新人教九年级数学上册第22章《一元二次方程》整章教案

文档属性

名称 新人教九年级数学上册第22章《一元二次方程》整章教案
格式 rar
文件大小 258.1KB
资源类型 教案
版本资源 人教版(新课程标准)
科目 数学
更新时间 2010-03-27 09:49:00

文档简介

本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
22.3实际问题与一元二次方程(2)
教学内容
本节课主要学习建立一元二次方程的数学模型解决平均变化率问题。
教学目标
知识技能
1.能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型.
2.能根据具体问题的实际意义,检验结果是否合理.
数学思考
经历将实际问题抽象为代数问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述。
解决问题
 通过解决平均变化率问题,学会将实际应用问题转化为数学问题,体验解决问题策略的多样性,发展实践应用意识.
情感态度
通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用.
重难点、关键
重点:列一元二次方程解有关平均变化率问题的应用题
难点:发现平均变体化率问题中的等量关系
关键:建立一元二次方程的数学模型
教学准备
教师准备:制作课件,精选习题
学生准备:复习有关知识,预习本节课内容
教学过程
1、 复习引入
1.某农户的粮食产量,平均每年的增长率为x,第一年的产量为6万kg,第二年的产量为_______kg,第三年的产量为_______,三年总产量为_______.
2.某糖厂2002年食糖产量为at,如果在以后两年平均增长的百分率为x,那么预计2004年的产量将是________.
【活动方略】
教师演示课件,给出题目.
学生口答,老师点评。
【设计意图】
复习基本的变化率问题,掌握其数量关系,为继续学习建立一元二次方程的数学模型解变化率问题作好铺垫.
2、 探索新知
【问题情境】
两年前生产1t甲种药品的成本是5000元,生产1t乙种药品的成本是6000元,随着生产技术的进步,现在生产1t甲种药品的成本是3000元,生产1t乙种药品的成本是3600元,哪种药品成本的年平均下降率较大
老师点评:
绝对量:甲种药品成本的年平均下降额为(5000-3000)÷2=1000元,乙种药品成本的年平均下降额为(6000-3000)÷2=1200元,显然,乙种药品成本的年平均下降额较大.
相对量:从上面的绝对量的大小能否说明相对量的大小呢 也就是能否说明乙种药品成本的年平均下降率大呢 下面我们通过计算来说明这个问题.
解:设甲种药品成本的年平均下降率为x,
则一年后甲种药品成本为5000(1-x)元,两年后甲种药品成本为5000(1-x)元.
依题意,得5000(1-x)2=3000
解得:x1≈0.225,x2≈1.775(不合题意,舍去)
设乙种药品成本的平均下降率为y.
则:6000(1-y)2=3600 整理,得:(1-y)2=0.6
解得:y≈0.225
答:两种药品成本的年平均下降率一样大.
【思考】
经过计算,你能得出什么结论?成本下降额较大的药品,它的下降率一定也较大吗?应怎样全面地比较几个对象的变化状态?
【活动方略】
学生分组、讨论解答。选代表展示解答过程,并讲解解题过程和应注意问题.
教师演示问题,诱导解答,总结规律。
【设计意图】
使学生通过解题,体会绝对量与相对量的联系与区别,丰富解题经验.
3、 反馈练习
1.某电脑公司2001年的各项经营中,一月份的营业额为200万元,一月、二月、三月的营业额共950万元,如果平均每月营业额的增长率相同,求这个增长率.
2.某人将2000元人民币按一年定期存入银行,到期后支取1000元用于购物,剩下的1000元及应得利息又全部按一年定期存入银行,若存款的利率不变,到期后本金和利息共1320元,求这种存款方式的年利率.
  【活动方略】
学生独立思考、独立解题.
教师巡视、指导,并选取两名学生上台书写解答过程(或用投影仪展示学生的解答过程)
【设计意图】
检查学生对所学知识的掌握情况.
4、 应用拓展
例1:某商场礼品柜台春节期间购进大量贺年卡,一种贺年卡平均每天可售出500张,每张盈利0.3元,为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果这种贺年卡的售价每降低0.1元,那么商场平均每天可多售出100张,商场要想平均每天盈利120元,每张贺年卡应降价多少元
分析:总利润=每件平均利润×总件数.设每张贺年卡应降价x元,则每件平均利润应是(0.3-x)元,总件数应是(500+×100)
解:设每张贺年卡应降价x元
则(0.3-x)(500+)=120 解得:x=0.1
答:每张贺年卡应降价0.1元.
例2:.某商店经销一种销售成本为每千克40元的水产品,据市场分析,若每千克50元销售,一个月能售出500kg,销售单价每涨1元,月销售量就减少10kg,针对这种水产品情况,请解答以下问题:
(1)当销售单价定为每千克55元时,计算销售量和月销售利润.
(2)设销售单价为每千克x元,月销售利润为y元,求y与x的关系式.
(3)商品想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应为多少
分析:(1)销售单价定为55元,比原来的销售价50元提高5元,因此,销售量就减少5×10kg.
(2)销售利润y=(销售单价x-销售成本40)×销售量[500-10(x-50)]
(3)月销售成本不超过10000元,那么销售量就不超过=250kg,在这个提前下,求月销售利润达到8000元,销售单价应为多少.
解:(1)销售量 500-5×10=450(kg);销售利润 450×(55-40)=450×15=6750元
(2)y=(x-40)[500-10(x-50)]=-10x2+1400x-40000
(3)由于水产品不超过10000÷40=250kg,定价为x元,则(x-400)[500-10(x-50)]=8000
解得:x1=80,x2=60
当x1=80时,进货500-10(80-50)=200kg<250kg,满足题意.
当x2=60时,进货500-10(60-50)=400kg>250kg,(舍去).
【活动方略】
教师活动:操作投影,将例题显示,组织学生讨论.
学生活动:合作交流,讨论解答。
【设计意图】
使学生充分体会变化率问题的数量关系,掌握两种及以上对象的变化的解题方法,进一步提升学生对这类问题的解题能力。
5、 小结作业
1.问题:
通过本课的学习,大家有什么新的收获和体会?
本节课应掌握:
利用“平均变化率”建立关于一元二次方程的数学模型,并利用恰当方法解它.
2.作业:教材P53,习题22.3第7题,P58,复习题22第8题.
 【活动方略】
教师引导学生归纳小结,学生反思学习和解决问题的过程.
学生独立完成作业,教师批改、总结.
【设计意图】通过归纳总结,培养学生的归纳总结能力,通过课外作业,使学生进一步理解,内化知识。
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
22.1一元二次方程
教学内容
本节课主要学习一元二次方程概念及一元二次方程一般式及有关概念.
教学目标
知识技能
探索一元二次方程及其相关概念,能够辨别各项系数;能够从实际问题中抽象出方程知识。
数学思考
在探索问题的过程中使学生感受方程是刻画现实世界的一个模型,体会方程与实际生活的联系。
解决问题
  培养学生良好的研究问题的习惯,使学生逐步提高自己的数学素养。
情感态度
通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用.
重难点、关键
重点:一元二次方程的定义、各项系数的辨别,根的作用.
难点:根的作用的理解.
关键:通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念
教学准备
教师准备:制作课件,精选习题
学生准备:复习有关知识,预习本节课内容
教学过程
1、 情境引入
【问题情境】
问题1 如图,有一块矩形铁皮,长100 cm,宽50 cm.在它的四个角分别切去一个正方形,然后将四周突出的部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积是3 600 cm2,那么铁皮各角应切去多大的正方形?
          
问题2 要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应该邀请多少个队参赛?
【活动方略】
教师演示课件,给出题目.
学生根据所学知识,通过分析设出合适的未知数,列出方程回答问题.
【设计意图】
由实际问题入手,设置情境问题,激发学生的兴趣,让学生初步感受一元二次方程,同时让学生体会方程这一刻画现实世界的数学模型.
