第3讲 牛顿第三定律 共点力的平衡
一、牛顿第三定律
1.作用力和反作用力:两个物体之间的作用总是________.当一个物体对另一个物体施加了力,后一个物体一定同时对前一个物体也施加了力.物体间相互作用的这一对力,通常叫作作用力和反作用力.
2.牛顿第三定律:两个物体之间的作用力和反作用力总是________,________,作用在同一条直线上.表达式为F=-F′.
二、共点力的平衡
1.平衡状态:物体保持静止或匀速直线运动状态.
2.平衡条件:F合=0或者
3.平衡条件的推论
二力平衡 如果物体在两个共点力的作用下处于平衡状态,那么这两个力必定大小相等、方向相反
三力平衡 如果物体在三个共点力的作用下处于平衡状态,那么其中任何一个力与另外两个力的合力大小相等、方向相反
考教衔接
【链接·人教版必修第一册P79第2题,两题的创设情境及思维方法相同】
(2023·浙江卷1月,2)如图所示,轻质网兜兜住重力为G的足球,用轻绳挂于光滑竖直墙壁上的A点,轻绳的拉力为FT,墙壁对足球的支持力为FN,则( )
A.FTB.FT=FN
C.FT>G
D.FT=G
关键能力·研教材——考向探究 经典示例 突出一个“准”
考点一 物体的受力分析
1.巧选研究对象
方法 整体法 隔离法
选用原则 研究系统外的物体对系统整体的作用力或者系统整体的加速度 研究系统内部各物体之间的相互作用力
注意问题 受力分析时不考虑系统内各物体之间的相互作用力 一般情况下先隔离受力较少的物体
2.受力分析的三个技巧
(1)不要把研究对象所受的力与研究对象对其他物体的作用力混淆.
(2)除了根据力的性质和特点进行判断,假设法是判断弹力、摩擦力的有无及方向的常用方法.
(3)善于转换研究对象,尤其是在弹力、摩擦力的方向不易判定的情形中,可以分析与其接触物体的受力,再应用牛顿第三定律判定.
例1 (2025·八省联考内蒙古卷) “那达慕”是国家级非物质文化遗产,套马是“那达慕”大会的传统活动之一.某次套马的情景如图所示,套马者视为质点,可能受重力G、支持力FN、拉力F、摩擦力Ff.其受力示意图可能正确的是( )
例2 (多选)(2025·湖北宜昌联考)如图所示,轻质弹簧一端系在质量为m=1 kg的小物块上,另一端固定在墙上.物块在斜面上静止时,弹簧与竖直方向的夹角为37°,已知斜面倾角θ=37°,斜面与小物块间的动摩擦因数μ=0.5,斜面固定不动.设物块与斜面间的最大静摩擦力与滑动摩擦力大小相等,已知sin 37°=0.6,cos 37°=0.8,g=10 m/s2,下列说法正确的是( )
A.弹簧一定处于压缩状态
B.小物块受四个力的作用
C.弹簧弹力大小可能等于3 N
D.斜面对物块的支持力可能为零
题后感悟
受力分析的一般步骤
练1 如图所示,a、b两个小球穿在一根粗糙的固定杆上(球的小孔比杆的直径大),并且通过一条细绳跨过定滑轮连接.已知b球质量为m,杆与水平面成θ角,不计滑轮的一切摩擦,重力加速度大小为g.当两球静止时,Oa段绳与杆的夹角也为θ,Ob段绳沿竖直方向,重力加速度大小为g,则下列说法正确的是( )
A.a一定受到4个力的作用
B.b只可能受到2个力的作用
C.绳子对a的拉力大小有可能等于mg
D.a的质量一定为m tan θ
考点二 共点力的静态平衡
考向1 处理静态平衡问题的常用方法
1.合成法:物体受三个共点力的作用而平衡,则任意两个力的合力一定与第三个力大小相等、方向相反.
2.效果分解法:物体受三个共点力的作用而平衡,将某一个力按作用效果分解,则其分力和其他两个力满足平衡条件.
3.正交分解法:物体受到三个或三个以上共点力的作用而平衡时,将物体所受的力沿互相垂直的方向分解,每个方向上的力都满足力的平衡条件.
