28.2 解直角三角形及其应用(共3课时打包)

文档属性

名称 28.2 解直角三角形及其应用(共3课时打包)
格式 zip
文件大小 2.7MB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2016-09-19 08:24:19

文档简介

课件7张PPT。义务教育课程标准实验教科书九年级下册人民教育出版社28.2 解直角三角形(第3课时)例5 如图,一艘海轮位于灯塔P的北偏东65°方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东34°方向上的B处,这时,海轮所在的B处距离灯塔P有多远(精确到0.01海里)?解:如图 ,在Rt△APC中,PC=PA·cos(90°-65°)=80×cos25°≈80×0.91=72.8在Rt△BPC中,∠B=34°当海轮到达位于灯塔P的南偏东34°方向时,它距离灯塔P大约130.23海里.65°34°PBCA 解直角三角形有广泛的应用,解决问题时,要根据实际情况灵活运用相关知识,例如,当我们要测量如图所示大坝的高度h时,只要测出仰角a和大坝的坡面长度l,就能算出h=lsina,但是,当我们要测量如图所示的山高h时,问题就不那么简单了,这是由于不能很方便地得到仰角a和山坡长度l化整为零,积零为整,化曲为直,以直代曲的解决问题的策略与测坝高相比,测山高的困难在于;坝坡是“直”的,而山坡是“曲”的,怎样解决这样的问题呢? 我们设法“化曲为直,以直代曲”. 我们可以把山坡“化整为零”地划分为一些小段,图表示其中一部分小段,划分小段时,注意使每一小段上的山坡近似是“直”的,可以量出这段坡长l1,测出相应的仰角a1,这样就可以算出这段山坡的高度h1=l1sina1. 在每小段上,我们都构造出直角三角形,利用上面的方法分别算出各段山坡的高度h1,h2,…,hn,然后我们再“积零为整”,把h1,h2,…,hn相加,于是得到山高h. 以上解决问题中所用的“化整为零,积零为整”“化曲为直,以直代曲”的做法,就是高等数学中微积分的基本思想,它在数学中有重要地位,在今后的学习中,你会更多地了解这方面的内容. 1. 海中有一个小岛A,它的周围8海里内有暗礁,渔船跟踪鱼群由西向到航行,在B点测得小岛A在北偏东60°方向上,航行12海里到达D点,这时测得小岛A在北偏到30°方向上,如果渔船不改变航线继续向东航行,有没有触礁的危险?BADF解:由点A作BD的垂线交BD的延长线于点F,垂足为F,∠AFD=90°由题意图示可知∠DAF=30°设DF= x , AD=2x则在Rt△ADF中,根据勾股定理在Rt△ABF中,解得x=610.4 > 8没有触礁危险练习30°60°2. 如图,拦水坝的横断面为梯形ABCD(图中i=1:3是指坡面的铅直高度DE与水平宽度CE的比),根据图中数据求:
(1)坡角a和β;
(2)坝顶宽AD和斜坡AB的长(精确到0.1m)解:(1)在Rt△AFB中,∠AFB=90° 在Rt△CDE中,∠CED=90°利用解直角三角形的知识解决实际问题的一般过程是:
(1)将实际问题抽象为数学问题(画出平面图形,转化为解直角三角形的问题);
(2)根据条件的特点,适当选用锐角三角形函数等去解直角三角形;
(3)得到数学问题的答案;
(4)得到实际问题的答案.课件13张PPT。义务教育课程标准实验教科书九年级 下册人民教育出版社28.2 解直角三角形(第1课时)问题: 要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与地面所成的角a一般要满足50°≤a≤75°.现有一个长6m的梯子,问:
(1)使用这个梯子最高可以安全攀上多高的墙(精确到0.1m)?
(2)当梯子底端距离墙面2.4m时,梯子与地面所成的角a等于多少(精确到1°)?这时人是否能够安全使用这个梯子?这样的问题怎么解决问题(1)可以归结为:在Rt △ABC中,已知∠A=75°,斜边AB=6,求∠A的对边BC的长. 问题(1)当梯子与地面所成的角a为75°时,梯子顶端与地面的距离是使用这个梯子所能攀到的最大高度.因此使用这个梯子能够安全攀到墙面的最大高度约是5.8m所以 BC≈6×0.97≈5.8由计算器求得 sin75°≈0.97由 得对于问题(2),当梯子底端距离墙面2.4m时,求梯子与地面所成的角a的问题,可以归结为:在Rt△ABC中,已知AC=2.4,斜边AB=6,求锐角a的度数由于利用计算器求得a≈66° 因此当梯子底墙距离墙面2.4m时,梯子与地面