2、 探索新知
【活动方略】
学生活动:请口答下面问题.
(1)上面几个方程整理后含有几个未知数?
(2)按照整式中的多项式的规定,它们最高次数是几次?
(3)有等号吗?或与以前多项式一样只有式子?
老师点评:(1)都只含一个未知数x;(2)它们的最高次数都是2次的;(3)都有等号,是方程.
归纳:像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.
一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.
一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.
【设计意图】
主体活动,探索一元二次方程的定义及其相关概念.
3、 范例点击
例1 将方程化成一元二次方程的一般形式,并指出各项系数.
解:去括号得

移项,合并同类项,得一元二次方程的一般形式

其中二次项系数是3,一次项系数是-8,常数项是-10.
【活动方略】
学生活动:
学生自主解决问题,通过去括号、移项等步骤把方程化为一般形式,然后指出各项系数.
教师活动:
在学生指出各项系数的环节中,分析可能出现的问题(比如系数的符号问题).
【设计意图】
进一步巩固一元二次方程的基本概念.
例2 猜测方程的解是什么?
【活动方略】
学生活动:
学生可以采取多种方法得到方程的解,比如可以用尝试的方法取x=1、2、3、4、5等,发现x=8时等号成立,于是x=8是方程的一个解,如此等等.
教师活动:
教师引导学生自主探索,多种途径寻找方程的解,在此基础上让学生进行总结:
使一元二次方程等号两边相等的未知数的取值叫作一元二次方程的解(又叫作根).
【设计意图】
探究一元二次方程根的概念以及作用.
4、 反馈练习
课本P32 练习1,2  课本P33 练习1、2题
补充习题:
1.将方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.
2.你能根据所学过的知识解出下列方程的解吗?
(1); (2).
【活动方略】
学生独立思考、独立解题.
教师巡视、指导,并选取两名学生上台书写解答过程(或用投影仪展示学生的解答过程)
【设计意图】
检查学生对基础知识的掌握情况.
5、 应用拓展
例3:求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程.
分析:要证明不论m取何值,该方程都是一元二次方程,只要证明m2-8m+17≠0即可.
证明:m2-8m+17=(m-4)2+1
∵(m-4)2≥0
∴(m-4)2+1>0,即(m-4)2+1≠0
∴不论m取何值,该方程都是一元二次方程.
例4:有人解这样一个方程.
解:x+5=1或x-1 = 7,所以x1=-4,x2 =8,你的看法如何?
由得到x+5=1或x-1=7,应该是x+5=1且x-1=7,同时成立才行,此时得到x=-4且x=8,显然矛盾,因此上述解法是错误的.
【活动方略】
教师活动:操作投影,将例3、例4显示,组织学生讨论.
学生活动:合作交流,讨论解答。
【设计意图】
使学生进一步理解一元二次方程的概念,对一元二次方程的根有更深刻的理解.
6、 小结作业
1.问题:本节课你学到了什么知识?从中得到了什么启发?
(1)一元二次方程的概念;
(2)一元二次方程的一般形式ax2+bx+c=0(a≠0)和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用;
(3)一元二次方程根的概念以及作用
2.作业:课本P34 习题22.1   第1、2题
 【活动方略】
教师引导学生归纳小结,学生反思学习和解决问题的过程.
学生独立完成作业,教师批改、总结.
【设计意图】通过归纳总结,课外作业,使学生优化概念,内化知识。
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
22.2降次——解一元二次方程(3)
教学内容
本节课主要学习用公式法解一元二次方程。
教学目标
知识技能
掌握一元二次方程求根公式的推导,会运用公式法解一元二次方程.
数学思考
通过求根公式的推导,培养学生数学推理的严密性及严谨性.
解决问题
培养学生准确快速的计算能力.
情感态度
通过公式的引入,培养学生寻求简便方法的探索精神及创新意识;通过求根公式的推导,渗透分类的思想.
重难点、关键
重点:求根公式的推导及 用公式法解一元二次方程.
难点:对求根公式推导过程中依据的理论的深刻理解.
关键:掌握一元二次方程的求根公式,并应用求根公式法解简单的一元二次方程.
教学准备
教师准备:制作课件,精选习题
学生准备:复习有关知识,预习本节课内容
教学过程
1、 复习引入
【问题】(学生总结,老师点评)
1.用配方法解下列方程
(1)6x2-7x+1=0 (2)4x2-3x=52
2.总结用配方法解一元二次方程的步骤。
(1)移项;
(2)化二次项系数为1;
(3)方程两边都加上一次项系数的一半的平方;
(4)原方程变形为(x+m)2=n的形式;
(5)如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解.
【活动方略】
教师演示课件,给出题目.
学生根据所学知识解答问题.
【设计意图】
复习配方法解一元二次方程,为继续学习公式法引入作好铺垫.
2、 探索新知
如果这个一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题.
【问题】
已知ax2+bx+c=0(a≠0)且b2-4ac≥0,试推导它的两个根为x1=,x2=
分析:因为前面具体数字已做得很多,我们现在不妨把a、b、c也当成一个具体数字,根据上面的解题步骤就可以一直推下去.
解:移项,得:ax2+bx=-c
二次项系数化为1,得x2+x=-
配方,得:x2+x+()2=-+()2
即(x+)2=
∵b2-4ac≥0且4a2>0
∴≥0
直接开平方,得:x+=±
即x=
∴x1=,x2=
【说明】
这里 ()是一元二次方程的求根公式
【活动方略】
鼓励学生独立完成问题的探究,完成探索后,教师让学生总结归纳,由形式是一元二次方程的一般形式,得出一元二次方程的求根公式.
【设计意图】
创设问题情境,激发学生兴趣,引出本节内容,导出一元二次方程的求根公式。
【思考】
利用公式法解下列方程,从中你能发现什么?
(1)
(2)
(3)
【活动方略】
在教师的引导下,学生回答,教师板书
引导学生总结步骤:确定的值、算出的值、代入求根公式求解.
在学生归纳的基础上,老师完善以下几点:
(1)一元二次方程的根是由一元二次方程的系数确定的;
(2)在解一元二次方程时,可先把方程化为一般形式,然后在的前提下,把的值代入 ()中,可求得方程的两个根;
(3)我们把公式()称为一元二次方程的求根公式,用此公式解一元二次方程的方法叫公式法;
(4)由求根公式可以知道一元二次方程最多有两个实数根.
【设计意图】
主体探究、探究利用公式法解一元二次方程的一般方法,进一步理解求根公式.
3、 反馈练习
教材P42 练习第1、2题.
补充习题:
用公式法解下列方程.
(1)x2-5x-6=0 (2)7x2+2x-1=0 (3)3x2-5x+2=0
(4)5x2+2x-6=0 (5)4x2-7x+2=0 (6)2x2-x-=0
  【活动方略】
学生独立思考、独立解题.
教师巡视、指导,并选取两名学生上台书写解答过程(或用投影仪展示学生的解答过程)
【设计意图】
检查学生对知识的掌握情况.
4、 应用拓展
例:某数学兴趣小组对关于x的方程(m+1)+(m-2)x-1=0提出了下列问题.
(1)若使方程为一元二次方程,m是否存在?若存在,求出m并解此方程.
(2)若使方程为一元二次方程m是否存在?若存在,请求出.
你能解决这个问题吗?
分析:能.(1)要使它为一元二次方程,必须满足m2+1=2,同时还要满足(m+1)≠0.
(2)要使它为一元一次方程,必须满足:
①或②或③
解:(1)存在.根据题意,得:m2+1=2
m2=1 m=±1
当m=1时,m+1=1+1=2≠0
当m=-1时,m+1=-1+1=0(不合题意,舍去)
∴当m=1时,方程为2x2-1-x=0
a=2,b=-1,c=-1
b2-4ac=(-1)2-4×2×(-1)=1+8=9
x=
x1=1,x2=-
因此,该方程是一元二次方程时,m=1,两根x1=1,x2=-.
