
活动:教师强调以下三点后,让学生判断.
1.单调性是对定义域内某个区间而言的,离开了定义域和相应区间就谈不上单调性.
2.有的函数在整个定义域内单调(如一次函数),有的函数只在定义域内的某些区间单调(如二次函数),有的函数根本没有单调区间(如常函数).
3.函数在定义域内的两个区间A、B上都是增(或减)函数,一般不能认为函数在A∪B上是增(或减)函数.
答案:这四个判断都是错误的.
思考:如何说明一个函数在某个区间上不是单调函数
证明一个命题成立时,需要有严格的逻辑推理过程,而否定一个命题只需举一个反例即可.也就是说,只要找到两个特殊的自变量,不符合定义就行.
思路2
例1证明函数f(x)=x+在(2,+∞)上是增函数.
思路分析:利用单调性的定义证明.可以利用信息技术,先画出函数的图象,体会一下再证明.
点评:本题主要考查函数的单调性.
引导学生归纳证明函数单调性的步骤:设元、作差、变形、断号、定论.
答案:略.
变式训练
证明函数f(x)=x在[0,+∞)上是增函数.
思路分析:此函数是一个具体的函数,用定义法证明.
思考:除了用定义外,如果证得
( http: / / www.21cnjy.com )对任意的x1、x2∈(a,b),且x1≠x2有分
f(x2)-f(x1)x2-x1式>0,能断定函数f(x)在区间(a,b)上是增函数吗
活动:引导学生分析这种叙述与定义的等价性.让学生尝试用这种等价形式证明函数f(x)=x在[0,+∞)上是增函数.
讨论结果:能.
例2用计算机画出函数y=的图象,根据图象指出单调区间,并用定义法证明.
思路分析:在图象上观察在哪个区间函数图象是上升的,在哪个区间函数图象是下降的,借助于单调性的几何意义写出单调区间,再用定义证明.
教师画出图象,学生回答,如果遇到障碍,就提示利用函数单调性的几何意义写出单调区间.
点评:讨论函数单调性的三部曲:
第一步,画函数的图象;
第二步,借助单调性的几何意义写出单调区间;
第三步,利用定义加以证明.
答案:略.
变式训练
画出函数y=的图象,根据图象指出单调区间.
活动:教师引导学生利用变换法(也可以用计算机)画出图象,根据单调性的几何意义写出单调区间,再利用定义法证明.
答案:略.
知能训练
课本P32练习2.
拓展提升
试分析函数y=x+的单调性.
活动:先用计算机画出图象,找出单调区间,再用定义法证明.
答案:略.
课堂小结
学生交流在本节课学习中的体会、收获,交流学习过程中的体验和感受,师生合作共同完成小结.
(1)概念探究过程:直观到抽象、特殊到一般、感性到理性.
(2)证明方法和步骤:设元、作差、变形、断号、定论.
(3)数学思想方法:数形结合.
(4)函数单调性的几何意义是:函数值的变化趋势,即图象是上升的或下降的.
设计感想
本节课是函数单调性的起始课,采
( http: / / www.21cnjy.com )用教师启发引导,学生探究学习的教学方法,通过创设情境,引导探究,师生交流,最终形成概念,获得方法.本节课使用了多媒体投影和计算机来辅助教学,为学生提供直观感性的材料,有助于学生对问题的理解和认识.
考虑到部分学生数学基础较好、思维较为活跃的特点,对判断方法进行适当的延展,加深对定义的理解,同时也为用导数研究函数单调性埋下伏笔.
作业:课本P39习题1.3A组2、3、4.1.1.2
集合间的基本关系
整体设计
教学分析
课本从学生熟悉的集合(自然数的集合
( http: / / www.21cnjy.com )、有理数的集合等)出发,通过类比实数间的大小关系引入集合间的关系,同时,结合相关内容介绍子集等概念.在安排这部分内容时,课本注重体现逻辑思考的方法,如类比等.