例3 (2024·贵州卷)如图甲,一质量为m的匀质球置于固定钢质支架的水平细横杆和竖直墙之间,并处于静止状态,其中一个视图如图乙所示.测得球与横杆接触点到墙面的距离为球半径的1.8倍,已知重力加速度大小为g,不计所有摩擦,则球对横杆的压力大小为( )
A.mg B.mg
C.mg D.mg
考向2 应用整体法和隔离法解决多物体的平衡问题
例4 (2024·浙江卷1月)如图所示,在同一竖直平面内,小球A、B上系有不可伸长的细线a、b、c和d,其中a的上端悬挂于竖直固定的支架上,d跨过左侧定滑轮、c跨过右侧定滑轮分别与相同配重P、Q相连,调节左、右两侧定滑轮高度达到平衡.已知小球A、B和配重P、Q质量均为50 g,细线c、d平行且与水平方向夹角为θ=30°(不计摩擦).则细线a、b的拉力分别为(g取10 m/s2) ( )
A.2 N 1 N B.2 N 0.5 N
C.1 N 1 N D.1 N 0.5 N
题后感悟
处理多物体平衡问题的技巧
(1)合理选择研究对象:在分析两个或两个以上物体间的相互作用时,一般采用整体法与隔离法进行分析,在使用时有时需要先整体再隔离,有时需要先隔离再整体,交替使用整体法和隔离法.
(2)转移研究对象:用隔离法直接分析一个物体的受力情况不方便时,可转移研究对象,先隔离分析相互作用的另一个物体的受力情况,再根据牛顿第三定律分析该物体的受力情况.
练2 (2025·山西高三统考)如图所示,倾角为30°的光滑轻杆一端固定在地面上,绕过光滑定滑轮的轻绳一端连接轻弹簧,另一端连接质量m=2 kg的小球,轻弹簧的另一端连接轻质小环,小环和小球均套在光滑杆上,系统处于静止状态,轻绳与杆的夹角为45°,轻弹簧的劲度系数为500 N/m,重力加速度g=10 m/s2,则轻弹簧的形变量为( )
A.2 cm B. cm C.2 cm D.4 cm
核心素养·析真题——深研高考 领悟真谛 体现一个“透”
生产生活类情境
典例 (2024·湖北卷)如图所示,两拖船P、Q拉着无动力货船S一起在静水中沿图中虚线方向匀速前进,两根水平缆绳与虚线的夹角均保持为30°.假设水对三艘船在水平方向的作用力大小均为Ff,方向与船的运动方向相反,则每艘拖船发动机提供的动力大小为( )
A.Ff B.Ff
C.2Ff D.3Ff
[试题立意] 本题以两拖船拉着无动力货船一起在静水中匀速前进为研究背景,创设了与生活生产紧密联系的物理问题情境.主要考查共点力的平衡、力的合成和分解的应用等知识点,重点考查理解能力与推理论证能力.
[关键能力] (1)理解能力
题干关键表述 获取信息
“两拖船P、Q拉着无动力货船S一起在静水中沿图中虚线方向匀速前进” 两拖船和货船都受力平衡
对“拖船、货船”受力分析(隔离法)
用正交分解法处理受力
(2)推理论证能力
温馨提示:请完成课时分层精练(九)
第3讲 牛顿第三定律 共点力的平衡
必备知识·链教材
一、
1.相互的 2.大小相等 方向相反
考教衔接
解析:设轻绳与竖直墙面夹角为θ,对网兜和足球组成的整体受力分析,由平衡条件有FT==,FN=G tan θ,可知FT>G,FT>FN.
答案:C
关键能力·研教材
例1 解析:对套马者受力分析可知,“套马者”受到沿绳子方向向左上方的拉力F,垂直于水平面的支持力FN,竖直向下的重力G,水平向右的摩擦力Ff,所以A、D错误,B正确;如果没有支持力也就不会有摩擦力,故C错误.
答案:B
例2 解析:因为物块静止,所以有Ffm≥mg sin 37°=6 N,而最大静摩擦力等于滑动摩擦力,有Ffm=μFN,可得FN≥12 N,重力在垂直斜面方向的分力为mg cos 37°=8 N<FN,所以弹簧对物块有垂直斜面方向的压力F,弹簧一定处于压缩状态,小物块受重力、弹簧给的压力、斜面的支持力和摩擦力四个力的作用,A、B正确;因为弹簧弹力与物块重力在垂直斜面方向的分力的合力等于物块与斜面间的压力,所以有F+mg cos 37°=FN,其中FN≥12 N,可得F≥4 N,C错误;因为物块与斜面间的摩擦力不为0,所以斜面对物块的支持力不可能为0,D错误.