(2)存在.根据题意,得:①m2+1=1,m2=0,m=0
因为当m=0时,(m+1)+(m-2)=2m-1=-1≠0
所以m=0满足题意.
②当m2+1=0,m不存在.
③当m+1=0,即m=-1时,m-2=-3≠0
所以m=-1也满足题意.
当m=0时,一元一次方程是x-2x-1=0,
解得:x=-1
当m=-1时,一元一次方程是-3x-1=0
解得x=-
因此,当m=0或-1时,该方程是一元一次方程,并且当m=0时,其根为x=-1;当m=-1时,其一元一次方程的根为x=-.
【活动方略】
教师活动:操作投影,将例题显示,组织学生讨论.
学生活动:合作交流,讨论解答。
【设计意图】
使学生应用方程有关的有关舦知识解题,进一步掌握公式法。
5、 小结作业
1.问题:
本节你遇到了什么问题?在解决问题的过程中你采取了什么方法?
本节课应掌握:
(1)求根公式的概念及其推导过程;
(2)公式法的概念;
(3)应用公式法解一元二次方程;
2.作业:课本P45 习题22.2   第4、6题
 【活动方略】
教师引导学生归纳小结,学生反思学习和解决问题的过程.
学生独立完成作业,教师批改、总结.
【设计意图】通过归纳总结,培养学生的归纳总结能力。同时通过课外作业,使学生进一步理解知识,内化知识。
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
22.3实际问题与一元二次方程(3)
教学内容
本节课主要学习根据面积与面积之间的关系建立一元二次方程的数学模型并解决这类几何图形问题。
教学目标
知识技能
1.能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型.
2.能根据具体问题的实际意义,检验结果是否合理.
数学思考
经历将实际问题抽象为代数问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述。
解决问题
 通过解决封面设计与草坪规划的实际问题,学会将实际应用问题转化为数学问题,体验解决问题策略的多样性,发展实践应用意识.
情感态度
通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用.
重难点、关键
重点:列一元二次方程解有关问题的应用题
难点:发现问题中的等量关系
关键:根据面积与面积之间的等量关系建立一元二次方程的数学模型
教学准备
教师准备:制作课件,精选习题
学生准备:复习有关知识,预习本节课内容
教学过程
1、 复习引入
【问题】
1.直角三角形的面积公式是什么?一般三角形的面积公式是什么呢?
2.正方形的面积公式是什么呢?长方形的面积公式又是什么?
3.梯形的面积公式是什么?
4.菱形的面积公式是什么?
5.平行四边形的面积公式是什么?
6.圆的面积公式是什么?
【活动方略】
教师演示课件,给出题目.
学生口答,老师点评。
【设计意图】
复习一些简单几何图形的面积公式,为继续学习建立一元二次方程的数学模型并解决几何图形问题作好铺垫.
2、 探索新知
【问题情境】
要设计一本书的封面,封面长27 cm ,宽21 cm,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的彩色边衬所占面积是封面面积的四分之一,上下边衬等宽,左右边衬等宽,应如何设计四周边衬的宽度(精确到0.1 cm).
【分析】
(1)本题中有哪些数量关系?
(2)如何理解“正中央是一个与整个封面长宽比例相同的矩形”?
(3)如何利用已知的数量关系选取未知数并列出方程?
(4)解方程并得出结论,对比几种方法各有什么特点?
【解答】
依据题意知:中央矩形的长宽之比等于封面的长宽之比=9:7,由此可以判定:上下边衬宽与左右边衬宽之比为9:7,设上、下边衬的宽均为9xcm,则左、右边衬的宽均为7xcm,依题意,得:中央矩形的长为(27-18x)cm,宽为(21-14x)cm.
因为四周的彩色边衬所点面积是封面面积的,则中央矩形的面积是封面面积的.
所以(27-18x)(21-14x)=×27×21
整理,得:16x2-48x+9=0
解方程,得:x=, x1≈2.8cm,x2≈0.2
所以:9x1=25.2cm(舍去),9x2=1.8cm,7x2=1.4cm
因此,上下边衬的宽均为1.8cm,左、右边衬的宽均为1.4cm.
【活动方略】
教师提出问题
学生分组,分别按问题(3)中所列的方程来解答,选代表展示解答过程,并讲解解题过程和应注意问题.
在活动中,教师应注意:
(1)学生对几何图形的分析能力;
(2)学生在未知数的选择上,能否根据情况,灵活处理;
(3)在讨论中能否互相合作;
(4)解答一元二次方程的能力;
(5)学生回答问题时的语言表达是否准确.
【设计意图】
使学生通过多种方法解几何图形问题,验证多种方法的正确性;通过解题过程的对比,体会对已知数量关系的适当变形对解题的影响,丰富解题经验.
3、 反馈练习
1.某林场计划修一条长750m,断面为等腰梯形的渠道,断面面积为1.6m2,上口宽比渠深多2m,渠底比渠深多0.4m.
(1)渠道的上口宽与渠底宽各是多少?
(2)如果计划每天挖土48m3,需要多少天才能把这条渠道挖完?
2.有一张长方形的桌子,长6尺,宽3尺,有一块台布的面积是桌面面积的2倍,并且铺在桌面上时,各边垂下的长度相同,求台布的长和宽各是多少 (精确到0.1尺)
  【活动方略】
学生独立思考、独立解题.
教师巡视、指导,并选取两名学生上台书写解答过程(或用投影仪展示学生的解答过程)
【设计意图】
检查学生对所学知识的掌握情况.
4、 应用拓展
例1:如图,某中学为方便师生活动,准备在长30 m,宽20 m的矩形草坪上修两横两纵四条小路,横纵路的宽度之比为3∶2,若使余下的草坪面积是原来草坪面积的四分之三,则路宽应为多少?
【分析】
(1) 本题中有哪些数量关系?
(2)由这些数量关系还能得到什么新的结论?你想如何利用这些数量关系?为什么?如何列方程?
(3)对比下列两个图形,它们有什么联系与区别?
  
【活动方略】
学生分组讨论,画图,上台演示.
教师与学生一起评价,总结图形变换的基本原则.
例2:如图(a)、(b)所示,在△ABC中∠B=90°,AB=6cm,BC=8cm,点P从点A开始沿AB边向点B以1cm/s的速度运动,点Q从点B开始沿BC边向点C以2cm/s的速度运动.
(1)如果P、Q分别从A、B同时出发,经过几秒钟,使S△PBQ=8cm2.
(2)如果P、Q分别从A、B同时出发,并且P到B后又继续在BC边上前进,Q到C后又继续在CA边上前进,经过几秒钟,使△PCQ的面积等于12.6cm2.(友情提示:过点Q作DQ⊥CB,垂足为D,则:)
分析:(1)设经过x秒钟,使S△PBQ=8cm2,那么AP=x,PB=6-x,QB=2x,由面积公式便可得到一元二次方程的数学模型.
(2)设经过y秒钟,这里的y>6使△PCQ的面积等于12.6cm2.因为AB=6,BC=8,由勾股定理得:AC=10,又由于PA=y,CP=(14-y),CQ=(2y-8),又由友情提示,便可得到DQ,那么根据三角形的面积公式即可建模.
解:(1)设x秒,点P在AB上,点Q在BC上,且使△PBQ的面积为8cm2.
则:(6-x)·2x=8
整理,得:x2-6x+8=0
解得:x1=2,x2=4
∴经过2秒,点P到离A点1×2=2cm处,点Q离B点2×2=4cm处,经过4秒,点P到离A点1×4=4cm处,点Q离B点2×4=8cm处,所以它们都符合要求.
