苏科版九年级数学上册第2章 2.6 正多边形与圆-资源包【教学设计 +课件+练习 +素材 】 (12份打包)

文档属性

名称 苏科版九年级数学上册第2章 2.6 正多边形与圆-资源包【教学设计 +课件+练习 +素材 】 (12份打包)
格式 zip
文件大小 3.1MB
资源类型 教案
版本资源 苏科版
科目 数学
更新时间 2016-09-08 07:44:08

文档简介

《正多边形与圆》习题
1.若正六边形的边长为1,那么正六边形的中心角的度数是_______,半径是_______,边心距是_______,它的每一个内角是_______.正n边形的一个外角度数与它的_______角的度数相等.
2.已知一个多边形的内角和是外角和的4倍,则这个多边形是( )
A.八边形 B.十二边形 C.十边形 D.九边形
3.边长为a的正六边形的内切圆的半径为( )
A.2a B.a C.a D.a
4.如图,四边形ABCD是边长为a的正方形,以D为圆心、DA为半径的圆弧与以BC为直径的半圆交于另一点P,延长AP交BC于点N,则_______.
5.(1)如图①,把等边三角形的各边三等分,分别以居中那条线段为一边向外作等边三角形,并去掉居中的那条线段,得到一个六角星,则这个六角星的边数是_______.
(2)如图②,在5×5的网格中有一个正方形,把正方形的各边三等分,分别以居中那条线段为一边向外作正方形,并去掉居中的那条线段.请你把得到的图形画在图③中,并写出这个图形的边数.
(3)现有一个正五边形,把正五边形的各边三等分,分别以居中那条线段为一边向外作正五边形,并去掉居中的那条线段,得到的图形的边数是多少?
  