值得注意的问题:在集合间的关系教学中
( http: / / www.21cnjy.com ),建议重视使用Venn图,这有助于学生通过体会直观图示来理解抽象概念;随着学习的深入,集合符号越来越多,建议教学时引导学生区分一些容易混淆的关系和符号,例如∈与?的区别.
三维目标
1.理解集合之间包含与相等的含义,能识别给定集合的子集,能判断给定集合间的关系,提高利用类比发现新结论的能力.
2.在具体情境中,了解空集的含义,掌握并能使用Venn图表达集合的关系,加强学生从具体到抽象的思维能力,树立数形结合的思想.
重点难点
教学重点:理解集合间包含与相等的含义.
教学难点:理解空集的含义.
课时安排
1课时
教学过程
导入新课
思路1.实数有相等、大小关系,如5=5
( http: / / www.21cnjy.com ),5<7,5>3等等,类比实数之间的关系,你会想到集合之间有什么关系呢?(让学生自由发言,教师不要急于作出判断,而是继续引导学生)
欲知谁正确,让我们一起来观察、研探.
思路2.复习元素与集合的关系——属于与不属于的关系,填空:(1)0N;(2)2Q;(3)-1.5R.
类比实数的大小关系,如5<7,2≤2,试想集合间是否有类似的“大小”关系呢?(答案:(1)∈;(2)?;(3)∈)
推进新课
新知探究
提出问题
(1)观察下面几个例子:
①A={1,2,3},B={1,2,3,4,5};
②设A为国兴中学高一(3)班男生的全体组成的集合,B为这个班学生的全体组成的集合;
③设C={x|x是两条边相等的三角形},D={x|x是等腰三角形};
④E={2,4,6},F={6,4,2}.
你能发现两个集合间有什么关系吗?
(2)例子①中集合A是集合B的子集,例子④中集合E是集合F的子集,同样是子集,有什么区别?
(3)结合例子④,类比实数中的结论:“若a≤b,且b≤a,则a=b”,在集合中,你发现了什么结论
(4)按升国旗时,每个班
( http: / / www.21cnjy.com )的同学都聚集在一起站在旗杆附近指定的区域内,从楼顶向下看,每位同学是哪个班的,一目了然.试想一下,根据从楼顶向下看的,要想直观表示集合,联想集合还能用什么表示?
(5)试用Venn图表示例子①中集合A和集合B.
(6)已知A?B,试用Venn图表示集合A和B的关系.
(7)任何方程的解都能组成集合,那么x2+1=0的实数根也能组成集合,你能用Venn图表示这个集合吗?
(8)一座房子内没有任何东西,我们称为这座房子是空房子,那么一个集合没有任何元素,应该如何命名呢?
(9)与实数中的结论“若a≥b,且b≥c,则a≥c”相类比,在集合中,你能得出什么结论
活动:教师从以下方面引导学生:
(1)观察两个集合间元素的特点.
(2)从它们含有的元素间的关系来考虑.规定:如果AB,但存在x∈B,且xA,我们称集合A是集合B的真子集,记作AB(或BA).
(3)实数中的“≤”类比集合中的.
(4)把指定位置看成是由封闭曲线围
( http: / / www.21cnjy.com )成的,学生看成集合中的元素,从楼顶看到的就是把集合中的元素放在封闭曲线内.教师指出:为了直观地表示集合间的关系,我们常用平面上封闭曲线的内部代表集合,这种图称为Venn图.
(5)封闭曲线可以是矩形也可以是椭圆等等,没有限制.
(6)分类讨论:当AB时,AB或A=B.
(7)方程x2+1=0没有实数解.
(8)空集记为,并规定:空集是任何集合的子集,即A;空集是任何非空集合的真子集,即A(A≠).
(9)类比子集.
讨论结果:
(1)①集合A中的元素都在集合B中;
②集合A中的元素都在集合B中;
③集合C中的元素都在集合D中;
④集合E中的元素都在集合F中.
可以发现:对于任意两个集合A,B有下列关系:集合A中的元素都在集合B中;或集合B中的元素都在集合A中.