(2)设y秒后点P移到BC上,且有CP=(14-y)cm,点Q在CA上移动,且使CQ=(2y-8)cm,过点Q作DQ⊥CB,垂足为D,则有
∵AB=6,BC=8
∴由勾股定理,得:AC==10
∴DQ=
则:(14-y)·=12.6
整理,得:y2-18y+77=0
解得:y1=7,y2=11
即经过7秒,点P在BC上距C点7cm处(CP=14-y=7),点Q在CA上距C点6cm处(CQ=2y-8=6),使△PCD的面积为12.6cm2.
经过11秒,点P在BC上距C点3cm处,点Q在CA上距C点14cm>10,
∴点Q已超过CA的范围,即此解不存在.
∴本小题只有一解y1=7.
【活动方略】
教师活动:操作投影,将例题显示,组织学生讨论.
学生活动:合作交流,讨论解答。
【设计意图】
进一步提升学生在活动1中的学习效果,使学生充分体会图形变换的灵活性,培养学生对图形的观察、联想能力。
5、 小结作业
1.问题:
通过本课的学习,大家有什么新的收获和体会?
本节课应掌握:
利用已学的特殊图形的面积公式建立一元二次方程的数学模型并运用它解决实际问题.
2.作业:教材P53,习题22.3第5、8题,P58,复习题22第7、10题.
 【活动方略】
教师引导学生归纳小结,学生反思学习和解决问题的过程.
学生独立完成作业,教师批改、总结.
【设计意图】通过归纳总结,培养学生的归纳总结能力,通过课外作业,使学生进一步理解,内化知识。
_
(
a
)
_
B
_
A
_
C
_
Q
_
P
_
(
b
)
_
B
_
A
_
C
_
Q
_
D
_
P
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
22.3实际问题与一元二次方程(1)
教学内容
本节课主要学习建立一元二次方程的数学模型解决传播问题。
教学目标
知识技能
1.能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型.
2.能根据具体问题的实际意义,检验结果是否合理.
数学思考
经历将实际问题抽象为代数问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述。
解决问题
 通过解决传播问题,学会将实际应用问题转化为数学问题,体验解决问题策略的多样性,发展实践应用意识.
情感态度
通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用.
重难点、关键
重点:列一元二次方程解有关传播问题的应用题
难点:发现传播问题中的等量关系
关键:建立一元二次方程的数学模型解传播问题
教学准备
教师准备:制作课件,精选习题
学生准备:复习有关知识,预习本节课内容
教学过程
1、 复习引入
【问题】
下表是某一周甲、乙两种股票每天每股的收盘价(收盘价:股票每天交易结果时的价格):
星期 一 二 三 四 五
甲 12元 12.5元 12.9元 12.45元 12.75元
乙 13.5元 13.3元 13.9元 13.4元 13.75元
某人在这周内持有若干甲、乙两种股票,若按照两种股票每天的收盘价计算(不计手续费、税费等),则在他帐户上,星期二比星期一增加200元,星期三比星期二增加1300元,这人持有的甲、乙股票各多少股?
老师点评分析:一般用直接设元,即问什么就设什么,即设这人持有的甲、乙股票各x、y张,由于从表中知道每天每股的收盘价,因此,两种股票当天的帐户总数就是x或y乘以相应的每天每股的收盘价,再根据已知的等量关系;星期二比星期一增加200元,星期三比星期二增加1300元,便可列出等式.
解:设这人持有的甲、乙股票各x、y张.
则 解得
答:(略)
【思考】
列方程解应用题的基本步骤有哪些?应注意什么?
【活动方略】
教师演示课件,给出题目.
学生口答,老师点评。
【设计意图】
复习列方程一次方程解应用题,为继续学习建立一元二次方程的数学模型解实际问题作好铺垫.
2、 探索新知
【问题情境】
有一人患了流感,经过两轮传染后,有121人患了流感,每轮传染中平均一个人传染了几个人?
【分析】
(1)本题中有哪些数量关系?
(2)如何理解“两轮传染”?
(3)如何利用已知的数量关系选取未知数并列出方程?
(4)能否把方程列得更简单,怎样理解?
(5)解方程并得出结论,对比几种方法各有什么特点?
【解答】
设每轮传染中平均一个人传染了x个人,则依题意第一轮传染后有x+1人患了流感,第二轮传染后有x(1+x)人患了流感。于是可列方程:
1+x+x(1+x)=121
解方程得 x1=10,  x2=-12(不合题意舍去)
因此每轮传染中平均一个人传染了10个人.
【思考】
如果按这样的传播速度,三轮传染后有多少人患了流感?
【活动方略】
教师提出问题
学生分组,分别按问题(3)中所列的方程来解答,选代表展示解答过程,并讲解解题过程和应注意问题.
【设计意图】
使学生通过多种方法解传播问题,验证多种方法的正确性;通过解题过程的对比,体会对已知数量关系的适当变形对解题的影响,丰富解题经验.
3、 反馈练习
1.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,如果全组有x名同学,那么根据题意列出的方程是( )
A.x(x+1)=182 B.x(x-1)=182
C.2x(x+1)=182 D.x(1-x)=182×2
2.一个小组若干人,新年互送贺卡,若全组共送贺卡72张,则这个小组共( ).
A.12人 B.18人 C.9人 D.10人
  【活动方略】
学生独立思考、独立解题.
教师巡视、指导,并选取两名学生上台书写解答过程(或用投影仪展示学生的解答过程)
【设计意图】
检查学生对所学知识的掌握情况.
4、 应用拓展
例1:参加足球联赛的每两队之间都进行了两次比赛(双循环比赛),共要比赛90场,共有多少个队参加了比赛?
例2:学校组织了一次篮球单循环比赛(每两队之间都进行了一次比赛),共进行了15场比赛,那么有几个球队参加了这次比赛?
【分析】
(1) 两题中有哪些数量关系?
(2)由这些数量关系还能得到什么新的结论?你想如何利用这些数量关系?为什么?如何列方程?
(3)对比两题,它们有什么联系与区别?  
【活动方略】
教师活动:操作投影,将例题显示,组织学生讨论.
学生活动:合作交流,讨论解答。
【设计意图】
进一步提升学生在活动1中的学习效果,使学生充分体会传播问题,培养学生对传播问题的解题能力。
5、 小结作业
1.问题:
通过本课的学习,大家有什么新的收获和体会?
本节课应掌握:
用“传播问题”建立数学模型,并利用它解决一些具体问题.
2.作业:教材P53,习题22.3第1、2、6题,P58,复习题22第6题.
 【活动方略】
教师引导学生归纳小结,学生反思学习和解决问题的过程.
学生独立完成作业,教师批改、总结.
【设计意图】通过归纳总结,培养学生的归纳总结能力,通过课外作业,使学生进一步理解,内化知识。
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
22.2降次——解一元二次方程(4)
教学内容
本节课主要学习用根的判别式b2-4ac来判别ax2+bx+c=0(a≠0)的根的情况及其运用。
教学目标
知识技能
掌握b2-4ac>0,ax2+bx+c=0(a≠0)有两个不等的实根,反之也成立;b2-4ac=0,ax2+bx+c=0(a≠0)有两个相等的实数根,反之也成立;b2-4ac<0,ax2+bx+c=0(a≠0)没实根,反之也成立;及其它们关系的运用.
数学思考
从具体到一般,给出三个结论并应用它们解决一些具体题目。
解决问题
 用根的判别式b2-4ac来判别ax2+bx+c=0(a≠0)的根的情况.
情感态度
继续体会由未知向已知转化的思想方法.
重难点、关键
重点:理解一元二次方程的根的判别式,并能用判别式判定根的情况.
难点:用根的判别式b2-4ac来判别ax2+bx+c=0(a≠0)的根的应用.
关键:从具体题目来推出一元二次方程ax2+bx+c=0(a≠0)的b2-4ac的情况与根的情况的关系.
