《整式的乘法》同步测试
班级
姓名
成绩
一、选择题:(60’)
1.下列各式中,正确的是(
)
A.t5·t5
=
2t5 B.t4+t2
=
t
6
C.t3·t4
=
t12
D.t2·t3
=
t5
2.下列计算错误的是(
)
A. a2·( a)2
=
a4
B.( a)2·( a)4
=
a6
C.( a3)·( a)
2
=
a5
D.( a)·( a)2
=
a3
3.下列计算中,运算正确的个数是(
)
①5x3 x3
=
x3
②
3m·2n
=
6m+n
③am+an
=
am+n
④xm+1·xm+2
=
xm·xm+3
A.1
B.
2
C.3
D.4
4.计算a6(a2)3的结果等于(
)
A.a11
B.a
12
C.a14
D.a36
5.下列各式计算中,正确的是(
)
A.(a3)3
=
a6
B.( a5)4
=
a
20
C.[( a)5]3
=
a15
D.[( a)2]3
=
a6
6.下列各式计算中,错误的是(
)
A.(m6)6
=
m36
B.(a4)m
=
(a
2m)
2
C.x2n
=
( xn)2
D.x2n
=
( x2)n
7.下列计算正确的是(
)
A.(xy)3
=
xy3
B.(2xy)3
=
6x3y3 C.( 3x2)3
=
27x5
D.(a2b)n
=
a2nbn
8.下列各式错误的是(
)
A.(23)4
=
212
B.(
2a)3
=
8a3 C.(2mn2)4
=
16m4n8
D.(3ab)2
=
6a2b2
9.下列计算中,错误的是(
)
A.mn·m2n+1
=
m3n+1
B.( am 1)2
=
a
2m 2
C.(a2b)n
=
a2nbn
D.( 3x2)3
=
9x6
10.下列计算中,错误的是(
)
A.( 2ab2)2·(
3a2b)3
=
108a8b7 B.(2xy)3·( 2xy)2
=
32x5y5
C.(m2n)( mn2)2
=m4n4 D.( xy)2(x2y)
=
x4y3
11.下列计算结果正确的是(
)
A.(6ab2
4a2b) 3ab
=
18ab2
12a2b B.( x)(2x+x2 1)
=
x3 2x2+1
C.( 3x2y)( 2xy+3yz 1)
=
6x3y2 9x2y2z2+3x2y
D.(a3 b) 2ab
=a4b ab2
12.若(x 2)(x+3)
=
x2+a+b,则a、b的值为(
)
A.a
=
5,b
=
6
B.a
=
1,b
=
6
C.a
=
1,b
=
6
D.a
=
5,b
=
6
二、解答题:
1.计算(25’)
(1).
(
5a3b2)·( 3ab
2c)·(
7a2b);
(2).
2(a5)2·(a2)2-(a2)4·(a2)2·a2;
(3).(x+3)(x-3)-(x+1)(x+5)
(4).
3a2(ab2 b) (
2a2b2 3ab)(
3a);
(5).
(3x2 5y)(x2+2x 3).
2.当x
=
3时,求8x2 (x 2)(x+1) 3(x 1)(x 2)的值.(8’)
3.把一个长方形的长减少3,宽增加2,面积不变,若长增加1,宽减少1,则面积减少6,求长方形的面积.(7’)
参考答案:
一、选择题
1.A
说明:
t4与t2不是同类项,不能合并,B错;同底数幂相乘,底不变,指数相加,所以t3·t4
=
t3+4
=
t7≠t12,C错;t5 t5
=
t5+5
=
t10≠2t5,D错;t2 t3
=
t2+3
=
t5,A正确;答案为A.
2.C
说明: a2·( a)2
=
a2·a2
=
a2+2
=
a4,A计算正确;( a)2·( a)4
=
a2·a4
=
a2+4
=
a6,B计算正确;( a3)·( a)2
=
a3·a2
=
a5≠a5,C计算错误;( a)·( a)2
=
a·a2
=
a3,D计算正确;所以答案为C
3.A
说明:5x3 x3
=
(5 1)x3
=
4x3
≠x3
,①错误;
3m与2n
不是同底数幂,它们相乘把底数相乘而指数相加显然是不对的,比如m
=
1,n
=
2,则
3m·2n
=
31·22
=
3·4
=
12,而
6m+n
=
61+2
=
63
=
216≠12,②错误;am与an只有在m
=
n时才是同类项,此时am+an
=
2am≠am+n,而在m≠n时,am与an无法合并,③错;xm+1·xm+2
=
xm+1+m+2
=
xm+m+3
=
xm·xm+3,④正确;所以答案为A.
4.B
说明:a6(a2)3
=
a6·a2×3
=
a6·a6
=
a6+6
=
a12,所以答案为B.