答案:AB
练1 解析:对a和b受力分析可知,a可能受重力、杆的支持力、绳的拉力3个力的作用,可能还受摩擦力共4个力的作用,b受重力、绳的拉力2个力或重力、绳的拉力、杆的支持力、摩擦力4个力的作用,故A、B错误;对b受力分析可知,b受绳子拉力大小可能等于mg,因此绳子对a的拉力大小可能等于mg,故C正确;对a受力分析,如果a、b所受摩擦力均为零,则由Ga sin θ=mg cos θ可得Ga=,即ma=,故D错误.
答案:C
例3 解析:对球进行受力分析如图,设球的半径为R,根据几何知识可得sin α==0.8,根据平衡条件得FNcos α=mg,解得FN=mg,根据牛顿第三定律得球对横杆的压力大小为F′N=FN=mg.
答案:D
例4 解析:细线c对小球A的拉力和细线d对小球B的拉力大小相等、方向相反,对A、B整体分析可知,细线a的拉力大小为FTa=(mA+mB)g=1 N.设细线b与水平方向夹角为α,分别对A、B分析有FTbsin α+FTcsin θ=mAg,FTbcos α=FTdcos θ,解得FTb=0.5 N,故D正确.
答案:D
练2 解析:由于小环是轻质的,故弹簧必将与杆垂直,否则受力不平衡.对小球受力分析如图所示.将各力沿着杆分解,根据平衡条件有FTcos 45°=mg sin 30°,解得FT=10N,又弹簧的弹力等于轻绳的拉力,故由胡克定律可得kΔx=FT,解得Δx=2 cm.
答案:C
核心素养·析真题
典例 解析:根据题意对S受力分析如图所示,
正交分解可知,2FTcos 30°=Ff,所以有FT=Ff,
对P受力分析如图所示,
则有(FTsin 30°)2+(Ff+FTcos 30°)2=F2,解得F=.
答案:B(共54张PPT)
第3讲 牛顿第三定律 共点力的平衡
一、牛顿第三定律
1.作用力和反作用力:两个物体之间的作用总是________.当一个物体对另一个物体施加了力,后一个物体一定同时对前一个物体也施加了力.物体间相互作用的这一对力,通常叫作作用力和反作用力.
2.牛顿第三定律:两个物体之间的作用力和反作用力总是________,________,作用在同一条直线上.表达式为F=-F′.
相互的
大小相等
方向相反
二力平衡 如果物体在两个共点力的作用下处于平衡状态,那么这两个力必定大小相等、方向相反
三力平衡 如果物体在三个共点力的作用下处于平衡状态,那么其中任何一个力与另外两个力的合力大小相等、方向相反
考教衔接
【链接·人教版必修第一册P79第2题,两题的创设情境及思维方法相同】
(2023·浙江卷1月,2)如图所示,轻质网兜兜住重力为G的足球,用轻绳挂于光滑竖直墙壁上的A点,轻绳的拉力为FT,墙壁对足球的支持力为FN,则( )
A.FTC.FT>G D.FT=G
答案:C
考点一 物体的受力分析
1.巧选研究对象
方法 整体法 隔离法
选用原则 研究系统外的物体对系统整体的作用力或者系统整体的加速度 研究系统内部各物体之间的相互作用力
注意问题 受力分析时不考虑系统内各物体之间的相互作用力 一般情况下先隔离受力较少的物体
2.受力分析的三个技巧
(1)不要把研究对象所受的力与研究对象对其他物体的作用力混淆.
(2)除了根据力的性质和特点进行判断,假设法是判断弹力、摩擦力的有无及方向的常用方法.
(3)善于转换研究对象,尤其是在弹力、摩擦力的方向不易判定的情形中,可以分析与其接触物体的受力,再应用牛顿第三定律判定.
例1 (2025·八省联考内蒙古卷) “那达慕”是国家级非物质文化遗产,套马是“那达慕”大会的传统活动之一.某次套马的情景如图所示,套马者视为质点,可能受重力G、支持力FN、拉力F、摩擦力Ff.
其受力示意图可能正确的是( )
答案:B
解析:对套马者受力分析可知,“套马者”受到沿绳子方向向左上方的拉力F,垂直于水平面的支持力FN,竖直向下的重力G,水平向右的摩擦力Ff,所以A、D错误,B正确;如果没有支持力也就不会有摩擦力,故C错误.