教学准备
教师准备:制作课件,精选习题
学生准备:复习有关知识,预习本节课内容
教学过程
1、 复习引入
【问题】
用公式法解下列方程,并说明根的情况(三位同学到黑板上作)
(1)2x2-3x=0 (2)3x2-2x+1=0 (3)4x2+x+1=0
老师点评:
(1)b2-4ac=9>0,有两个不相等的实根;
(2)b2-4ac=12-12=0,有两个相等的实根;
(3)b2-4ac=│-4×4×1│=<0,方程没有实根
【活动方略】
教师演示课件,给出题目.
学生独立利用公式法解上述3个方程,然后观察方程的解的情况,观察解题过程,总结一元二次方程根的规律和的关系
【设计意图】
复习用公式法解一元二次方程,为继续学习根的判别式作好铺垫.
2、 探索新知
【问题情境】
从前面的具体问题,我们已经知道b2-4ac>0(<0,=0)与根的情况,现在你把这个问题一般化,从求根公式的角度来分析来得出结论。
求根公式:x=,当b2-4ac>0时,根据平方根的意义,等于一个具体数,所以一元一次方程的x1=≠x1=,即有两个不相等的实根.当b2-4ac=0时,根据平方根的意义=0,所以x1=x2=,即有两个相等的实根;当b2-4ac<0时,根据平方根的意义,负数没有平方根,所以没有实数解.
因此,(结论)(1)当b2-4ac>0时,一元二次方程ax2+bx+c=0(a≠0)有两个不相等实数根即x1=,x2=.
(2)当b-4ac=0时,一元二次方程ax2+bx+c=0(a≠0)有两个相等实数根即x1=x2=.
(3)当b2-4ac<0时,一元二次方程ax2+bx+c=0(a≠0)没有实数根.
【活动方略】
学生活动:
学生通过思考,归纳结论
老师活动:
在学生讨论时,注意引导学生根据平方根的意义,得出结论。
【设计意图】
推出一元二次方程ax2+bx+c=0(a≠0)的b2-4ac的情况与根的情况的关系.
【应用】
例:不解方程,判定方程根的情况
(1)16x2+8x=-3 (2)9x2+6x+1=0
(3)2x2-9x+8=0 (4)x2-7x-18=0
分析:不解方程,判定根的情况,只需用b-4ac的值大于0、小于0、等于0的情况进行分析即可.
解:(1)化为16x2+8x+3=0
这里a=16,b=8,c=3,b2-4ac=64-4×16×3=-128<0
所以,方程没有实数根.
(2)a=9,b=6,c=1,
b2-4ac=36-36=0,
∴方程有两个相等的实数根.
 (3)a=2,b=-9,c=8
b2-4ac=(-9)2-4×2×8=81-64=17>0
∴方程有两个不相等的实根.
 (4)a=1,b=-7,c=-18
b2-4ac=(-7)2-4×1×(-18)=121>0
∴方程有两个不相等的实根.
【活动方略】
学生活动:
学生首先独立思考,自主探索,然后交流
教师活动:
在学生解决问题的过程中,适时让学生讨论解决遇到的问题。
【设计意图】
主体探究、通过解几个具体的问题,进一步体会一元二次方程的根与的关系.
3、 反馈练习
不解方程判定下列方程根的情况:
(1)x2+10x+26=0 (2)x2-x-=0
(3)3x2+6x-5=0 (4)4x2-x+=0
(5)x2-x-=0 (6)4x2-6x=0
(7)x(2x-4)=5-8x
  【活动方略】
学生独立思考、独立解题.
教师巡视、指导,并选取两名学生上台书写解答过程(或用投影仪展示学生的解答过程)
【设计意图】
检查学生对基础知识的掌握情况.
4、 应用拓展
例1:某养鸡厂的矩形鸡舍长靠墙.现在有材料可以制作竹篱笆13米,若欲围成20平方米的鸡舍,鸡舍的长和宽应是多少?能围成22平方米的鸡舍吗,若可以求出长和宽,若不能说明理由.
【活动方略】
学生活动:
学生在思考的基础上分组讨论,利用一元二次方程的知识解决上述问题。
教师关注:
(1)学生是否能够迅速设出未知数,列出方程;
(2)学生是否能够准确判断问题的答案;
(3)学生能否选择合理的解决问题的方案.
例2:若关于x的一元二次方程(a-2)x2-2ax+a+1=0没有实数解,求ax+3>0的解集(用含a的式子表示).
分析:要求ax+3>0的解集,就是求ax>-3的解集,那么就转化为要判定a的值是正、负或0.因为一元二次方程(a-2)x2-2ax+a+1=0没有实数根,即(-2a)2-4(a-2)(a+1)<0就可求出a的取值范围.
解:∵关于x的一元二次方程(a-2)x2-2ax+a+1=0没有实数根.
∴(-2a)2-4(a-2)(a+1)=4a2-4a2+4a+8<0
     a<-2
∵ax+3>0即ax>-3
   ∴x<-
∴所求不等式的解集为x<-
【活动方略】
教师活动:操作投影,将例题显示,组织学生讨论.
学生活动:合作交流,讨论解答。
【设计意图】
应用根的判别式与根的情况解题,深刻体会一元二次方程的根与的关系.
5、 小结作业
1.问题:
本节课学到了哪些知识?有什么体会?
本节课应掌握:
b2-4ac>0一元二次方程ax2+bx+c=0(a≠0)有两个不相等的实根;b2-4ac=0 一元二次方程ax2+bx+c=0(a≠0)有两个相等的实根;b2-4ac<0一元二次方程ax2+bx+c=0(a≠0)没有实数根及其它的运用.
2.作业:课本P45 习题22.2   第9、11、12题
 【活动方略】
教师引导学生归纳小结,学生反思学习和解决问题的过程.
学生独立完成作业,教师批改、总结.
【设计意图】通过归纳总结,培养学生的归纳总结能力,通过课外作业,使学生进一步理解,内化知识。
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
22.2降次——解一元二次方程(1)
教学内容
本节课主要学习运用直接开平方法,即根据平方根的意义把一个一元二次方程“降次”,转化为两个一元一次方程..
教学目标
知识技能
运用开平方法解形如(m x+ n)2=p(p≥0)的方程.
数学思考
通过根据平方根的意义解形如x2=n的方程,知识迁移到解形如(m x+ n)2=p(p≥0)的方程.
解决问题
提出问题,列出缺一次项的一元二次方程ax2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex+f)2+c=0型的一元二次方程.
情感态度
体会由未知向已知转化的思想方法.
重难点、关键
重点:运用开平方法解形如(m x+ n)2=p(p≥0)的方程.
难点:通过根据平方根的意义解形如x2=n的方程,知识迁移到形如(x+m)2=n(n≥0)的方程.
关键:理解一元二次方程“降次”──转化的数学思想,并能应用它解决一些具体问题.
教学准备
教师准备:制作课件,精选习题
学生准备:复习有关知识,预习本节课内容
教学过程
1、 复习引入
【问题】
求出下列各式中x的值,并说说你的理由.
(1)x2=9 (2)x2=5 (3)x2=a(a>0).
【活动方略】
教师演示课件,给出题目.
学生根据所学知识解答问题.
【设计意图】
复习平方根的意义,解形如x2=n的方程,为继续学习引入作好铺垫.
2、 探索新知
【问题情境】
一桶某种油漆可刷的面积为1 500 dm2,李林用这桶油漆恰好刷完10个同样的正方体的盒子的全部外表,你能算出盒子的棱长吗?
【活动方略】
学生活动:学生独立分析题意,发现若设正方体的棱长为x dm,则一个正方体的表面积为6x2 dm2,根据一桶油漆可以刷的面积,列出方程.在学生列出方程后,让学生讨论方程的解法,由于所列出的方程形式比较简单,可以运用平方根的定义(即开平方法)来求出方程的解.让学生感受开平方可以解一些简单的一元二次方程.
