人教版八年级数学上册13.4课题学习最短路径问题教案

文档属性

名称 人教版八年级数学上册13.4课题学习最短路径问题教案
格式 zip
文件大小 378.0KB
资源类型 教案
版本资源 人教版(新课程标准)
科目 数学
更新时间 2016-09-14 22:28:08

图片预览

文档简介

13.4
课题学习
最短路径问题
能利用轴对称解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用,感悟转化思想.
利用轴对称将最短路径问题转化为“两点之间,线段最短”问题.
探索发现“最短路径”的方案,确定最短路径的作图及说理.
一师一优课 一课一名师 (设计者:   )
一、创设情景,明确目标
如图所示,从A地到B地有三条路可供选择,走哪条路最近?你的理由是什么?
前面我们研究过一些关于“两点的所有连线中
( http: / / www.21cnjy.com ),线段最短”、“连接直线外一点与直线上各点的所有线段中,垂线段最短”等的问题,我们称它们为最短路径问题.现实生活中经常涉及到选择最短路径的问题,本节将利用数学知识探究数学史中著名的“将军饮马问题”.
二、自主学习,指向目标
自学教材第85
页至87
页,思考下列问题:
1.求直线异侧的两点与直线上一点所连线段的和最小的问题,只要连接这两点,与直线的交点即为所求,其依据是两点的所有连线中,线段最短.
2.求直线同侧的两点与直线上一点所连线段的
( http: / / www.21cnjy.com )和最小的问题,只要找到其中一个点关于这条直线的对称点,连接对称点与另一个点,则与该直线的交点即为所求.
3.在解决最短路径问题时,我们通常利用轴对称、平移等变化把已知问题转化为容易解决的问题,从而作出最短路径的选择.
三、合作探究,达成目标
 探索最短路径问题
活动一:相传,古希腊亚历山大里亚城里有一位久负盛名的学者,名叫海伦.有一天,一位将军专程拜访海伦,求教一个百思不得其解的问题:
从图中的A地出发,到一条笔直的河边l
饮马,然后到B地.到河边什么地方饮马可使他所走的路线全程最短?
精通数学、物理学的海伦稍加思索,利用轴对称的
知识回答了这个问题.这个问题后来被称为“将军饮马问题”.你能将这个问题抽象为数学问题吗?
追问1 这是一个实际问题,你打算首先做什么?答:将A,B
两地抽象为两个点,将河l
抽象为一条直线.
追问2 你能用自己的语言说明这个问题的意思,并把它抽象为数学问题吗?
答:(1)从A
地出发,到河边l
饮马,然
( http: / / www.21cnjy.com )后到B
地;
(2)在河边饮马的地点有无穷多处,把这些地点与A,B
连接起来的两条线段的长度之和,就是从A
地到饮马地,再回到B
地的路程之和;(3)现在的问题是怎样找出使两条线段长度之和为最短的直线l上的点.设C
为直线上的一个动点,上面的问题就转化为:当点C
在l
的什么位置时,AC
与CB
的和最小(如图).问题2:如图,点A,B
在直线l
的同侧,点C
是直线上的一个动点,当点C
在l
的什么位置时,AC与CB的和最小?
追问1:对于问题2,如何将点B“移”到l的另一侧B′处,满足直线l
上的任意一点C,都保持CB
与CB′的长度相等?
追问2:你能利用轴对称的有关知识,找到上问中符合条件的点B′吗?
展示点评:作法:
(1)作点B
关于直线l
的对称点B′;
(2)连接AB′,与直线l
交于点C.
则点C
即为所求.
问题3 你能用所学的知识证明AC
+BC最短吗?
证明:如图,在直线l上任取一点C′(与点C
不重合),连接AC′,BC′,B′C′.由轴对称的性质知,
BC
=B′C,BC′=B′C′.