(2)例子①中AB,但有一个元素4∈B,且4A;而例子②中集合E和集合F中的元素完全相同.
(3)若AB,且BA,则A=B.
(4)可以把集合中元素写在一个封闭曲线的内部来表示集合.
(5)如图1121所示表示集合A,如图1122所示表示集合B.
( http: / / www.21cnjy.com )图1-1-2-1
( http: / / www.21cnjy.com )图1-1-2-2
(6)如图1-1-2-3和图1-1-2-4所示.
( http: / / www.21cnjy.com )图1-1-2-3
( http: / / www.21cnjy.com )图1-1-2-4
(7)不能.因为方程x2+1=0没有实数解.
(8)空集.
(9)若AB,BC,则AC;若AB,BC,则AC.
应用示例
思路1
1.某工厂生产的产品在重
( http: / / www.21cnjy.com )量和长度上都合格时,该产品才合格.若用A表示合格产品的集合,B表示重量合格的产品的集合,C表示长度合格的产品的集合.已知集合A、B、C均不是空集.
(1)则下列包含关系哪些成立?
AB,BA,AC,CA.
(2)试用Venn图表示集合A、B、C间的关系.
活动:学生思考集合间的关系以及Venn图的表示形式.当集合A中的元素都属于集合B时,则AB成立,否则AB不成立.用相同的方法判断其他包含关系是否成立.教师提示学生以下两点:
(1)重量合格的产品不一定是合格产品,但合格的产品一定重量合格;
长度合格的产品不一定是合格产品,但合格的产品一定长度合格.
(2)根据集合A、B、C间的关系来画出Venn图.
解:(1)包含关系成立的有:BA,CA.
(2)集合A、B、C间的关系用Venn图表示,如图1-1-2-5所示.
( http: / / www.21cnjy.com )图1-1-2-5
变式训练
课本P7练习3.
点评:本题主要考查集合间的包含关系.其关键是首先明确两集合中的元素具体是什么.
判断两个集合A、B之间是否有包含关系的步骤是:先明确集合A、B中的元素,再分析集合A、B中的元素之间的关系,得:当集合A中的元素都属于集合B时,有AB;当集合A中的元素都属于集合B,当集合B中至少有一个元素不属于集合A时,有AB;当集合A中的元素都属于集合B,并且集合B中的元素也都属于集合A时,有A=B;当集合A中至少有一个元素不属于集合B,并且集合B中至少有一个元素也不属于集合A时,有AB,且BA,即集合A、B互不包含.
2.写出集合{a,b}的所有子集,并指出哪些是它的真子集.
活动:学生思考子集和真子集的定义,
( http: / / www.21cnjy.com )教师提示学生空集是任何集合的子集,一个集合不是其本身的真子集.按集合{a,b}的子集所含元素的个数分类讨论.
解:集合{a,b}的所有子集为,{a},{b},{a,b}.真子集为,{a},{b}.
变式训练
已知集合P={1,2},那么满足QP的集合Q的个数是(
)
A.4
B.3
C.2
D.1
分析:集合P={1,2}含有2个元素,其子集有22=4个,
又集合QP,所以集合Q有4个.
答案:A
点评:本题主要考查子集和真子集的概念,以及分类讨论的思想.通常按子集中所含元素的个数来写出一个集合的所有子集,这样可以避免重复和遗漏.
思考:集合A中含有n个元素,那么集合A有多少个子集?多少个真子集?
解:当n=0时,即空集的子集为,即子集的个数是1=20;
当n=1时,即含有一个元素的集合如{a}的子集为,{a},即子集的个数是2=21;
当n=2时,即含有一个元素的集合如{a,b}的子集为,{a},{b},{a,b},即子集的个数是4=22.
……
集合A中含有n个元素,那么集合A有2n个子集,由于一个集合不是其本身的真子集,所以集合A有(2n-1)个真子集.
