鲁教版(五四学制)八年级数学下册课件:9.1成比例线段 (2份打包)

文档属性

名称 鲁教版(五四学制)八年级数学下册课件:9.1成比例线段 (2份打包)
格式 zip
文件大小 6.1MB
资源类型 教案
版本资源 鲁教版
科目 数学
更新时间 2016-09-09 12:32:09

文档简介

课件18张PPT。9.1成比例线段(第一课时)教学目标1.了解线段的比概念。
2.会求两条线段的比,应用线段的比解决实际问题。缩 小放 大自学导航1、什么是两条线段的比?2、对两条线段的长度单位有何要求?3、两条线段的比的实质。图形大小线段比 线段长度比
(即两个数之比)自学成才1、想一想,下列各题正确吗
若线段AB=4cm,CD=6cm,则 = cm.
若线段AB=4cm,CD=6cm,则 = .
若线段AB=4mm,CD=6cm,则 = .
2 、已知图上距离是2米,实际距离是60千米,那么比例尺是_____________。 1︰30000 设小方格的边长为1,四边形ABCD与四边形EFGH的顶点都在格点上,请你算一算:
(1)线段AB、AD、EF、EH的长度分别是多少?
(2) , , , 的值,有何发现?探究发现 四条线段a、b、c、d中,如果a 与b的比等于c 与 d 的比,即 (或a∶b=c∶d),那么这四条线段a、b、c、d叫做成比例线段,简称比例线段.探究发现判断下列线段是否是成比例线段: 
1.a=2cm,b=4cm,c=3m,d=6m;
2.a=0.8,b=3,c=1,d=2.4.如何快速地判断线段是否成比例? 将线段从小到大(或从大到小)的顺序排列,计算第一和第二之比,第三和第四之比,看他们的比值是否相同(2)a=0.8,c=1,d=2.4,b=3
所以a,c,d,b成比例线段合作探究(3)、由 还可以写出那些比例式?
(1)、你能证明这两个命题吗?(2)、以上两个命题有什么关系? 1、已知:线段a、b、c满足关系式 ,且a=2,c=8,那么b=______。 2、同一时刻物高和影长成比例,如果一电视塔在地面上得影子长60米,同一时刻高2米的竹竿的影长是3米,那么电视塔的高度是( )米。3、 这是泰安市政区图的一部分,泰安六中与东湖小区的直线距离为850米,图上两点距离为10厘米,则此地图的比例尺是__________若六中到双龙池的图上直线距离为3厘米,则其实际直线距离为________.尝试探究一个矩形的长AB = a m ,宽AD=1m,按图中的方式将它分割成相同的三个矩形,且使分割出的每个矩形的长与宽的比与原矩形的长与宽的比相同,即 ,则a的值是多少? △ABC中,AB=12cm,AE=6cm,EC=5cm,且 ,求AD的长。小结与反思 通过本节课的学习,你有哪些收获和感悟?小测试1.甲、乙两地的实际距离是150千米,图上的距离为5厘米.那么这张地图的比例尺为( )1:30000003.已知三个数是1、2 、 ,请你再添上一个数使它们能构成比例式,这个数可能是
.2、下列各组线段是否成比例(单位:厘米)
(1)2、3、4、1
(2)1.1、2.2、3.3、4.4达标测试见导学案
再见!课件16张PPT。9.1成比例线段(第二课时)考考你的记忆力 比例的基本性质是什么样的?基本性质应用举例引例得:即:对于比例式,等式的性质依然成立合作探究在图中,已知 ,
你能求出 的值吗?
它们有怎样的关系?
如果 ,那么 有怎样的关系?
在求解过程中,你有怎样的发现?你发现了什么? 证明:方法1方法2设k法若题目中出现了比例式,尝试将含有比的形式的代数式进行拆分,或者设比例式中每一个比的比值为k后再变形代入,也是解决求比值问题的常用方法和技巧合比性质特点:分母不变,分子加(或减)分母合比性质的应用举例设一份为k或者设比值为k的方法实质是统一的,都是把未知数看做是以k为基本单位的数,从而都能够用k来表示,达到“消元”的效果证明:设则a=bk,c=dk,…m=nk,==ka c
b d =m
n = …= a+c+…+m
b+d+…+n= .a
b分母之和不为零,等比性质:等比性质的条件中,就是连续相等的比的形式,因而设比值为k,就能够证明结论等比性质的应用举例等比性质使用时必须有后项和不为零的条件.例题解析(2)在△ABC和△DEF中,若 ,
且△ABC的周长为18cm,求△DEF的周长.课堂小结1、合比性质: 2、等比性质: b+d+···+m达标测试见导学案
再见!