例2 (多选)(2025·湖北宜昌联考)如图所示,轻质弹簧一端系在质量为m=1 kg的小物块上,另一端固定在墙上.物块在斜面上静止时,弹簧与竖直方向的夹角为37°,已知斜面倾角θ=37°,斜面与小物块间的动摩擦因数μ=0.5,斜面固定不动.设物块与斜面间的最大静摩擦力与滑动摩擦力大小相等,已知sin 37°=0.6,cos 37°=0.8,g=10 m/s2,下列说法正确的是( )
A.弹簧一定处于压缩状态
B.小物块受四个力的作用
C.弹簧弹力大小可能等于3 N
D.斜面对物块的支持力可能为零
答案:AB
解析:因为物块静止,所以有Ffm≥mg sin 37°=6 N,而最大静摩擦力等于滑动摩擦力,有Ffm=μFN,可得FN≥12 N,重力在垂直斜面方向的分力为mg cos 37°=8 N<FN,所以弹簧对物块有垂直斜面方向的压力F,弹簧一定处于压缩状态,小物块受重力、弹簧给的压力、斜面的支持力和摩擦力四个力的作用,A、B正确;因为弹簧弹力与物块重力在垂直斜面方向的分力的合力等于物块与斜面间的压力,所以有F+mg cos 37°=FN,其中FN≥12 N,可得F≥4 N,C错误;因为物块与斜面间的摩擦力不为0,所以斜面对物块的支持力不可能为0,D错误.
题后感悟
受力分析的一般步骤
练1 如图所示,a、b两个小球穿在一根粗糙的固定杆上(球的小孔比杆的直径大),并且通过一条细绳跨过定滑轮连接.已知b球质量为m,杆与水平面成θ角,不计滑轮的一切摩擦,重力加速度大小为g.当两球静止时,Oa段绳与杆的夹角也为θ,Ob段绳沿竖直方向,重力加速度大小为g,则下列说法正确的是( )
A.a一定受到4个力的作用
B.b只可能受到2个力的作用
C.绳子对a的拉力大小有可能等于mg
D.a的质量一定为m tan θ
答案:C
考点二 共点力的静态平衡
考向1 处理静态平衡问题的常用方法
1.合成法:物体受三个共点力的作用而平衡,则任意两个力的合力一定与第三个力大小相等、方向相反.
2.效果分解法:物体受三个共点力的作用而平衡,将某一个力按作用效果分解,则其分力和其他两个力满足平衡条件.
3.正交分解法:物体受到三个或三个以上共点力的作用而平衡时,将物体所受的力沿互相垂直的方向分解,每个方向上的力都满足力的平衡条件.
答案:D
例4 (2024·浙江卷1月)如图所示,在同一竖直平面内,小球A、B上系有不可伸长的细线a、b、c和d,其中a的上端悬挂于竖直固定的支架上,d跨过左侧定滑轮、c跨过右侧定滑轮分别与相同配重P、Q相连,调节左、右两侧定滑轮高度达到平衡.已知小球A、B和配重P、Q质量均为50 g,细线c、d平行且与水平方向夹角为θ=30°(不计摩擦).则细线a、b的拉力分别为(g取10 m/s2)( )
A.2 N 1 N B.2 N 0.5 N
C.1 N 1 N D.1 N 0.5 N
答案:D
解析:细线c对小球A的拉力和细线d对小球B的拉力大小相等、方向相反,对A、B整体分析可知,细线a的拉力大小为FTa=(mA+mB)g=1 N.设细线b与水平方向夹角为α,分别对A、B分析有FTbsin α+FTcsin θ=mAg,FTbcos α=FTdcos θ,解得FTb=0.5 N,故D正确.
题后感悟
处理多物体平衡问题的技巧
(1)合理选择研究对象:在分析两个或两个以上物体间的相互作用时,一般采用整体法与隔离法进行分析,在使用时有时需要先整体再隔离,有时需要先隔离再整体,交替使用整体法和隔离法.
(2)转移研究对象:用隔离法直接分析一个物体的受力情况不方便时,可转移研究对象,先隔离分析相互作用的另一个物体的受力情况,再根据牛顿第三定律分析该物体的受力情况.
答案:C
答案:B
[试题立意] 本题以两拖船拉着无动力货船一起在静水中匀速前进为研究背景,创设了与生活生产紧密联系的物理问题情境.主要考查共点力的平衡、力的合成和分解的应用等知识点,重点考查理解能力与推理论证能力.
[关键能力] (1)理解能力
题干关键表述 获取信息
“两拖船P、Q拉着无动力货船S一起在静水中沿图中虚线方向匀速前进” 两拖船和货船都受力平衡
对“拖船、货船”受力分析(隔离法)
用正交分解法处理受力
(2)推理论证能力
1.水上飞伞是一项锻炼勇气和毅力的水上娱乐活动.快艇开动后,拖在快艇后面的空中飞伞,在风力和绳子牵引力的作用下升起,游客乘伞体验在空中飞翔的感觉.图中的O点均表示游客,能正确反映飞伞载着游客在空中匀速飞行的是( )
答案:A
解析:游客在空中受重力mg、绳子牵引力F1和飞伞的拉力F2,受力分析如图所示,游客在空中匀速飞行,说明游客所受合力为零,故能正确反映游客受力的是A图,故A正确.
