苏教版高中数学必修第二册-15.3 互斥事件和独立事件 课件(共56张PPT)

文档属性

名称 苏教版高中数学必修第二册-15.3 互斥事件和独立事件 课件(共56张PPT)
格式 ppt
文件大小 2.3MB
资源类型 教案
版本资源 苏教版(2019)
科目 数学
更新时间 2025-10-25 23:15:52

图片预览

文档简介

(共56张PPT)
第15章 概 率
15.3 互斥事件和独立事件
01
自主学习
02
讲练互动
03
当堂达标
04
巩固提升
学习指导 核心素养
1.理解互斥事件的概念,能综合运用互斥事件的概率加法公式求某些事件的概率.
2.理解对立事件的概念,能利用对立事件解决问题.
3.能记住相互独立事件概率的乘法公式;能综合运用互斥事件的概率加法公式及独立事件的乘法公式解题. 1.数学抽象:互斥事件、对立事件的概念.
2.数学运算、数学建模:互斥事件的概率加法公式和独立事件的乘法公式的应用.
互斥
Ω
对立
自主学习
(1)互斥事件与对立事件的区别与联系
①区别:两个事件A与B是互斥事件,包括如下三种情况:(ⅰ)若事件A发生,则事件B就不发生;(ⅱ)若事件B发生,则事件A不发生;(ⅲ)事件A,B都不发生.
而两个事件A,B是对立事件,仅有前两种情况,因此事件A与B是对立事件,则A∪B是必然事件,但若A与B是互斥事件,则A∪B不一定是必然事件,亦即事件A的对立事件只有一个,而事件A的互斥事件可以有多个.
②联系:互斥事件和对立事件在一次试验中都不可能同时发生,而事件对立是互斥的特殊情况,即对立必互斥,但互斥不一定对立.
P(A)+P(B)
P(A1)+P(A2)+…+P(An)
1-P(A)
P(A)P(B)
事件A与B相互独立可以推广到n个事件的一般情形吗?
提示:对于n个事件A1,A2,…,An,如果其中任何一个事件发生的概率不受其他事件是否发生的影响,则称事件A1,A2,…,An两两相互独 立.
1.判断正误(对的打“√”,错的打“×”)
(1)互斥事件一定对立.(  )
(2)对立事件一定互斥.(  )
(3)事件A与B互斥,则有P(A)=1-P(B).(  )
(4)必然事件与任何一个事件相互独立.(  )
(5)“P(AB)=P(A)P(B)”是“事件A,B相互独立”的充要条件.(  )
×
×



2.下列事件A,B是相互独立事件的是(  )
A.一枚硬币抛掷两次,A表示“第一次为正面”,B表示“第二次为反面”
B.袋中有2个白球,2个黑球,不放回地摸球两次,每次摸一球,A表示“第一次摸到白球”,B表示“第二次摸到白球”
C.抛掷一颗骰子,A表示“出现点数为奇数”,B表示“出现点数为偶数”
D.A表示“一个灯泡能用1 000小时”,B表示“一个灯泡能用2 000小
时”

3.抽查10件产品,设“至少抽到2件次品”为事件A,则A的对立事件是
(  )
A.至多抽到2件次品   B.至多抽到2件正品
C.至少抽到2件正品 D.至多抽到1件次品
解析:因为“至少抽到2件次品”就是说抽查10件产品中次品的数目至少有2个,所以A的对立事件是抽查10件产品中次品的数目最多有1个.故选D.