老师活动:概括可用直接开平方法求解的一元二次方程的结构形式及其操作过程.
【设计意图】
创设问题情境,激发学生兴趣,引出本节内容.
【思考】
对照上述解方程的过程,你能解下列方程吗?从中你能得到什么结论?
(1); (2)
【活动方略】
学生活动:
学生独立分析问题,在必要的时候进行讨论.经过分析发现(1)和问题1中的方程形式类似,可以利用平方根的定义,直接开平方得到,于是得到。
对于(2),发现方程左边是一个完全平方式,可以化为(1)的形式,然后利用(1)的方法解决.
教师活动:
鼓励学生独立解决问题,在解决问题的过程中体会解简单的一元二次方程的思想“降次”——把二次降为一次,进而解一元一次方程即可.
引导学生归纳:在解一元二次方程时通常通过“降次”把它转化为两个一元一次方程.
即,如果方程能化成或的形式,那么直接开平方可得或.
【设计意图】
主体探究、归纳直接开平方法一般过程.
3、 反馈练习
教材P36 练习.
补充习题:
解下列方程.
1.x2-3=0 2.4x2-9=0 3. 4x2+4x+1=1 4. x2-6x+9=0
【活动方略】
学生独立思考、独立解题.
教师巡视、指导,并选取两名学生上台书写解答过程(或用投影仪展示学生的解答过程)
【设计意图】
检查学生对基础知识的掌握情况.
4、 应用拓展
例:市政府计划2年内将人均住房面积由现在的10m2提高到14.4m,求每年人均住房面积增长率.
分析:设每年人均住房面积增长率为x.一年后人均住房面积就应该是10+10x=10(1+x);二年后人均住房面积就应该是10(1+x)+10(1+x)x=10(1+x)2
解:设每年人均住房面积增长率为x,
则:10(1+x)2=14.4
(1+x)2=1.44
直接开平方,得1+x=±1.2
即1+x=1.2,1+x=-1.2
所以,方程的两根是x1=0.2=20%,x2=-2.2
因为每年人均住房面积的增长率应为正的,因此,x2=-2.2应舍去.
所以,每年人均住房面积增长率应为20%.
【活动方略】
教师活动:操作投影,将例题显示,组织学生讨论.
学生活动:合作交流,讨论解答。
【设计意图】
使学生应用一元二次方程解有关实际问题,进一步掌握直接开门平方法。
5、 小结作业
1.问题:本节课你学到了什么知识?从中得到了什么启发?
由应用直接开平方法解形如x2=p(p≥0),那么x=±转化为应用直接开平方法解形如(mx+n)2=p(p≥0),那么mx+n=±,达到降次转化之目的.
2.作业:课本P45 习题22.2   第1、2题
 【活动方略】
教师引导学生归纳小结,学生反思学习和解决问题的过程.
学生独立完成作业,教师批改、总结.
【设计意图】通过归纳总结,课外作业,使学生优化概念,内化知识。
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
22.2降次——解一元二次方程(2)
教学内容
本节课主要学习运用配方法,即通过变形运用开平方法降次解方程。
教学目标
知识技能
探索利用配方法解一元二次方程的一般步骤;能够利用配方法解一元二次方程.
数学思考
在探索配方法时,使学生感受前后知识的联系,体会配方的过程以及方法。
解决问题
渗透配方法是解决某些代数问题的一个很重要的方法.
情感态度
继续体会由未知向已知转化的思想方法.
重难点、关键
重点:用配方法解一元二次方程.
难点:正确理解把形的代数式配成完全平方式.
关键:不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧.
教学准备
教师准备:制作课件,精选习题
学生准备:复习有关知识,预习本节课内容
教学过程
1、 复习引入
【问题】
(学生活动)请同学们解下列方程
(1)3x2-1=5 (2)4(x-1)2-9=0 (3)4x2+16x+16=9
老师点评:上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得
x=±或mx+n=±(p≥0).
如:4x2+16x+16=(2x+4)2
【活动方略】
教师演示课件,给出题目.
学生根据所学知识解答问题.
【设计意图】
复习直接开门平方法,解形如(mx+n)2=p(p≥0)的形式的方程,为继续学习引入作好铺垫.
2、 探索新知
【问题情境】
要使一块矩形场地的长比宽多6 cm,并且面积为16 cm2,场地的长和宽分别是多少?
【活动方略】
学生活动:
学生通过思考,自己列出方程,然后讨论解方程的方法.
考虑设场地的宽为x m,则长为(x+6)m,根据矩形面积为16 cm2,得到方程x(x+6)=16,整理得到x2+6x-16=0,对于如何解方程x2+6x-16=0可以进行讨论,根据问题1和问题2以及归纳的经验可以想到,只要把上述方程左边化成一个完全平方式的形式,问题就解决了,于是想到把方程左边进行配方,对于代数式x2+6x只需要再加上9就是完全平方式(x+3)2,因此方程x2+6x=16可以化为
x2+6x+9=16+9,
即(x+3)2=25,问题解决。
老师活动:
在学生讨论方程x2+6x=16的解法时,注意引导学生根据降次的思想,利用配方的方法解决问题,进而体会配方法解方程的一般步骤.
归纳:通过配成完全平方式的形式解一元二次方程的方法,叫作配方法;配方的目的是为了降次,把一元二次方程转化为两个一元一次方程。
【设计意图】
引导学生根据降次的思想,利用配方的方法把一元二次方程转化为两个一元一次方程来解方程.
【思考】
利用配方法解下列方程,你能从中得到在配方时具有的规律吗?
(1)x2-8x + 1 = 0;
(2);
(3).
【活动方略】
学生活动:
学生首先独立思考,自主探索,然后交流配方时的规律.经过分析(1)中经过移项可以化为,为了使方程的左边变为完全平方式,可以在方程两边同时加上42,得到,得到(x-4)2=15;
(2)中二次项系数不是1,此时可以首先把方程的两边同时除以二次项系数2,然后再进行配方,即,方程两边都加上,方程可以化为;
(3)按照(2)的方式进行处理.
教师活动:
在学生解决问题的过程中,适时让学生讨论解决遇到的问题(比如遇到二次项系数不是1的情况该如何处理),然后让学生分析利用配方法解方程时应该遵循的步骤:
(1)把方程化为一般形式;
(2)把方程的常数项通过移项移到方程的右边;
(3)方程两边同时除以二次项系数a;
(4)方程两边同时加上一次项系数一半的平方;
(5)此时方程的左边是一个完全平方式,然后利用平方根的定义把一元二次方程化为两个一元一次方程来解.
【设计意图】
主体探究、通过解几个具体的方程,归纳作配方法解题的一般过程.
3、 反馈练习
教材P39 练习第1、2题.
补充习题:
解下列方程.
(1)x2+2x-35=0 (2)2x2-4x-1=0
  【活动方略】
学生独立思考、独立解题.
教师巡视、指导,并选取两名学生上台书写解答过程(或用投影仪展示学生的解答过程)
【设计意图】
检查学生对基础知识的掌握情况.
4、 应用拓展
例:如图,在Rt△ACB中,∠C=90°,AC=8m,CB=6m,点P、Q同时由A,B两点出发分别沿AC、BC方向向点C匀速移动,它们的速度都是1m/s,几秒后△PCQ的面积为Rt△ACB面积的一半.
分析:设x秒后△PCQ的面积为Rt△ABC面积的一半,△PCQ也是直角三角形.根据已知列出等式.
解:设x秒后△PCQ的面积为Rt△ACB面积的一半.
根据题意,得:(8-x)(6-x)=××8×6
整理,得:x2-14x+24=0
(x-7)2=25即x1=12,x2=2
x1=12,x2=2都是原方程的根,但x1=12不合题意,舍去.