答案:B
3.如图所示,水平面上固定两排平行的半圆柱体,重为G的光滑圆柱体静置其上,a、b为相切点,∠aOb=90°,半径Ob与重力的夹角为37°.已知sin 37°=0.6,cos 37°=0.8.则圆柱体受到的支持力Fa、Fb大小分别为( )
A.Fa=0.6G Fb=0.4G
B.Fa=0.4G Fb=0.6G
C.Fa=0.8G Fb=0.6G
D.Fa=0.6G Fb=0.8G
答案:D
解析:对光滑圆柱体受力分析如图.
由题意有Fa=G sin 37°=0.6G,Fb=G cos 37°=0.8G.
4.如图所示,P、Q是两个光滑的定滑轮,吊着A、B、C三个小球的三条轻绳各有一端在O点打结,悬吊A、C两个球的轻绳分别绕过定滑轮P、Q,三个球静止时,OQ段轻绳与竖直方向的夹角α=74°.已知B、C两球的质量均为m,sin 37°=0.6,则A球的质量为( )
A.m B.1.2m
C.1.5m D.1.6m
答案:B
5.如图所示,质量为m的小球置于内壁光滑的半球形凹槽内,凹槽放置在跷跷板上,凹槽的质量为m0.开始时跷跷板与水平面的夹角为37°,凹槽与小球均保持静止.已知重力加速度大小为g,sin 37°=0.6,cos 37°=0.8.在缓慢压低跷跷板的Q端至跟P端等高的过程中,下列说法正确的是( )
A.跷跷板对凹槽的作用力逐渐增大
B.小球对凹槽的压力大小始终为mg
C.开始时跷跷板对凹槽的支持力大小为0.8m0g
D.开始时跷跷板对凹槽的摩擦力大小为0.6m0g
答案:B
解析:由于小球、凹槽整体的重力不变化,与跷跷板的作用力等大反向,那么跷跷板对凹槽的作用力不变,故A错误;小球所在处的凹槽切线总是水平的,那么小球对凹槽的压力大小始终等于小球的重力mg,故B正确;将小球跟凹槽视为整体,开始时恰好静止,那么根据受力平衡知,跷跷板对凹槽的支持力大小为FN=(m+m0)g cos 37°=0.8(m+m0)g,跷跷板对凹槽的摩擦力大小为Ff=(m+m0)g sin 37°=0.6(m+m0)g,故C、D错误.
答案:AD
答案:C
8.2024年2月10日至21日,贵州发生200多起森林火灾,经过各方的扑救,终于在2月22日全部扑灭.如图甲、乙所示,在利用灭火直升机灭火时,直升机从A地出发,在B地取完水后飞到着火点C灭火,取水前桶的重力为G0,取水后桶和桶中水的总重力为30G0.假设直升机取水前后始终沿水平方向匀速运动,且桶始终受到与运动方向相反的恒定的水平风力,桶与灭火直升机始终保持相对静止.
则下列说法正确的是( )
A.取水前绳子对桶的拉力大小可能等于风力的大小
B.绳子与竖直方向的夹角取水前等于取水后的30倍
C.绳子与竖直方向夹角的正切值,取水前等于取水后的30倍
D.取水后重力与绳子拉力的合力大于取水前重力与绳子拉力的合力
答案:C
答案:C
10.如图甲所示,在长方体木箱ABCD中有一倾斜的木板PQ,质量为m的光滑小球置于木板左侧,此时箱壁对小球的支持力为FN1.现将木箱顺时针旋转90°,箱壁对小球的支持力为FN2,如图乙所示.已知FN1为FN2的3倍,重力加速度大小为g.∠QPC的大小为( )
A.45° B.53°
C.60° D.75°
答案:C
11.如图所示,质量为m的物块A静置于水平台面上,质量也为m的光滑小球B(可视为质点)放在半球体C上,物块A与小球B通过细线连接起来,并且细线绕过轻质定滑轮P.物块A在图示位置恰好处于静止状态,滑轮P通过竖直的轻杆固定于半球体球心的正上方,细线PA水平,PB刚好与半球体相切且与竖直方向的夹角θ=30°.重力加速度大小为g,不计细线与滑轮间的摩擦.
答案:C