思路2
1.已知集合A={-1,3,2m-1},集合B={3,m2}.若BA,则实数m=_______.
活动:先让学生思考BA的含义,根据BA,知集合B中的元素都属于集合A,集合元素的互异性,列出方程求实数m的值.因为BA,所以3∈A,m2∈A.对m2的值分类讨论.
解:∵BA,∴3∈A,m2∈A.∴m2=-1(舍去)或m2=2m-1.解得m=1.∴m=1.
答案:1
点评:本题主要考查集合和子集的概
( http: / / www.21cnjy.com )念,以及集合元素的互异性.本题容易出现m2=3,其原因是忽视了集合元素的互异性.避免此类错误的方法是解得m的值后,再代入验证.
讨论两集合之间关系时,通常依据相关的定义,观察这两个集合元素的关系,转化为解方程或解不等式.
变式训练
已知集合M={x|2-x<0},集合N={x|ax=1},若NM,求实数a的取值范围.
分析:集合N是关于x的方程ax=1的解集,集合M={x|x>2}≠,由于NM,则N=或N≠,要对集合N是否为空集分类讨论.
解:由题意得M={x|x>2}≠,则N=或N≠.
当N=时,关于x的方程ax=1中无解,则有a=0;
当N≠时,关于x的方程ax=1中有解,则a≠0,此时x=,又∵NM,∴∈M.∴>2.
∴02.(1)分别写出下列集合的子集及其个数:,{a},{a,b},{a,b,c}.
(2)由(1)你发现集合M中含有n个元素,则集合M有多少个子集?
活动:学生思考子集的含义,并试着写
( http: / / www.21cnjy.com )出子集.(1)按子集中所含元素的个数分类写出子集;(2)由(1)总结当n=0,n=1,n=2,n=3时子集的个数规律,归纳猜想出结论.
答案:(1)的子集有:,即?有1个子集;
{a}的子集有:、{a},即{a}有2个子集;
{a,b}的子集有:、{a}、{b}、{a,b},即{a,b}有4个子集;
{a,b,c}的子集有:、{a}、{b}、{c}、{a,b}、{a,c}、{b,c}、{a,b,c},即{a,b,c}有8个子集.
(2)由(1)可得:当n=0时,有1=20个子集;
当n=1时,集合M有2=21个子集;
当n=2时,集合M有4=22个子集;
当n=3时,集合M有8=23个子集;
因此含有n个元素的集合M有2n个子集.
变式训练
已知集合A{2,3,7},且A中至多有一个奇数,则这样的集合A有……(
)
A.3个
B.4个
C.5个
D.6个
分析:对集合A所含元素的个数分类讨论.
A=或{2}或{3}或{7}或{2,3}或{2,7}共有6个.
答案:D
点评:本题主要考查子集的概
( http: / / www.21cnjy.com )念以及分类讨论和归纳推理的能力.集合M中含有n个元素,则集合M有2n个子集,有2n-1个真子集,记住这个结论,可以提高解题速度.写一个集合的子集时,按子集中元素的个数来写不易发生重复和遗漏现象.
知能训练
课本P7练习1、2.
【补充练习】
1.判断正误:
(1)空集没有子集.
(
)
(2)空集是任何一个集合的真子集.
(
)
(3)任一集合必有两个或两个以上子集.
(
)
(4)若BA,那么凡不属于集合A的元素,则必不属于B.
(
)
分析:关于判断题应确实把握好概念的实质.
解:该题的5个命题,只有(4)是正确的,其余全错.
对于(1)、(2)来讲,由规定:空集是任何一个集合的子集,且是任一非空集合的真子集.
对于(3)来讲,可举反例,空集这一个集合就只有自身一个子集.
对于(4)来讲,当x∈B时必有x∈A,则xA时也必有xB.
2.集合A={x|-1分析:区分子集与真子集的概念,
( http: / / www.21cnjy.com )空集是任一非空集合的真子集,一个含有n个元素的子集有2n个,真子集有2n-1个,则该题先找该集合元素,后找真子集.