所以2秒后△PCQ的面积为Rt△ACB面积的一半.
【活动方略】
教师活动:操作投影,将例题显示,组织学生讨论.
学生活动:合作交流,讨论解答。
【设计意图】
使学生应用一元二次方程解有关实际问题,进一步掌握配方法。
5、 小结作业
1.问题:
本节你遇到了什么问题?在解决问题的过程中你采取了什么方法?
如果一个一元二次方程不能直接开平方解,可把方程化为左边是含有x的完全平方形式,右边是非负数,再开平方降次解。这种通过配成完全平方式的形式解一元二次方程的方法,叫作配方法.
2.作业:课本P45 习题22.2   第3题
 【活动方略】
教师引导学生归纳小结,学生反思学习和解决问题的过程.
学生独立完成作业,教师批改、总结.
【设计意图】通过归纳总结,课外作业,使学生优化概念,内化知识。
_
B
_
C
_
A
_
Q
_
P
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
22.3实际问题与一元二次方程(4)
教学内容
本节课主要学习建立一元二次方程的数学模型解决匀变速运动问题。
教学目标
知识技能
1.能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型.
2.能根据具体问题的实际意义,检验结果是否合理.
数学思考
经历将实际问题抽象为代数问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述。
解决问题
 通过解决匀变速问题,学会将实际应用问题转化为数学问题,发展实践应用意识.
情感态度
通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用.
重难点、关键
重点:列一元二次方程解有关匀变速问题的应用题
难点:发现匀变速问题中的等量关系,建立一元二次方程的数学模型
关键:理解匀变速运动中有关物理量的关系,根据匀变速问题中的等量关系列方程。
教学准备
教师准备:制作课件,精选习题
学生准备:复习有关知识,预习本节课内容
教学过程
1、 复习引入
1. 路程、速度和时间三者的关系是什么?
2. 某辆汽车在公路上行驶,它行驶的路程s(m)和时间t(s)之间的关系为:s=10t+3t2,那么行驶200m需要多长时间
【活动方略】
教师演示课件,给出题目.
学生口答,老师点评。
【设计意图】
复习基本的行程问题,掌握其数量关系,为继续学习建立一元二次方程的数学模型解匀变速运动问题作好铺垫.
2、 探索新知
【问题情境】
一辆汽车以20m/s的速度行驶,司机发现前方路面有情况,紧急刹车后汽车又滑行25m后停车.
(1)从刹车到停车用了多少时间
(2)从刹车到停车平均每秒车速减少多少
(3)刹车后汽车滑行到15m时约用了多少时间(精确到0.1s)
分析:(1)刚刹车时时速还是20m/s,以后逐渐减少,停车时时速为0.因为刹车以后,其速度的减少都是受摩擦力而造成的,所以可以理解是匀速的,因此,其平均速度为=10m/s,那么根据:路程=速度×时间,便可求出所求的时间.
(2)很明显,刚要刹车时车速为20m/s,停车车速为0,车速减少值为20-0=20,因为车速减少值20,是在从刹车到停车所用的时间内完成的,所以20除以从刹车到停车的时间即可.
(3)设刹车后汽车滑行到15m时约用除以xs.由于平均每秒减少车速已从上题求出,所以便可求出滑行到15米的车速,从而可求出刹车到滑行到15m的平均速度,再根据:路程=速度×时间,便可求出x的值.
解:(1)从刹车到停车所用的路程是25m;从刹车到停车的平均车速是=10(m/s)
那么从刹车到停车所用的时间是=2.5(s)
(2)从刹车到停车车速的减少值是20-0=20
从刹车到停车每秒平均车速减少值是=8(m/s)
(3)设刹车后汽车滑行到15m时约用了xs,这时车速为(20-8x)m/s
则这段路程内的平均车速为=(20-4x)m/s
所以x(20-4x)=15 整理得:4x2-20x+15=0
解方程:得x=
x1≈4.08(不合,舍去),x2≈0.9(s)
答:刹车后汽车行驶到15m时约用0.9s.
【思考】
刹车后汽车行驶20m时用多少时间?(精确到0.1秒)
【活动方略】
学生分组、讨论解答。选代表展示解答过程,并讲解解题过程和应注意问题.
教师演示问题,简介匀变速运动各物理量的关系,诱导解答,总结规律。
【设计意图】
使学生通过解题,理解各物理量的关系,掌握解题方法,丰富解题经验.
3、 反馈练习
 一个小球以10m/s的速度在平坦地面上开始滚动,并且均匀减速,滚动20m后小球停下来.
(1)小球滚动了多少时间
(2)平均每秒小球的运动速度减少多少
(3)小球滚动到5m时约用了多少时间(精确到0.1s)
  【活动方略】
学生独立思考、独立解题.
教师巡视、指导,并选取两名学生上台书写解答过程(或用投影仪展示学生的解答过程)
【设计意图】
检查学生对所学知识的掌握情况.
4、 应用拓展
例:如图,某海军基地位于A处,在其正南方向200海里处有一重要目标B,在B的正东方向200海里处有一重要目标C,小岛D位于AC的中点,岛上有一补给码头:小岛F位于BC上且恰好处于小岛D的正南方向,一艘军舰从A出发,经B到C匀速巡航,一般补给船同时从D出发,沿南偏西方向匀速直线航行,欲将一批物品送达军舰.
(1)小岛D和小岛F相距多少海里
(2)已知军舰的速度是补给船的2倍,军舰在由B到C的途中与补给船相遇于E处,那么相遇时补给船航行了多少海里 (结果精确到0.1海里)
分析:(1)因为依题意可知△ABC是等腰直角三角形,△DFC也是等腰直角三角形,AC可求,CD就可求,因此由勾股定理便可求DF的长.
(2)要求补给船航行的距离就是求DE的长度,DF已求,因此,只要在Rt△DEF中,由勾股定理即可求.
解:(1)连结DF,则DF⊥BC
∵AB⊥BC,AB=BC=200海里.
∴AC=AB=200海里,∠C=45°
∴CD=AC=100海里 DF=CF,DF=CD
∴DF=CF=CD=×100=100(海里)
所以,小岛D和小岛F相距100海里.
(2)设相遇时补给船航行了x海里,那么DE=x海里,AB+BE=2x海里,
EF=AB+BC-(AB+BE)-CF=(300-2x)海里
在Rt△DEF中,根据勾股定理可得方程
x2=1002+(300-2x)2
整理,得3x2-1200x+100000=0
解这个方程,得:x1=200-≈118.4
x2=200+(不合题意,舍去)
所以,相遇时补给船大约航行了118.4海里..
【活动方略】
教师活动:操作投影,将例题显示,组织学生讨论.
学生活动:合作交流,讨论解答。
【设计意图】
使学生充分体会行程问题的数量关系,运用路程=速度×时间,建立一元二次方程的数学模型,进一步提升学生对这类问题的解题能力。
5、 小结作业
1.问题:
通过本课的学习,大家有什么新的收获和体会?
本节课应掌握:
利用匀变速运动各物理量的关系建立关于一元二次方程的数学模型,并利用恰当方法解它.
2.作业:教材P53,习题22.3第11题,P58,复习题22第9题.
 【活动方略】
教师引导学生归纳小结,学生反思学习和解决问题的过程.
学生独立完成作业,教师批改、总结.
【设计意图】通过归纳总结,培养学生的归纳总结能力,通过课外作业,使学生进一步理解知识,内化知识。
_
B
_
A
_
C
_
E
_
D
_
F
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
22.2降次——解一元二次方程(5)
教学内容
本节课主要学习用因式分解法解一元二次方程。
教学目标
知识技能
1.应用分解因式法解一些一元二次方程.
2.能根据具体一元二次方程的特征,灵活选择方程的解法.