4.某产品分为优质品、合格品、次品三个等级,生产中出现合格品的概率为0.25,出现次品的概率为0.03,在该产品中任抽一件,则抽到优质品的概率为________.
解析:由题意,在该产品中任抽一件,“抽到优质品”与“抽到合格品或次品”是对立事件,所以在该产品中任抽一件,则抽到优质品的概率为P=1-0.25-0.03=0.72.
答案:0.72
探究点1 互斥事件与对立事件的判定
某小组有3名男生和2名女生,从中任选2名同学参加演讲比赛,判断下列每对事件是不是互斥事件,如果是,再判别它们是不是对立事件.
(1)恰有1名男生与恰有2名男生;
(2)至少有1名男生与全是男生;
(3)至少有1名男生与全是女生;
(4)至少有1名男生与至少有1名女生.
讲练互动
【解】 判别两个事件是否互斥,就要考查它们是否能同时发生;判别两个互斥事件是否对立,就要考查它们是否必有一个发生.
(1)因为“恰有1名男生”与“恰有2名男生”不可能同时发生,所以它们是互斥事件;当恰有2名女生时它们都不发生,所以它们不是对立事件.
(2)因为恰有2名男生时,“至少有1名男生”与“全是男生”同时发生,所以它们不是互斥事件.
(3)因为“至少有1名男生”与“全是女生”不可能同时发生,所以它们互斥;由于它们必有一个发生,所以它们是对立事件.
(4)由于选出的是1名男生1名女生时,“至少有1名男生”与“至少有1名女生”同时发生,所以它们不是互斥事件.
(1)包含关系、相等关系的判定
①事件的包含关系与集合的包含关系相似;
②两事件相等的实质为相同事件,即同时发生或同时不发生.
(2)判断事件是否互斥的两个步骤
第一步,确定每个事件包含的结果;
第二步,确定是否有一个结果发生会意味着两个事件都发生,若是,则两个事件不互斥,否则就是互斥的.
(3)判断事件是否对立的两个步骤
第一步,判断是互斥事件;
第二步,确定两个事件必然有一个发生,否则只是互斥,但不对立. 
  判断下列给出的每对事件,是否为互斥事件,是否为对立事件,并说明理由.
从40张扑克牌(红桃、黑桃、方块、梅花点数从1~10各10张)中,任取1
张.
(1)“抽出红桃”与“抽出黑桃”;
(2)“抽出红色牌”与“抽出黑色牌”;
(3)“抽出的牌点数为5的倍数”与“抽出的牌点数大于9”.
解:(1)是互斥事件,不是对立事件.
理由是:从40张扑克牌中任意抽取1张,“抽出红桃”和“抽出黑桃”是不可能同时发生的,所以是互斥事件.同时,不能保证其中必有一个发生,这是由于还可能抽出“方块”或者“梅花”,所以二者不是对立事件.
(2)既是互斥事件,又是对立事件.
理由是:从40张扑克牌中,任意抽取1张,“抽出红色牌”与“抽出黑色牌”两个事件不可能同时发生,且其中必有一个发生,所以它们既是互斥事件,又是对立事件.
(3)不是互斥事件,也不是对立事件
理由是:从40张扑克牌中任意抽取1张,“抽出的牌点数为5的倍数”与“抽出的牌点数大于9”这两个事件可能同时发生,如抽得点数为10,所以二者不是互斥事件,当然也不可能是对立事件.
探究点2 互斥事件与对立事件的应用
一名射击运动员在一次射击中射中10环、9环、8环、7环、7环以下的概率分别为0.24,0.28,0.19,0.16,0.13.计算这名射击运动员在一次射击中:
(1)射中10环或9环的概率;
(2)至少射中7环的概率.
【解】 设“射中10环”“射中9环”“射中8环”“射中7环”“射中7环以下”的事件分别为A,B,C,D,E,可知它们彼此之间互斥,且P(A)=0.24,P(B)=0.28,P(C)=0.19,P(D)=0.16,P(E)=0.13.
(1)P(射中10环或9环)=P(A∪B)=P(A)+P(B)=0.24+0.28=0.52,所以射中10环或9环的概率为0.52.
(2)事件“至少射中7环”与事件E“射中7环以下”是对立事件,则P(至少射中7环)=1-P(E)=1-0.13=0.87.
所以至少射中7环的概率为0.87.
[变问法]在本例条件下,求射中环数小于8环的概率.
解:事件“射中环数小于8环”包含事件D“射中7环”与事件E“射中7环以下”两个事件,则P(射中环数小于8环)=P(D∪E)=P(D)+P(E)=0.16+0.13=0.29.
互斥事件、对立事件概率的求解方法
(1)互斥事件的概率的加法公式P(A∪B)=P(A)+P(B).
(2)对于一个较复杂的事件,一般将其分解成几个简单的事件,当这些事件彼此互斥时,原事件的概率就是这些简单事件的概率的和.
(3)当求解的问题中有“至多”“至少”“最少”等关键词语时,常常考虑其反面,通过求其反面,然后转化为所求问题.
  某医院要派医生下乡义诊,派出医生的人数及其概率如下表所示:


(1)求派出医生至多2人的概率;
(2)求派出医生至少2人的概率.
人数 0 1 2 3 4 大于等于5
概率 0.1 0.16 0.3 0.2 0.2 0.04
解:设“不派出医生”为事件A,“派出1名医生”为事件B,“派出2名医生”为事件C,“派出3名医生”为事件D,“派出4名医生”为事件
E,“派出5名及5名以上医生”为事件F,事件A,B,C,D,E,F彼此互斥,且P(A)=0.1,P(B)=0.16,P(C)=0.3,P(D)=0.2,P(E)=0.2,P(F)=0.04.
(1)“派出医生至多2人”的概率为P(A∪B∪C)=P(A)+P(B)+P(C)=0.1+0.16+0.3=0.56.
(2)方法一:“派出医生至少2人”的概率为P(C∪D∪E∪F)=P(C)+P(D)+P(E)+P(F)=0.3+0.2+0.2+0.04=0.74.
方法二:“派出医生至少2人”的概率为1-P(A∪B)=1-0.1-0.16=0.74.
探究点3 相互独立事件的判断
一个家庭中有若干个小孩,假定生男孩和生女孩是等可能的.令A={一个家庭中既有男孩又有女孩},B={一个家庭中最多有一个女孩}.对下述两种情形,讨论A与B的独立性:
(1)家庭中有两个小孩;
(2)家庭中有三个小孩.
判断两个事件是否相互独立的两种方法
(1)根据问题的实质,直观上看一事件的发生是否影响另一事件发生的概率来判断,若没有影响,则两个事件就是相互独立事件;
(2)定义法:通过式子P(AB)=P(A)P(B)来判断两个事件是否独立,若上式成立,则事件A,B相互独立,这是定量判断.  
  分别抛掷两枚质地均匀的硬币,设事件A是“第一枚为正
面”,事件B是“第二枚为正面”,事件C是“两枚结果相同”,则下列事件具有相互独立性的有________.(填序号)
①A,B;②A,C;③B,C.
解析:根据事件相互独立的定义判断,只要P(AB)=P(A)P(B),P(AC)=P(A)P(C),P(BC)=P(B)P(C)成立即可.利用古典概型计算可得P(A)=
0.5,P(B)=0.5,P(C)=0.5,P(AB)=0.25,P(AC)=0.25,P(BC)=0.25.可以验证P(AB)=P(A)P(B),P(AC)=P(A)P(C),P(BC)=P(B)P(C).所以根据事件相互独立的定义,事件A与B相互独立,事件B与C相互独立,事件A与C相互独立.
答案:①②③
探究点4 相互独立事件同时发生的概率
王敏某天乘火车从重庆到上海去办事,若当天从重庆到上海的三列火车正点到达的概率分别为0.8,0.7,0.9,假设这三列火车之间是否正点到达互不影响.求:
(1)这三列火车恰好有两列正点到达的概率;
(2)这三列火车至少有一列正点到达的概率.
1.[变问法]在本例条件下,求恰有一列火车正点到达的概率.
2.[变条件、变问法]若一列火车正点到达记10分,用ξ表示三列火车的总得分,求P(ξ≤20).
解:事件“ξ≤20”表示“至多两列火车正点到达”,其对立事件为“三列火车都正点到达”,所以P(ξ≤20)=1-P(ABC)=1-P(A)P(B)P(C)
=1-0.8×0.7×0.9=0.496.
1.口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,那么摸出黑球的概率是
(  )
A.0.42         B.0.28
C.0.3     D.0.7
解析:因为摸出黑球是摸出红球或摸出白球的对立事件,所以摸出黑球的概率是1-0.42-0.28=0.3,故选C.

当堂达标
2.若A与B为互斥事件,则(  )
A.P(A)+P(B)<1 B.P(A)+P(B)>1
C.P(A)+P(B)=1 D.P(A)+P(B)≤1
解析:若A与B为互斥事件,则P(A)+P(B)≤1.故选D.

3.从装有3个红球和2个白球的口袋中随机取出3个球,则事件“取出1个红球和2个白球”的对立事件是(  )
A.取出2个红球和1个白球
B.取出的3个球全是红球
C.取出的3个球中既有红球也有白球
D.取出的3个球中不止1个红球

解析:从装有3个红球和2个白球的口袋中随机取出3个球的基本事件有“3个红球”“1红2白”“2红1白”,所以事件“取出1个红球和2个白
球”的对立事件是“3红或是2红1白”即“3个球不止1个红球”.故选
D.

5.某人忘记了电话号码的最后一个数字,因而他随意地拨号,假设拨过了的号码不再重复,试求下列事件的概率:
(1)第3次拨号才接通电话;
(2)拨号不超过3次而接通电话.
解:设Ai={第i次拨号接通电话},i=1,2,3.
本部分内容讲解结束