解:因-1即a={x|-1真子集:、{1}、{2}、{0}、{0,1}、{0,2}、{1,2},共7个.
3.(1)下列命题正确的是
(
)
A.无限集的真子集是有限集
B.任何一个集合必定有两个子集
C.自然数集是整数集的真子集
D.{1}是质数集的真子集
(2)以下五个式子中,错误的个数为
(
)
①{1}∈{0,1,2}
②{1,-3}={-3,1}
③{0,1,2}{1,0,2}
④∈{0,1,2}
⑤∈{0}
A.5
B.2
C.3
D.4
(3)M={x|3(
)
A.aM
B.aM
C.{a}∈M
D.{a}M
分析:(1)该题要在四个选择肢中找到符合条件的选择肢,必须对概念把握准确,
无限集的真子集有可能是无限集,如N是R的真子集,排除A;由于只有一个子集,即它本身,排除B;由于1不是质数,排除D.
(2)该题涉及到的是元素与集合,集合与集合的关系.
①应是{1}{0,1,2},④应是{0,1,2},⑤应是{0}.
故错误的有①④⑤.
(3)M={x|3因3{a}是{x|3答案:(1)C
(2)C
(3)D
4.判断如下集合A与B之间有怎样的包含或相等关系:
(1)A={x|x=2k-1,k∈Z},B={x|x=2m+1,m∈Z};
(2)A={x|x=2m,m∈Z},B={x|x=4n,n∈Z}.
解:(1)因A={x|x=2k-1,k∈Z},B={x|x=2m+1,m∈Z},故A、B都是由奇数构成的,即A=B.
(2)因A={x|x=2m,m∈Z},B={x|x=4n,n∈Z},
又x=4n=2·2n,
在x=2m中,m可以取奇数,也可以取偶数;而在x=4n中,2n只能是偶数.
故集合A、B的元素都是偶数.但B中元素是由A中部分元素构成,则有BA.
点评:此题是集合中较抽象的题目.要注意其元素的合理寻求.
5.已知集合P={x|x2+x-6=0},Q={x|ax+1=0}满足QP,求a所取的一切值.
解:因P={x|x2+x-6=0}={2,-3},
当a=0时,Q={x|ax+1=0}=,QP成立.
又当a≠0时,Q={x|ax+1=0}={},要QP成立,则有=2或=-3,a=或a=.
综上所述,a=0或a=或a=.
点评:这类题目给的条件中含有字母,一般需分类讨论.本题易漏掉a=0,ax+1=0无解,即Q为空集的情况,而当Q=时,满足QP.
6.已知集合A={x∈R|x2-3x+4=0},B={x∈R|(x+1)(x2+3x-4)=0},要使APB,求满足条件的集合P.
解:由A={x∈R|x2-3x+4=0}=,
B={x∈R|(x+1)(x2+3x-4)=0}={-1,1,-4},
由A?PB知集合P非空,且其元素全属于B,即有满足条件的集合P为
{1}或{-1}或{-4}或{-1,1}或{-1,-4}或{1,-4}或{-1,1,-4}.
点评:要解决该题,必须确定满足条件的集合P的
( http: / / www.21cnjy.com )元素,而做到这点,必须明确A、B,充分把握子集、真子集的概念,准确化简集合是解决问题的首要条件.
7.设A={0,1},B={x|xA},则A与B应具有何种关系?
解:因A={0,1},B={x|xA},
故x为,{0},{1},{0,1},即{0,1}是B中一元素.故A∈B.
点评:注意该题的特殊性,一集合是另一集合的元素.
8.集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},
(1)若BA,求实数m的取值范围;
(2)当x∈Z时,求A的非空真子集个数;
(3)当x∈R时,没有元素x使x∈A与x∈B同时成立,求实数m的取值范围.
解:(1)当m+1>2m-1即m<2时,B=满足BA.
当m+1≤2m-1即m≥2时,要使BA成立,
需可得2≤m≤3.综上所得实数m的取值范围m≤3.