5.D
说明:(a3)3
=
a3×3
=
a9,A错;( a5)4
=
a5×4
=
a20,B错;[( a)5]3
=
( a)5×3
=
( a)15
=
a15,C错;[( a)2]3
=
( a)2×3
=
( a)6
=
a6,D正确,答案为D.
6.D
说明:(m6)6
=
m6×6
=
m36,A计算正确;(a4)m
=
a
4m,(a
2m)2
=
a
4m,B计算正确;( xn)2
=
x2n,C计算正确;当n为偶数时,( x2)n
=
(x2)n
=
x2n;当n为奇数时,( x2)n
=
x2n,所以D不正确,答案为D.
7.D
说明:(xy)3
=
x3y3,A错;(2xy)3
=
23x3y3
=
8x3y3,B错;( 3x2)3
=
( 3)3(x2)3
=
27x6,C错;(a2b)n
=
(a2)nbn
=
a2nbn,D正确,答案为D.
8.C
说明:(23)4
=
23×4
=
212,A中式子正确;(
2a)3
=
( 2)
3a3
=
8a3,B中式子正确;(3ab)2
=
32a2b2
=
9a2b2,C中式子错误;(2mn2)4
=
24m4(n2)4
=
16m4n8,D中式子正确,所以答案为C.
9.D
说明:mn·m2n+1
=
mn+2n+1
=
m3n+1,A中计算正确;( am 1)2
=
a2(m 1)
=
a
2m 2,B中计算正确;
(a2b)n
=
(a2)nbn
=
a2nbn,C中计算正确;( 3x2)3
=
( 3)3(x2)3
=
27x6,D中计算错误;所以答案为D.
10.C
说明:( 2ab2)2·(
3a2b)3
=
( 2)
2a2(b2)2·( 3)3(a2)3b3
=
4a2b4·( 27)a6b3
=
108a2+6b4+3
=
108a8b7,
A中计算正确;(2xy)3·( 2xy)2
=
(2xy)3·(2xy)2
=
(2xy)3+2
=
(2xy)5
=
25x5y5
=
32x5y5,B中计算正确;(m2n)(
mn2)2
=m2n( )
2m2(n2)2
=m2n·m2n4
=m2+2n1+4
=m4n5,C中计算错误;( xy)2(x2y)
=
( )2x2y2·x2y
=x2y2·x2y
=
x4y3,D中计算正确,所以答案为C.
11.D
说明:(6ab2
4a2b) 3ab
=
6ab2·3ab
4a2b·3ab
=
18a2b3
12a3b,A计算错误;( x)(2x+x2 1)
=
x·2x+( x)·x2 ( x)
=
2x2 x3+x
=
x3 2x2+x,B计算错误;( 3x2y)( 2xy+3yz 1)
=
( 3x2y)
( 2xy)+( 3x2y)
3yz ( 3x2y)
=
6x3y2 9x2y2z+3x2y,C计算错误;(a3 b) 2ab
=
(a3)
2ab (b) 2ab
=a4b ab2,D计算正确,所以答案为D.
12.B
说明:因为(x 2)(x+3)
=
x x 2x+3x 6
=
x2+x 6,所以a
=
1,b
=
6,答案为B.
二、解答题
1.解:(1)(
5a3b2)·( 3ab
2c)·(
7a2b)
=
[( 5)×( 3)×( 7)](a3·a·a2)(b2·b2·b)c
=
105a6b
5c.
(2)
2a2b3·(m n)5·ab2·(n m)2+a2(m n)·6ab2
=
( 2·)·(a2·a)·(b3·b2)[(m n)5·(m n)2]+(
·6)(a2·a)(m n)b2
=
a3b5(m n)7+
2a3b2(m n).
(3)
3a2(ab2 b) (
2a2b2 3ab)(
3a)
=
3a2·ab2
3a2b+
2a2b2·
3a 3ab·
3a
=
a3b2
3a2b+
6a3b2
9a2b
=
7a3b2
12a2b.
(4)(3x2 5y)(x2+2x 3)
=
3x2·x2 5y·x2+3x2·2x 5y·2x+3x2·( 3) 5y·( 3)
=
3x4 5x2y+6x3 10xy 9x2+15y
=
3x4+6x3 5x2y 9x2 10xy+15y.
2.
解:8x2 (x 2)(x+1) 3(x 1)(x 2)
=
8x2 (x2 2x+x 2) 3(x2 x 2x+2)
=
8x2 x2+x+2 3x2+9x 6
=
4x2+10x 4.
当x
=
3时,原式
=
4·( 3)2+10·( 3) 4
=
36 30 4
=
2.
3.
解:设长方形的长为x,宽为y,则由题意有
即
解得
xy
=
36.
答:长方形的面积是36.
4.
解:(x+my 1)(nx 2y+3)
=
nx2 2xy+3x+mnxy 2my2+3my nx+2y 3
=
nx2 (2 mn)xy 2my2+(3 n)x+(
3m+2)y 3
∵x、y项系数为0,
∴得
故
3m+n
=
3·( )+3
=
1.