6.如图①,已知⊙O的半径为1,PQ是⊙O的直径,n个相同的正三角形沿PQ排成一列,所有正三角形都关于PQ对称,其中第一个△A1B1C1的顶点A1与点P重合,第二个
△A2B2C2的顶点A2是B1C1与PQ的交点,…,最后一个△AnBnCn的顶点Bn、Cn在圆上.
(1)如图②,当n=1时,求正三角形的边长a1;
(2)如图③,当n=2时,求正三角形的边长a2;
(3)如图①,求正三角形的边长an(用含n的代数式表示).
7.如图,菱形ABCD的边长为2cm,∠DAB=60°.点P从A点出发,以cm/s的速度,沿AC向C作匀速运动;与此同时,点Q也从A点出发,以1cm/s的速度,沿射线AB作匀速运动.当P运动到C点时,P、Q都停止运动.设点P运动的时间为ts.
(1)当P异于A.C时,请说明PQ∥BC;
(2)以P为圆心、PQ长为半径作圆,请问:在整个运动过程中,t为怎样的值时,⊙P与边BC分别有1个公共点和2个公共点?
《正多边形与圆》习题
1.正多边形都是_______对称图形,一个正72边形有_______条对称轴,每条对称轴都通过正n边形的_______;一个正多边形,如果有偶数条边,那么它既是_______图形,又是_______图形.
2.正十二边形的每一个外角为_______,每一个内角是_______,该图形绕其中心至少旋转_______才能和本身重合.
3.用一张圆形的纸剪一个边长为4cm的正六边形,则这个圆形纸片的半径最小应为_______cm.
4.正方形ABCD的外接圆圆心O叫做正方形ABCD的_______.
5.如图,正六边形螺帽的边长是2cm,这个扳手的开口a的值应是( )
A.2cm B.cm C. cm D.1 cm
6.如图,有一个⊙O和两个正六边形T1、T2.T1的6个顶点都在圆周上,T2的6条边都和⊙O相切(我们称T1、T2分别为⊙O的内接正六边形和外切正六边形).
(1)设T1、T2的边长分别为a、b,⊙O的半径为r,求r:a及r:b的值;
(2)求正六边形T1、T2的面积比S1:S2的值.
《正多边形与圆》教案
教学目标
1、使学生理解正多边形概念,初步掌握正多边形与圆的关系;
2、通过正多边形定义教学,培养学生归纳能力;通过正多边形与圆关系定理的教学培养学生观察、猜想、推理、迁移能力;
3、进一步向学生渗透“特殊——一般再一般——特殊”的唯物辩证法思想.
4、掌握圆内接正多边形的两种画法:
(1)用量角器等分圆周法作正多边形;
(2)用尺规作图法作特殊的正多边形.
教学重点
正多边形的概念与正多边形和圆的关系.
教学难点
对定理的理解以及定理的证明方法.
教学活动设计
(一)观察、分析、归纳:
观察、分析:
1.等边三角形的边、角各有什么性质?
2.正方形的边、角各有什么性质?
归纳:等边三角形与正方形的边、角性质的共同点.
教师组织学生进行,并可以提问学生问题.
(二)正多边形的概念:
1.概念:各边相等、各角也相等的多边形叫做正多边形.如果一个正多边形有n(n≥3)条边,就叫正n边形.等边三角形有三条边叫正三角形,正方形有四条边叫正四边形.
2.概念理解:
①请同学们举例,自己在日常生活中见过的正多边形.(正三角形、正方形、正六边形,……)
②矩形是正多边形吗?为什么?菱形是正多边形吗?为什么?
矩形不是正多边形,因为边不一定相等.菱形不是正多边形,因为角不一定相等.
(三)分析、发现:
问题:正多边形与圆有什么关系呢?
发现:正三角形与正方形都有内切圆和外接圆,并且为同心圆.
分析:正三角形三个顶点把圆三等分;正方形的四个顶点把圆四等分.要将圆五等分,把等分点顺次连结,可得正五边形.要将圆六等分呢?
(四)多边形和圆的关系的定理
定理:把圆分成n(n≥3)等份:
1.依次连结各分点所得的多边形是这个圆的内接正n边形;
2.经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形.
我们以n=5的情况进行证明.
已知:⊙O中,TP、PQ、QR、RS、ST分别是经过点A、B、C、D、E的⊙O的切线.
求证:(1)五边形ABCDE是⊙O的内接正五边形;
(2)五边形PQRST是⊙O的外切正五边形.
引导学生分析、归纳证明思路:
说明:(1)要判定一个多边形是不是正多边形,除根据定义来判定外,还可以根据这个定理来判定,即:①依次连结圆的n(n≥3)等分点,所得的多边形是正多迫形;②经过圆的n(n≥3)等分点作圆的切线,相邻切线相交成的多边形是正多边形.
(2)要注意定理中的“依次”、“相邻”等条件.
(3)此定理被称为正多边形的判定定理,我们可以根据它判断一多边形为正多边形或根据它作正多边形.
(五)整多边形的画法
你能用量角器等分圆周法和尺规作图法作出圆O的内接正四边形和正八边形吗?
课件7张PPT。24.3 正多边形和圆什么样的图形是正多边形?各边相等,各角也相等的多边形是正多边形.活动1你知道正多边形与圆的关系吗? 正多边形和圆的关系非常密切,只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆.活动2⌒⌒⌒123ABCDE证明:∵AB=BC=CD=DE=EA
∴AB=BC=CD=DE=EA
∵BCE=CDA=3AB
∴∠1=∠2
同理∠2=∠3=∠4=∠5
又∵顶点A、B、C、D、E都在⊙O上,
∴五边形ABCDE是⊙O的内接五边形.

4⌒⌒5我们以圆内接正五边形为例证明. 如图,把⊙O分成把⊙O分成相等的5段弧,依次连接各分点得到正五边形ABCDE.正多边形每一边所对的圆心角叫做正多边形的中心角.我们把一个正多边形的外接圆的圆心叫做这个正多边形的中心.外接圆的半径叫做正多边形的半径.中心到正多边形的距离叫做正多边形的边心距.例 有一个亭子,它的地基半径为4m的正六边形,求地基的周长和面积(精确到0.1m2).因此,亭子地基的周长l =4×6=24(m).利用勾股定理,可得边心距亭子地基的面积OABCDEFRPr活动3练习如图,正六边形ABCDEF的边长为5,求对角线AD、AC的长.解:连接BE,交AD于点O.
由正六边形性质知:△DOE为等边三角形,△ACD为直角三角形.
所以AD=2OD=10.
△ACD中,根据勾股定理,得O课件1张PPT。1.如图,已知正三角形,用直尺和圆规作它的外接圆.2.如图,已知正方形,用直尺和圆规作它的外接圆.课件1张PPT。画一个半径为2cm的正五边形,再作出这个正五边形的各条对角线,画出一个五角星.