(2)当x∈Z时,A={-2,-1,0,1,2,3,4,5},
所以,A的非空真子集个数为2上标8-2=254.
(3)∵x∈R,且A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},又没有元素x使x∈A与x∈B同时成立.
则①若B≠即m+1>2m-1,得m<2时满足条件;
②若B≠,则要满足条件有:或解之,得m>4.
综上有m<2或m>4.
点评:此问题解决要注意:不应忽略;找A中的元素;分类讨论思想的运用.
拓展提升
问题:已知AB,且AC,B={0,1,2,3,4},C={0,2,4,8},则满足上述条件的集合A共有多少个?
活动:学生思考AB,且AC所表达的含义.AB说明集合A是集合B的子集,即集合A中元素属于集合B,同理有集合A中元素属于集合C.因此集合A中的元素是集合B和集合C的公共元素.
思路1:写出由集合B和集合C的公共元素所组成的集合,得满足条件的集合A;
思路2:分析题意,仅求满足条件的集合A的个数,转化为求集合B和集合C的公共元素所组成的集合的子集个数.
解法一:因AB,AC,B={0,1,2,3,4},C={0,2,4,8},由此,满足AB,有:,{0},{1},{2},{3},{4},
{0,1},{0,2},{2,3},{2,4},{0,3},{0,4},{1,2},{1,3},{1,4},{3,4},{0,2,4},{0,1,2},{0,1,3},{0,1,4},{1,2,3},{1,2,4},{2,3,4},{0,3,4},{0,1,2,3},{1,2,3,4},{0,1,3,4},{0,2,3},{1,3,4},{0,1,2,4},{0,2,3,4},{0,1,2,3,4},共25=32(个).
又满足AC的集合A有:,{0},{2},{4},{8},{0,2},{0,4},{0,8},{2,4},{2,8},{4,8},{0,2,4},
{0,2,8},{0,4,8},{2,4,8},{0,2,4,8},共24=16(个).
其中同时满足AB,AC的有8个:,{0},{2},{4},{0,2},{0,4},{2,4},{0,2,4},实际上到此就可看出,上述解法太繁.
解法二:题目只求集合A的
( http: / / www.21cnjy.com )个数,而未让说明A的具体元素,故可将问题等价转化为B、C的公共元素组成集合的子集数是多少.显然公共元素有0、2、4,组成集合的子集有23=8(个).
点评:有关集合间关系的问题,常用分类讨论的思想来解决;关于集合的子集个数的结论要熟练掌握,其应用非常广泛.
课堂小结
本节课学习了:
①子集、真子集、空集、Venn图等概念;
②能判断存在子集关系的两个集合谁是谁的子集,进一步确定其是否是真子集;
③清楚两个集合包含关系的确定,主要靠其元素与集合关系来说明.
作业
课本P11习题1.1A组5.
设计感想
本节教学设计注重引导学生通过类比来获得新知,在实际教学中,
要留给学生适当的思考时间
( http: / / www.21cnjy.com ),使学生自己通过类比得到正确结论.丰富学生的学习方式、改进学生的学习方法是高中数学课程追求的基本理念,学生的数学学习活动不能仅限于对概念、结论和技能的记忆、模仿和接受,独立思考、自主探索、合作交流、阅读自学等都应成为学生学习数学的重要方式.模块纵览
课标要求
1.知识与技能
认识和理解集合、映射、函数、幂函数、指数函数、对数函数等概念,认识和理解它们的有关性质和运算.具有一定的把函数应用于实际的能力.
2.过程与方法
通过背景的给出,通过经历、体验和实
( http: / / www.21cnjy.com )践探索过程的展现,通过数学思想方法的渗透,让学生体会过程的重要,并在过程中学习知识,同时领会一定的数学思想和方法.