数学思考
体会“降次”化归的思想。
解决问题
 能根据具体一元二次方程的特征,灵活选择方程的解法,体会解决问题方法的多样性.
情感态度
使学生知道分解因式法是一元二次方程解法中应用较为广泛的简便方法,它避免了复杂的计算,提高了解题速度和准确程度.
重难点、关键
重点:应用分解因式法解一元二次方程.
难点:灵活应用各种分解因式的方法解一元二次方程.
关键:让学生通过比较解一元二次方程的多种方法,感悟用因式分解法使解题简便.
教学准备
教师准备:制作课件,精选习题
学生准备:复习有关知识,预习本节课内容
教学过程
1、 复习引入
解下列方程.
(1)2x2+x=0(用配方法) (2)3x2+6x=0(用公式法)
老师点评:(1)配方法将方程两边同除以2后,x前面的系数应为,的一半应为,因此,应加上()2,同时减去()2.(2)直接用公式求解.
【设计意图】
复习前面学过的一元二次方程的解法,为学习本节内容作好铺垫。
2、 探索新知
【问题】
仔细观察方程特征,除配方法或公式法,你能找到其它的解法吗?
(1)上面两个方程中有没有常数项?
(2)等式左边的各项有没有共同因式?
【活动方略】
  在学生解决问题的基础上引导学生探索利用因式分解解方程的方法,感受因式分解的作用以及能够解方程的依据。 
上面两个方程中都没有常数项;左边都可以因式分解:
2x2+x=x(2x+1),3x2+6x=3x(x+2)
因此,上面两个方程都可以写成:
(1)x(2x+1)=0 (2)3x(x+2)=0
因为两个因式乘积要等于0,至少其中一个因式要等于0,也就是(1)x=0或2x+1=0,所以x1=0,x2=-.
(2)3x=0或x+2=0,所以x1=0,x2=-2.
因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法.
归纳:利用因式分解使方程化为两个一次式乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次.这种解法叫作因式分解法.
【设计意图】
引导学生探索利用因式分解解方程的方法,感受因式分解的作用以及能够解方程的依据.
【探究】
通过解下列方程,你能发现在解一元二次方程的过程中需要注意什么?
(1);
(2);
(3);
(4).
【活动方略】
学生活动:
四个学生进行板演,其余的同学独立解决,然后针对板演的情况让学生讨论、分析可能出现的问题.
对于方程(1),若把(x-2)看作一个整体,方程可变形为(x-2)(x+1)=0;
方程(2)经过整理得到,然后利用平方差公式分解因式;
方程(3)的右边分解因式后变为,然后整体移项得到,把(2x-1)看作一个整体提公因式分解即可;
方程(4)把方程右边移到左边,利用平方差公式分解即可.
教师活动:
在学生交流的过程中,教师注重对上述方程的多种解法的讨论,比如方程(1)可以首先去括号,然后利用公式法和配方法;方程(3)可以去括号、移项、合并然后运用公式法或配方法;方程(4)可以利用完全平方公式展开,然后移项合并,再利用配方法或公式法.
在学生解决问题的基础上,对比配方法、公式法、因式分解法引导学生作以下归纳:
(1)配方法要先配方,再降次;通过配方法可以推出求根公式,公式法直接利用求根公式;因式分解法要先使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等于0.配方法、公式法适用于所有的一元二次方程,因式分解法用于某些一元二次方程.
(2)解一元二次方程的基本思路是:将二次方程化为一次方程,即降次.
【设计意图】
主体探究、灵活运用各种方法解方程,培养学生思维的灵活性.
【应用】
例:根据物理学规律,如果把一个物体从地面以10 m/s的速度竖直上抛,那么经过x s物体离地面的高度(单位:m)为

你能根据上述规律求出物体经过多少秒回到地面吗?
【活动方略】
学生活动:
学生首先独立思考,自主探索,然后交流
教师活动:
在学生解决问题的过程中鼓励学生运用多种方法解方程,然后让学生体会不同方法间的区别,找到解方程的最佳方法,体会因式分解法的简洁性.
【设计意图】
应用所学知识解答实际问题,培养学生的应用意识.
3、 反馈练习
教材P45 练习第1、2题
补充练习
解下列方程.
1.12(2-x)2-9=0 2.x2+x(x-5)=0
  【活动方略】
学生独立思考、独立解题.
教师巡视、指导,并选取两名学生上台书写解答过程(或用投影仪展示学生的解答过程)
【设计意图】
检查学生对基础知识的掌握情况.
4、 拓展提高
 例1:我们知道x2-(a+b)x+ab=(x-a)(x-b),那么x2-(a+b)x+ab=0就可转化为(x-a)(x-b)=0,请你用上面的方法解下列方程.
(1)x2-3x-4=0 (2)x2-7x+6=0 (3)x2+4x-5=0
分析:二次三项式x2-(a+b)x+ab的最大特点是x2项是由x·x而成,常数项ab是由-a·(-b)而成的,而一次项是由-a·x+(-b·x)交叉相乘而成的.根据上面的分析,我们可以对上面的三题分解因式.
解(1)∵x2-3x-4=(x-4)(x+1)
∴(x-4)(x+1)=0
∴x-4=0或x+1=0
∴x1=4,x2=-1
(2)∵x2-7x+6=(x-6)(x-1)
∴(x-6)(x-1)=0
∴x-6=0或x-1=0
∴x1=6,x2=1
(3)∵x2+4x-5=(x+5)(x-1)
∴(x+5)(x-1)=0
∴x+5=0或x-1=0
∴x1=-5,x2=1
上面这种方法,我们把它称为十字相乘法.
例2.已知9a2-4b2=0,求代数式的值.
分析:要求的值,首先要对它进行化简,然后从已知条件入手,求出a与b的关系后代入,但也可以直接代入,因计算量比较大,比较容易发生错误.
解:原式=
∵9a2-4b2=0 ∴(3a+2b)(3a-2b)=0
3a+2b=0或3a-2b=0,
a=-b或a=b
当a=-b时,原式=-=3
当a=b时,原式=-3.
例2:若关于x的一元二次方程(a-2)x2-2ax+a+1=0没有实数解,求ax+3>0的解集(用含a的式子表示).
分析:要求ax+3>0的解集,就是求ax>-3的解集,那么就转化为要判定a的值是正、负或0.因为一元二次方程(a-2)x2-2ax+a+1=0没有实数根,即(-2a)2-4(a-2)(a+1)<0就可求出a的取值范围.
解:∵关于x的一元二次方程(a-2)x2-2ax+a+1=0没有实数根.
∴(-2a)2-4(a-2)(a+1)=4a2-4a2+4a+8<0
     a<-2
∵ax+3>0即ax>-3
   ∴x<-
∴所求不等式的解集为x<-
【活动方略】
教师活动:操作投影,将例题显示,组织学生讨论.
学生活动:合作交流,讨论解答。
【设计意图】
应用提高、拓展创新,培养学生的应用意识和创新能力.
5、 小结作业
1.问题:本节课学到了哪些知识?有什么体会?
本节课应掌握:
(1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其应用.
(2)三种方法(配方法、公式法、因式分解法)的联系与区别:
联系:①降次,即它的解题的基本思想是:将二次方程化为一次方程,即降次.
②公式法是由配方法推导而得到.
③配方法、公式法适用于所有一元二次方程,因式分解法适用于某些一元二次方程.
区别:①配方法要先配方,再开方求根.
②公式法直接利用公式求根.
③因式分解法要使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等于0。
2.作业:课本P45 习题22.2   第5、8、10题
 【活动方略】
教师引导学生归纳小结,学生反思学习和解决问题的过程.
学生独立完成作业,教师批改、总结.
【设计意图】通过归纳总结,培养学生的归纳总结能力,通过课外作业,使学生进一步理解,内化知识。
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网