丽水、湖州、州2025年11月三地市高三教学质量检测试卷
数学参考答案
一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只
有一项是符合题目要求的
题号
1
2
3
4
5
6
7
8
答案
A
C
D
B
A
B
D
二、多项选择题:本题共3小题,每小题6分,共18分.
在每小题给出的四个选项中,有
多项符合题目的要求,全部选对的得6分,部分选对的得部分分,有选错的得0分
题号
9
10
11
答案
ACD
BCD
BD
三、填空题:本题共3小题,每小题5分,
共15分
13π
12.-9
13.√3+1
4,3
四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤,
15.(13分)已知数列{an}满足4=1,42
2 dm-an=am2-dat (nEN).
3,
0m+2
(1)证明:
数列
为等差数列:
(2)求数列{anan1}的前n项和Sn.
解:()由-0=02-0山得,丛-1=1-
-2分
dn+2
即1+aal=2
an an+2
得
1+1=2
一=一,所以数列
为等差数列-
-6分
an an+2 ant
2)设数列
的公差为d,则d=↓-上=1
---8分
42412
得
x2故a,2
1=1+0m-1d=1+m-Dx="+1击
-10分
a,a
n+1
44
4
Sn=142+a23++an0n=
十十
2×33×4
(n+1)×(n+2)
浙教视野26届湖丽備三地市一模数学答案第1页共7页
11]=
2n
=4×
=4×
L2334n+1n+2
2n+2n+2
因此所求数列{a,0}的前n项和的Sn=2m
-13分
n+2
16.(15分)如图,在三棱台ABC-4BC中,平面AACC1平面ABC,A4=AC=CC=2,
AC=4,AB=22,AB=BC.
(1)求证:A,B⊥AC;
B
(2)求平面ABC,与平面BCC,夹角的余弦值,
解析:(1)取AC的中点O,连接BO,A,O,CO,
因为BA=BC,O为AC中点,所以BO⊥AC,
又因为平面AACC⊥平面ABC,
平面AA,CC∩平面ABC=AC,BOc平面ABC,
所以BO⊥平面AA,CC,而ACC平面AAC,C,则AC⊥BO
-2分
因为A,C/1AO,A,C,=AO=AA,,所以四边形AAOC是菱形,AC⊥AO,--4分
而A,O∩BO=O,A,O,BOc平面A,OB,因此AC1平面AOB,
因为ABC平面AOB,所以AB⊥AC.-----
-5分
(2)取AC,中点M,则OM⊥AC,由平面LACC⊥平面ABC,平面AMC,Cn平面
ABC=AC,OMc平面AA,CC,则OM1平面ABC,则OB,OC,OM两两垂直,
依题可建立如图所示空间直角坐标系O-x)z.-7分
在平面AACC内作AH⊥AC于H,连接BH.
因为平面AACC1平面ABC,所以AH⊥平面ABC.
M
B1
在梯形4CCA中,由题意AH=AC=1,4H=5
d
在R△AHB中,BH=√AB2-AH=V5
0
在Rt△OHB中,OB=VBH2-OH2=2
A(0,-20),C(0,2,0),B(2,0,0),C(0,13)
浙教视野26届湖丽備三地市一模数学答案第2页共7页丽水、湖州、衢州2025年11月三地市高三教学质量检测试卷
数学试题卷
1.本试题卷共4页,满分150分,考试时间120分钟.
2.考生答题前,务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸上
3.选择题的答案须用2B铅笔将答题纸上对应题目的答案标号涂黑,如要改动,须将原填
涂处用橡皮擦净
4.非选择题的答案须用黑色字迹的签字笔或钢笔写在答题纸上相应区域内,作图时可先使
用2B铅笔,确定后须用黑色字迹的签字笔或钢笔描黑,答策写在本试题卷上无效,
一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,
只有一项是符合题目要求的,
1.已知复数z,若名=i(i为虚数单位),则2=
2+i
A.5
B.5
C.5
D.3
2.已知集合A={x-2≤x<1},B={m,3},且A∩B的元素个数是1个,则实数m的取值
范围是
A.(-2,1)
B.[-2,1]
C.[-2,1)
D.(-2,]
3,已知F,F为双曲线C:-3=1(a>0,b>0)的左右焦点,点A的坐标为0,2b),
若△AFF,为等边三角形,则双曲线C的离心率是
A.√5
B.2W5
C.2
D.3
4,已知x,y∈R,则下列条件中使x>y成立的充要条件是
A.x>y
B.x2>y2
C.a>a'(a>0,且a≠1)
D.ln(x-y+1)>0
5.定义在R上的两个函数f(x),g(x),恒有f(x)=g(x2),则
A.f(x)为奇函数
B.f(x)为偶函数
C.g(x)为奇函数
D.g(x)为偶函数
6.若函数y=-sin ox+列的图象向右平移”个单位后得到的图象关于y轴对称,则实数0
6
可以是
C.2
D.-2
高三数学试题卷第1页共4页
7.已知三棱锥S-ABC,满足SA=SB=SC,且SA,SB,SC两两垂直.在底面△ABC内
有一动点P到三个侧面的距离依次成等差数列,则点P的轨迹是
A.一个点
B.一条线段
C.一段圆弧
D.一段抛物线
8.若关于x的访程e-tc)(x-tl血x)=0(t∈R)恰有四个不同的实根a,b,c,d(aA.a+dB.a+d=b+c
C.adD.ad=bc
二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多
项符合题目的要求,全部选对的得6分,部分选对的得部分分,有选错的得0分
9.已知随机变量5~N(0,o2),(x)=P(5≤x),则下列等式正确的是
A.p(-x)=1-p(x)
B.P(05≤1)=1-2p(1)
c.P0≤1)=2p(1)-1
D.P((>1)=2-2(1)
10.设抛物线C:y2=2x(p>0)的焦点为F,准线为1,过点F的直线交C于A,B
两点,以F为圆心,FA为半径的圆交1于M,N两点.若AM⊥1,FA=6,则
A.p=2
B.直线AF的斜率是±√
C.AB=8
D.△AMN的面积是18√3
L.在△ABC中,若C>B,且si2B+c0s2c--sinBcosC=,则
A.C=T
22
B.sinA=1
2
C.sin A=cosC
D.2sinB-cosC的最大值是√3
三、填空题:本题共3小题,每小题5分,共15分.
2.(父-x+
展开式中的常数项是▲、
13.已知平面向量ā,五满足@园=5,a-=1,则同的最大值是▲一
4.在Rt△ABC中,C=受,AC=1,BC=V5,D是AB的肿点,把△BCD沿CD翻倒△B,CD,
设二面角B,-CD-A的平面角为0,若0∈
则三棱锥B,-ACD外接球表面积
的范围是▲
高三数学试题卷第2页共4页