3.情感、态度与价值观
教育的根本目的是育人.通过对本模块内容的教
( http: / / www.21cnjy.com )学,使学生在学习和运用知识的过程中提高对数学学习的兴趣,并在初中函数的学习基础上,对数学有更深刻的感受,提高说理、批判和质疑精神,形成锲而不舍追求真理的科学态度和习惯,树立良好的情感态度和价值观.
内容概述
本模块共三章:第一章集合与函数概念;第二章基本初等函数(Ⅰ);第三章函数的应用.
本模块为了用集合与对应的语言刻画
( http: / / www.21cnjy.com )函数概念,先在第一章给出集合的有关概念、表示、关系和运算等;然后从函数实例出发深化函数概念及其表示,并研究映射概念;进而又给出了函数的性质:单调性、最值、奇偶性,这也是对函数的深化;接下来再回到特殊的函数——几个基本初等函数,继续认识函数,本模块重点涉及了指数函数、对数函数、幂函数;最后专门给出了函数在数学和实际中的一些应用实例,使函数的价值得到体现,也是进一步巩固函数的概念,更加强了数学应用.
概括地说,本模块的核心内容是“函数
( http: / / www.21cnjy.com )”.函数是描述现实世界最重要、最常用的数学模型,是贯穿整个高中数学的纽带,是学生进一步学习的准备,是未来公民的必需,因此,整个模块以函数作为中心,以函数思想作为指导思想.
本模块无论是数还是形都用函数观点来研究,研究
( http: / / www.21cnjy.com )它们的变化及其规律.对方程的认识和研究,也是从函数出发,把它与两个函数相结合,把它的解看成两个函数图象的交点的横坐标.这里把函数作为整体来认识,方程则被看成是包含于函数的局部.
教学建议
教师,对数学应该有自己深入的想法,只有
( http: / / www.21cnjy.com )教师深入了才能有教学的浅出;教师,对于教学也应该有自己的想法,唯其有自己的想法,才能发挥自己的特长,教出具有独到想法的学生.
1.抓住核心,重点突破
由于函数是本模块的重点和
( http: / / www.21cnjy.com )核心,因此教师要重视函数的教学,向学生贯彻函数的数学思想,逐步让学生掌握学会函数,更会用函数的思想去解决数学和实际问题.函数概念的教学要从实际背景和定义两个方面帮助学生理解函数的本质,教学中可引导学生联系生活常识,尝试列举具体函数,构建函数的一般定义.要注意:①构成函数的要素和相同函数的含义,②函数的三种表示法的联系、区别与适用性,③分段函数的意义,④映射的概念和判断.教学中应强调对函数概念本质的理解,在求函数定义域、值域时,要控制难度.
2.用课本教,而非教课本
《普通高中数学课程标准》是在《基础教育课程改
( http: / / www.21cnjy.com )革纲要(试行)》的指导下编写的,是数学学科教育目标的具体化,体现数学学科对学生最起码的要求,是编制高考大纲的依据,是数学教学和培养学生数学素质的主要依据,具有指导性.《普通高中数学课程标准》的目标是包含“双基”在内的三维发展目标:知识与技能,过程与方法,情感、态度与价值观.在这种教学过程中,课本仅仅是一种学习工具,是课程标准的具体化,课本内容仅仅是帮助学生实现三维发展目标的一种载体,并不要求学生将课本内容全部掌握.由于高中数学课本版本的多样化,高考数学只能依据高中数学课程标准而不是某个版本的课本来命题.因此在处理新课标课本时,首先要考虑高中数学课程标准的培养目标和具体要求.就课本来说,版本不同,对课程标准的理解就有不同,其处理的方式也就不同,因此,在教学中,要深入钻研课程标准、课本、学生,找准三者的连接点.这样在新课程改革的形势下,课本仅仅是教学的素材,在教学过程中,以课本为依托,把课本当作指导教学的素材和蓝本,创造性地使用、改造课本,最终突破课本,即变“教课本”为“用课本教”,树立“用课本教”的课本观.同时这也要求提醒学生,不要把课本看得过于神圣.