AC
+BC=
AC
+B′C

AB′,
AC′+BC′=
AC′+B′C′.
在△AB′C′中,
AB′<AC′+B′C′,

AC
+BC<AC′+BC′.即
AC
+BC
最短.
小组讨论:证明AC
+BC
( http: / / www.21cnjy.com )
最短时,为什么要在直线l
上任取一点C′(与点C
不重合),证明AC
+BC
<AC′+BC′?这里的“C′”的作用是什么?
反思小结:运用轴对称变换及性质将不在一
( http: / / www.21cnjy.com )条直线上的两条线段转化到一条直线上,然后用“两点之间线段最短”解决问题.利用三角形的三边关系,若直线l上任意一点(与点C
不重合)与A,B
两点的距离和都大于AC
+BC,就说明AC
+BC
最小.
C′的代表的是除点C以外直线l上的任意一点.
针对训练:
1.如图,
A、B是河流
同侧的两个村庄,现要在河边修一个抽水站向两村供水,问抽水站修在什么地方才能使所需的管道最短?请在图中表示出来.
答:如下图,作点B关于l的对称点B′,连接AB′交l于点P,点P即为所求.
2.如图,一个旅游船从大桥AB的P处前往山脚下的Q处接游客,然后将游客送往河岸BC
上,再返回P处,请画出旅游船的最短路径.
答:作Q关于直线BC的对称点Q′,连接PQ′交BC于R,
∴旅游船线路:P—Q—R—P.
 选址造桥问题
活动二:(造桥选址问题)如图,A和
( http: / / www.21cnjy.com )B两地在一条河的两岸,现要在河上造一座桥MN,桥造在何处可使从A到B的路径AMNB最短?(假定河的两岸是平行的直线,桥要与河垂直.)
展示点评:从A到B要走的路线是A→M→N→B,如图所示,而MN是定值,于是要使路程最短,只要AM+BN最短即可.
解:在直线a上取任意一点M′,作M
( http: / / www.21cnjy.com )′N′⊥b于点N′,平移AM,使点M′移动到点N′的位置,点A移动到点A′的位置,连接A′B交直线b于点N,过点N作MN⊥a于点M,则路径AMNB最短.
理由如下:如图,点M′为直线a上任意一点(不与点M重合),
∵线段A′N′是线段AM平移得到的
∴AA′=MN′,A′N′=AM
∴AM′+MN′+BN′=A′N′+AA′+BN′
∵MN平行AA′且MN=AA′
∴MN可以看作是AA′经过平移得到的
∴A′N=AM
∴AM+NB=A′N+NB
∵根据两点之间线段最短,得A′N+NB=A′B∴AM+NB=A′N+NB
∵根据两点之间线段最短,得A′N+NB=A′B∴AM+NB∵MN=MN′
∴AM+MN+NB小组讨论:回顾前面的探究过程,我们是通过怎样的过程、借助什么解决问题的?
反思小结:解决连接河两岸的两个点的最短路径问
( http: / / www.21cnjy.com )题时,可以通过平移河岸的方法将河的宽度为零,转化为求直线异侧的两点到直线上一点所连线段的和最小的问题.由两点之间线段最短(或三角形两边之和大于第三边)可知,求距离之和最小问题,就是运用等量代换的方式,把几条线段的和想办法(如利用轴对称或平移等)转化在一条线段上,从而解决这个问题.
针对训练:
3.如图,台球桌上有一个黑球,一个白球,如何用球杆去击白球使其撞到AB边反弹后再撞到黑球?
答:
4.某中学八(2)班举行文
( http: / / www.21cnjy.com )艺晚会,桌子摆成如图a所示两直排(图中的AO,BO),AO桌面上摆满了橘子,OB桌面上摆满了糖果,站在C处的学生小明先拿橘子再拿糖果,然后到D处座位上,请你帮助他设计一条行走路线,使其所走的总路程最短?
解:如图b.
(1)作C点关于OA的
( http: / / www.21cnjy.com )对称点C1,作D点关于OB的对称点D1,(2)连接C1D1,分别交OA,OB于P,Q,那么小明沿C→P→Q→D的路线行走,所走的总路程最短.
四、总结梳理,内化目标
1.本节课研究问题的基本过程是什么?
2.轴对称在所研究问题中起什么作用?
五、达标检测,反思目标
1.要在河边修建一个水泵,分别向张村、李庄送水,修在河边什么地方,可使所用水管最短?
2.如图,四边形ABCD中,∠BAD
( http: / / www.21cnjy.com )=120°,∠B=∠D=90°,在BC,CD上分别找一点F,使△AEF周长最小,求∠AEF+∠AFE的度数.
答案:如图,分别作点A关于CD、BC的
( http: / / www.21cnjy.com )对称点A1,A2,连接A1A2,分别交CD、BC于点F,E,即此时△AEF周长最小.由对称可知∠A1=∠DAF,∠A2=∠BAE,因为∠A1+∠A2=180°-∠BAD=60°,所以∠DAF+∠BAE=∠A1+∠A2=60°,所以∠EAF
=60°,所以∠AEF+∠AFE=180°-∠EAF=120°.
1.上交作业 教科书复习题13第15题.
2.课后作业 见《学生用书》