所成的角大约是66°由50°<66°<75°可知,这时使用这个梯子是安全的.在图中的Rt△ABC中,
(1)根据∠A=75°,斜边AB=6,你能求出这个直角三角形的其他元素吗?能6=75°在图中的Rt△ABC中,
(2)根据AC=2.4,斜边AB=6,你能求出这个直角三角形的其他元素吗?能62.4事实上,在直角三角形的六个元素中,除直角外,如果再知道两个元素(其中至少有一个是边),这个三角形就可以确定下来,这样就可以由已知的两个元素求出其余的三个元素.解直角三角形:在直角三角形中,由已知元素求未知元素的过程.在解直角三角形的过程中,一般要用到下面一些关系:解直角三角形(2)两锐角之间的关系∠A+∠B=90°(3)边角之间的关系(1)三边之间的关系 (勾股定理)在解直角三角形的过程中,一般要用到下面一些关系:例1 如图,在Rt△ABC中,∠C=90°,
解这个直角三角形解:例2 如图,在Rt△ABC中,∠B=35°,b=20,解这个直角三角形(精确到0.1)解:∠A=90°-∠B=90°-35°=55°你还有其他方法求出c吗? 解决有关比萨斜塔倾斜的问题. 设塔顶中心点为B,塔身中心线与垂直中心线的夹角为A,过B点向垂直中心线引垂线,垂足为点C(如图),在Rt△ABC中,∠C=90°,BC=5.2m,AB=54.5m所以∠A≈5°28′ 可以求出2001年纠偏后塔身中心线与垂直中心线的夹角.
你愿意试着计算一下吗?ABC在Rt△ABC中,∠C=90°,根据下列条件解直角三角形;
(1)a = 30 , b = 20 ;练习解:根据勾股定理 在Rt△ABC中,∠C=90°,根据下列条件解直角三角形;
(2) ∠B=72°,c = 14.解:课件7张PPT。义务教育课程标准实验教科书九年级 下册人民教育出版社28.2 解直角三角形(第2课时)例3: 2003年10月15日“神舟”5号载人航天飞船发射成功.当飞船完成变轨后,就在离地球表面350km的圆形轨道上运行.如图,当飞船运行到地球表面上P点的正上方时,从飞船上最远能直接看到地球上的点在什么位置?这样的最远点与P点的距离是多少?(地球半径约为6 400km,结果精确到0.1km) 分析:从飞船上能最远直接看到的地球上的点,应是视线与地球相切时的切点. 如图,⊙O表示地球,点F是飞船的位置,FQ是⊙O的切线,切点Q是从飞船观测地球时的最远点. 的长就是地面上P、Q两点间的距离,为计算 的长需先求出∠POQ(即a)例题 解:在图中,FQ是⊙O的切线,△FOQ是直角三角形.∴ PQ的长为 当飞船在P点正上方时,从飞船观测地球时的最远点距离P点约2009.6km例4: 热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30°,看这栋高楼底部的俯 角为60°,热气球与高楼的水平距离为120m,这栋高楼有多高(结果精确到0.1m)分析:我们知道,在视线与水平线所成的角中视线在水平线上方的是仰角,视线在水平线下方的是俯角,因此,在图中,a=30°,β=60° Rt△ABC中,a =30°,AD=120,
所以利用解直角三角形的知识求出
BD;类似地可以求出CD,进而求出BC.仰角水平线俯角解:如图,a = 30°,β= 60°, AD=120.答:这栋楼高约为277.1m1. 建筑物BC上有一旗杆AB,由距BC40m的D处观察旗杆顶部A的仰角54°,观察底部B的仰角为45°,求旗杆的高度(精确到0.1m).解:在等腰三角形BCD中∠ACD=90°BC=DC=40m在Rt△ACD中所以AB=AC-BC=55.2-40=15.2答:棋杆的高度为15.2m.练习 2. 如图,沿AC方向开山修路.为了加快施工进度,要在小山的另一边同时施工,从AC上的一点B取∠ABD = 140°,BD = 520m,∠D=50°,那么开挖点E离D多远正好能使A,C,E成一直线(精确到0.1m).∴∠BED=∠ABD-∠D=90°答:开挖点E离点D 332.8m正好能使A,C,E成一直线.解:要使A、C、E在同一直线上,则 ∠ABD是 △BDE 的一个外角