3.把学生当成学习的主人
独立自主地思考是学习数学的需要,但是合
( http: / / www.21cnjy.com )作交流更不能少.在课堂上,教师尽量不要大包大揽,以先知先觉出现,把结论告诉学生,而是推出判断,引导学生独立思考,并在此基础上进行合作和交流,努力实现师生的互动,这是课标的要求也是时代发展的必然.
4.强调应用,突出提出、分析和解决问题的能力
数学是美的,这正是数学使人兴
( http: / / www.21cnjy.com )趣盎然、乐此不疲之处.数学的美,有两个方面:一是其中的思维之美,内在的逻辑和运用逻辑的机智,外在的形式,莫不充满着思维之美;另一方面则是它的作用,它在方方面面的应用.新课标要求强化数学应用,在应用中,应该特别重视实践能力和创造能力的培养;在教学中,要重视动手和一题多解的能力.
第一章
集合与函数概念
本章教材分析
通过本章的学习,使学生会使用最基本的集
( http: / / www.21cnjy.com )合语言表示有关的数学对象,并能在自然语言、图形语言、集合语言之间进行转换,体会用集合语言表达数学内容的简洁性、准确性,帮助学生学会用集合语言描述数学对象,发展学生运用数学语言进行交流的能力.通过本章的学习,使学生不仅把函数看成变量之间的依赖关系,同时还会用集合与对应的语言刻画函数,为后续学习奠定基础.函数是高中数学的核心概念,本章把函数作为描述客观世界变化规律的重要数学模型来学习,强调结合实际问题,使学生感受运用函数概念建立模型的过程与方法,从而发展学生对变量数学的认识,培养学生的抽象概括能力,增强学生应用数学的意识.
课本力求紧密结合学生的生活经
( http: / / www.21cnjy.com )验和已有数学知识,通过列举丰富的实例,强调从实例出发,让学生对集合和函数概念有充分的感性认知基础,再用集合与对应语言抽象出函数概念.课本突出了集合和函数概念的背景教学,这样比较符合学生的认识规律.教学中要高度重视数学概念的背景教学.课本尽量创设使学生运用集合语言和数学符号进行表达和交流的情境和机会,并注意运用Venn图表达集合的关系及运算,用图象表示函数,帮助学生借助直观图示认识抽象概念.课本在例题、习题的教学中注重运用集合和函数的观点研究、处理数学问题,这一观点,一直贯穿到以后的数学学习中.在例题和习题的编排中,渗透了分类讨论思想,让学生体会到分类讨论思想在生活中和数学中的广泛运用,这是学生在初中阶段所缺少的.函数的表示是本章的主要内容之一,课本重视采用不同的表示法(列表法、图象法、分析法),目的是丰富学生对函数的认识,帮助理解抽象的函数概念.在教学中,既要充分发挥图象的直观作用,又要适当地引导学生从代数的角度研究图象,使学生深刻体会数形结合这一重要数学方法.课本将函数推广到了映射,体现了由特殊到一般的思维规律,有利于学生对函数概念学习的连续性.
在教学中,要坚持循序渐进,逐步
( http: / / www.21cnjy.com )渗透数形结合、分类讨论这方面的训练.对函数的三要素着重从函数的实质上要求理解,而对定义域、值域的繁难计算,特别是人为的过于技巧化的训练不作提倡,要准确把握这方面的要求,防止拔高教学.重视函数与信息技术整合的要求,通过电脑绘制简单函数动态图象,使学生初步感受到信息技术在函数学习中的重要作用.为了体现课本的选择性,在练习题安排上加大了弹性,教师应根据学生实际情况,合理地取舍.
本章教学时间约需13课时,具体分配如下(仅供参考):
1.1.1
集合的含义与表示
约1课时
1.1.2
集合间的基本关系
约1课时
1.1.3
集合的基本运算
约2课时
1.2.1
函数的概念
约2课时
1.2.1
函数的表示法
约3课时
1.3.1
单调性与最大
约2课时
1.3.2
奇偶性
约1课时
本章复习
约1课时